
CS 10 - Assignment 2

Collaboration Policy
Collaboration between students on programming assignments is NOT allowed under any circumstances - you

may not even discuss your work with others; you may NOT get coding assistance, or copy code, from ANY

outside source (books, web sites, current or past students, your own previous submissions if you are repeating

the course, etc.). We test every submission for copying and when we find it we treat it as flagrant academic

dishonesty on the part of all parties involved, regardless of their roles as provider or consumer. The penalty is

generally instant failure in the course, in addition to the usual sanctions applied by Student Judicial Affairs.

As you can see from the submission header below, we ask you to essentially take an oath that the code you

submit is entirely your own work.

At the same time, we certainly understand very well that you will frequently need help completing your

programming assignment, so we provide channels where you may get that help in a way which will strengthen

your programming skills: instructor and TA office hours, and the discussion forums where you can ask all the

questions you want about the assignment, and even help others with the understanding that you have gained (but

not, of course, with any actual code).

Assignment Submission Instructions
Your assignment must be submitted as a simple text file named main.cpp

Files in ANY other format (MS Word document, etc.) or with ANY other name (main, main.doc, main.txt, etc.)

will not be graded.

Submit your work via the appropriate iLearn assignment link, making sure you use the correct link and click on

the attach button

We strongly recommend that:

1. you submit at least 6 hours before the deadline, even if you haven't completed the program - you can

re-submit as often as you like, and we will only grade the final submission

2. once you have submitted your final attempt, go back and download it back to your system: then run it just

to make absolutely sure that it really is the file you intended to submit!

You are budding professionals, and are expected to take full responsibility for abiding by the requirements of a

contract.

The only reason we will ever accept for a missed deadline is if the system administrators inform me that

either the iLearn system or the CS department servers were off-line for a significant period around the time of the

deadline (In which case we will probably have notified you of alternative procedures).

Remember to include the following header information at the top of your program

(DO NOT REMOVE THE // at the beginning of each line, these tell the compiler to ignore these lines)

// Course: CS 10 <quarter & year>

//

// First Name:

// Last Name:

// Course username: <enter the username you use to login in the lab>

// Email address: <enter your cs or UCR student email address here>

//

// Lecture Section: <e.g. 001>

// Lab Section: <e.g. 021>

// TA:

//

// Assignment: <assn1, hw2, lab3, etc.>

//

// I hereby certify that the code in this file

// is ENTIRELY my own original work.

//

// ===

NOTE: This header MUST appear at the top of EVERY file submitted as part of your assignment

(don't forget to fill in *your* details and remove the <> brackets!!).

Copy & paste this header into your file then update the personal details.

Assignment Specifications
For this assignment you will create a madlib, constructing a story around several user inputs.

Search Google for madlibs if you are not familiar with this concept. You are to come up with

your own madlib, so let your imagination go wild!

Additional Knowledge

Examples of madlibs: www.madglibs.com or www.wordlibs.com

Your Assignment

You do not need to create your own story, but do not just copy one of these madlib examples.

Find or create a short story of your own and then convert it to a madlib similar to the

examples above.

However, to ensure you learn from this exercise, your madlib must have the following:

○ You must have a minimum of 10 inputs from the user. These inputs should all be stored as

strings. However, a single input must not be more than 1 word (or 1 number).

○ Your output must have at least 3 paragraphs, each paragraph separated by a blank line.

Each paragraph must have at least 3 sentences.

○ Your output must have complete sentences with proper punctuation, grammar, and spacing

around words.

○ No line of output should have more than 80 characters.

■ When testing your code we will never input more than 1 word answers.

■ We will always use inputs of 10 characters in length.

Take these things into consideration when determining where to put a newline

character in your output so the output never has more than 80 characters in a

single l ine.

With the 10 character inputs in the variable output locations, the output should try

to get as close to the 80 character l ine l imit as possible without exceeding it. This

means you should not have a l ine of 60 characters, as one or more words more

than likely could have fit on that l ine without going over 80. This rule does not

apply to the end of a paragraph.

Formatting Help

Every line (except the last in a paragraph) must be as close to 80 characters long as possible

(when all input words are 10 characters each). We test this by looking for both "too long" lines

and "too short" lines. Here are some tips on how get the line length right:

Check your output line length in comparison to terminal window size:

● If you open a terminal window (either when in the lab or in NX [gnome interface]) you can

grab the right window border of a terminal and drag it to be 80 characters. A small tooltip

pops up to show the width and height. If you use a Mac then we believe it is displayed in

the topmost window dressing. Geany’s execution window is 80 characters by default.

● Test your formatting with 10-character words: Each line should be as close to 80 characters

as possible (except for the last line of a paragraph, of course), and never exceed 80.

● Paragraphs should have a blank line between them.

Viewing the Result

Run your program (again, with 10 character inputs) in your 80 character wide terminal (see

above). Then grab the side of your terminal and expand it out to 100+ characters: it should still

look the same - i.e. each line should still be no more than 80 characters.

Scoring Issues

When a story contains all long lines or all short lines, the resulting score will be a 0 for

formatting as you cannot get points for formatting by not doing it at all!

Turn-in Reminders

Your submission should be have an attached file named main.cpp. (Main.cpp is not

acceptable.) Verify the file contents after submission.

Marking Guidelines

○ Deductions: incorrect header, compilation failure or file name not main.cpp

○ Correctly declares at least 10 variables.

○ Correctly obtains at least 10 inputs from user.

○ Output has at least 3 paragraphs each separated by a blank line.

○ No line of output has more than 80 characters.

○ Lines of output attempt to get close to 80 characters (non paragraph ending lines)

○ Use complete sentences, proper punctuation, grammar, and spacing around words

Basic Style Guidelines

○ indentation - all lines inside the main function should be indented 2-4 spaces

○ spacing - blank lines should be used to separate logic blocks

○ no line wraps - no line of code should have more than 80 characters

(this i s dis tinct from the requirement that a l ine of output cannot be more than 80 characters)

○ "meaningful" variable names

○ Comments - each logical block of code should have a brief explanatory comment.

