ACM 11: Billiard Ball Project

This is one possible topic for the ACM11 Mathematica project. Assigned December 7 2012. Due
by 11:59pm December 14 2012.

Simulate the path of a billiard ball bouncing around inside a convex body, assuming elastic
collisions.

It turns out that if you bounce a billiard ball around inside an ellipse, assuming elastic collisions,
there are three possibilities: either the path of the ball passes through the foci of the ellipse, or
it traces out a hyperbola or ellipse. See http://www.maa.org/mathland/mathland_3_3.html. In
this project we’ll develop a tool for tracing the paths of billiard balls inside of certain bodies.

We will use implicit equations to define the surface of our bodies, for example:

(i) the set of solutions to 2% + y* — 1 =0 is a circle

(ii) the set of solutions to (%)2 + (%)2 —1=0is an ellipse

(iii) and the set of solutions to 2% 4+ y* — 1 = 0 looks like a rectangle with rounded edges.

More generally, a function f can be used to define a body implicitly by stating that the level set
f(z) = 0 represents the surface of the body,  such that f(xz) < 0 are interior to the body, and
f(z) > 0 means x is outside the body. Of course this definition only makes sense if f is such that
the zero level set of f is a single closed figure. We will only consider the above three f, but the
following method should work for a wide variety of f.

Our program will consist of two main functions: rayBoundaryIntersection, which finds the
intersection of a path of the ball (which we’ll call a ray) with the surface, and reflectRay, which
will reflect a ray going toward the surface into a ray representing the path of the ball away from
that point of the surface. Rays will be represented as a pair of pairs, where the first represents
the origin of the ray and the second represents the positive direction of the ray: e.g. {{1,0},
Normalize@{-Cos[Pi/3], Sin[Pi/5]1}}.


http://www.maa.org/mathland/mathland_3_3.html

In rayBoundaryIntersection we will call Solve to find intersection points: those which satisfy
both the implicit equation defining the surface, and the equation defining the ray.

Since the ball will be undergoing elastic collisions, the incoming angle of rays will be equal to
their outgoing angles, where we measure the angles with respect to the tangent plane of the surface
at the intersection points. The reflectRay function will capture this physics. To that end, we
will need to know the local tangent and normal vectors at the intersection points; we will use a
supplementary function frenetFrame to determine these from the implicit equation defining the
surface.

Let’s summarize how the program will work: the user will specify an implicit function defining
the surface, an initial ray starting from a point inside the surface and pointing somewhere else inside
the surface, and how many rays to cast (i.e. how many times to track the bouncing of the ball).
Then we’ll call reflectRay the appropriate number of times to determine the path the ball takes.
Each time reflectRay is called it will itself call rayBoundaryIntersection to determine where
the ball bounces. reflectRay will also be responsible for constructing the graphical representation
of the path of the ball.

Here are detailed instructions:

(a) Define a function implicitform that takes z and y as coordinates and returns the value of the
implicit function defining the surface. For example, for a standard circle, implicitform[x_,y_]
= Power[x,2] + Power[y,2] - 1. UseContourPlot with the options Frame->False, AspectRatio->1
to define boundarycurve, a plot of the zero level set of the function. Note that you’ll need to
change the plot range for the ContourPlot when you change implicitform, to show the entire
zero level set. While you're doing your coding, I recommend using the standard circle. For
grading purposes, we will change implicitform to one of the above examples (and we’ll change
the plot range if necessary). We will also change the initial ray curray (see below) to a suitable
choice.

(b) Define graphqueue as an empty list, and a function addQueue that takes a single argument and
appends it to graphqueue. The idea is, that as we go along, we will add the Lines representing
the ball’s path between intersection points and the Points representing the intersection points
to graphqueue, and show graphqueue along with boundarycurve as our final visualization.

(c¢) Define rayBoundaryIntersection as a function which takes a ray as its argument, and returns
the intersection point of that ray with the surface. Do this by solving the system of equa-
tions given by the fact that the intersection point must lie on the ray and must also satisfy
implicitform. Two issues come to mind: one, you will get a trivial intersection point, because
the starting point of the ray satisfies both these equations, also, you might get some non-real
solutions. Filter out these two types of false intersection points. If you have more than one
intersection point (you may, if the surface is nonconvex, for instance), return the one that is
closest, in the positive direction, to the starting point of the ray— that is, the one that the ball
would first encounter as it traveled along the ray.

(d) Define frenetFrame which takes a point (a pair of numbers) and returns a pair of pairs: the
first pair being the tangent to the surface at the point, and the second being the inward pointing
normal to the surface at the point. First, determine the normal using the fact that if f =0
defines a body’s surface and f < 0 defines its interior, then —V f defines the inward pointing
normal. If the normal n = (z,y), take the tangent to be t = (—y,x); this will give the local
tangent and normal basis a consistent orientation around the surface— i.e. the tangent vector
will always point counterclockwise. Ensure, using Normalize, that the tangent and normal
vectors are unit length.

(e) Define reflectRay as a function which accepts a ray as its argument. Inside reflectRay, first
determine where that ray will intersect the surface, and add this point as a red Point to the
graphics queue. Also add a Line connecting the origin of the ray to the intersection point to
the graphics queue. Next find the tangent ¢ and normal n at the intersection point, and return



the ray reflected about the intersection point as follows: make its origin the intersection point,
and if the direction of the incoming ray was at+bn (use Dot to determine a and b), the direction
of the outgoing ray is at — bn.

(f) Put all of the above definitions in one cell (appropriately commented and spaced and for-
matted for readibility!). In the cell under it, we will do the visualization. First define the
variable curray as a ray which starts somewhere inside the surface and points inside the sur-
face; e.g., for any of the example surfaces given, curray = {{1,0}, Normalize®{-Cos[Pi/3],
Sin[Pi/51}} //N is a valid choice.

Make sure that the entries of curray are approximate numbers, not exact, as in the example
curray given. The reason is that, if the starting ray contains exact numbers, Mathematica will
try to find exact solutions each time rayBoundaryIntersection is called; the solutions will
quickly get large and unwieldy, and Mathematica will essentially stall. If instead we use ap-
proximate numbers, Mathematica will avoid the propagation of large expressions and happily
and quickly find inexact solutions.

Use a For loop to calculate reflectRay[curray] 70 times, each time overwriting curray.
Finally, display the boundary curve and the contents of the graphics queue.

Document your program with comments and make sure that the TA will have no trouble read-
ing your code; in particular, this entails spacing your code appropriately and using line breaks
appropriately.



