
Models of Computation, 2010 1

1 Operational Semantics for While

The language While of simple while programs has a grammar consisting

of three syntactic categories: numeric expressions, which represent natural

numbers; booleans, which are similar to expressions but represent truth val-

ues rather than numbers; and commands, which are imperative statements

which affect the store of the computer. 1 (The dots in slide 1 denote that we

can add more operations if necessary.)

Slide 1

Syntax of While

B ∈ Bool ::= true | false | E = E | E < E | . . .

| B&B | ¬B | . . .

E ∈ Exp ::= x | n | E + E | . . .

C ∈ Com ::= x := E | if B then C else C

| C;C | skip | while B do C

We use brackets were necessary to disambiguate.

The commands C are:

• assignment, which takes a variable and an expression and gives a

command, written x := E;

• the conditional, which takes a boolean and two commands and yields

a command, written if B then C else C ;

• sequential composition, which takes two commands and yields a com-

mand, written C1;C2 (note that the semicolon is an operator joining

two commands into one, and not just a piece of punctuation at the end

of a command);

• the constant skip command, which does nothing;

• the loop constructor, which takes a boolean and a command and

1We always deal with abstract syntax, even though the grammar for the syntax of While looks

a bit like the kind of concrete syntax you might type into a computer. So, we’re really dealing with
trees built up out of the term-forming operators of While.

Models of Computation, 2010 2

yields a command, written while B do C .

We will study the operational semantics of While. However, we first study

the operational semantics of simple expressions (without variables), since it

is helpful to introduce the basic concepts of the operational semantics using

such simple terms.

1.1 Operational Semantics for SimpleExp

We give the operational semantics for simple expressions without variables.

Slide 2

Syntax of Simple Expressions

E ∈ SimpleExp ::= n | E + E |E × E | ...

where n ranges over the natural numbers 0, 1, 2, ..., and + and ×

denote operators to form expressions. We can add more operations if

we need to.

We work with abstract syntax (trees).

It is quite straightforward to change the interpretation of expression n to

range over the integers ... − 2,−1, 0, 1, 2,

Models of Computation, 2010 3

Slide 3

An operational semantics for SimpleExp

An operational semantics for SimpleExp will tell us how to evaluate an

expression to get a result. This can be done in two ways:

• small-step, or structural, operational semantics gives a method for

evaluating an expression step-by-step;

• big-step, or natural, operational semantics ignores the

intermediate steps and gives the result immediately.

1.1.1 Big-step semantics for SimpleExp

Let us consider big-step semantics first. The big-step semantics for Simple-

Exp takes the form of a relation ⇓ between expressions and values, which

are those expressions we deem to be a ‘final answer’. We relate expressions

to numbers, writing

E ⇓ n.

Models of Computation, 2010 4

Slide 4

Big-step Semantics of SimpleExp

(B-NUM)

n ⇓ n

(B-ADD)
E1 ⇓ n1 E2 ⇓ n2

E1 + E2 ⇓ n3

n3 = n1 + n2

where + denotes the normal addition of natural numbers. We can

give similar rules for multiplication and other natural operations.

Intuitively, a rule such as

E1 ⇓ n1 E2 ⇓ n2

E3 ⇓ n3

means that, if it is the case that E1 ⇓ n1 and also E2 ⇓ n2, then it is the

case that E3 ⇓ n3. We call E1 ⇓ n1 and also E2 ⇓ n2 the premises of

the rule, and E3 ⇓ n3 the conclusion. When there are no entries above the

line, the rule is an axiom, which is to say that it always holds.

Notice that the side-condition for the rule for addition, (B-ADD), talks about the

addition operation + on numbers in order to define the semantics of the

expression addition +.

The rules define a relation ⇓ which says when an expression evaluates to a

final answer. We say that E ⇓ n is in this relation, or E ⇓ n holds, only

if it can be established from the axioms and rules. So, if we want to assert

that, for example, 3 + (2 + 1) ⇓ 6, we need to show this to be the case by

applying the axioms and rules given in the definition of ⇓.

Models of Computation, 2010 5

Slide 5

A Proof that 3 + (2 + 1) ⇓ 6

(B-ADD)

(B-NUM)
3 ⇓ 3

(B-ADD)

(B-NUM)

2 ⇓ 2
(B-NUM)

1 ⇓ 1

2 + 1 ⇓ 3

3 + (2 + 1) ⇓ 6

There are two natural properties of the big-step semantics for SimpleExp:

determinacy, which says that an expression can evaluate to at most one

answer; and totality, which says that an expression must evaluate to at least

one answer.

Models of Computation, 2010 6

Slide 6

Some properties of ⇓

Determinacy

For all E, n1 and n2, if E ⇓ n1 and E ⇓ n2 then n1 = n2.

Totality

For all E, there exists a n such that E ⇓ n.

1.1.2 Small-step Semantics of SimpleExp

The big-step semantics given above tells us what the final value of an ex-

pression is straight away. The rules tell us how to compute the answer, but

sometimes it is desirable to be more explicit about exactly how programs are

evaluated. A small-step semantics lets us do just this. We shall define a

relation

E → E′

which describes one step of evaluation of E.

Models of Computation, 2010 7

Slide 7

Small-step Semantics of SimpleExp

(S-LEFT)
E1 → E′

1

E1 + E2 → E′
1 + E2

(S-RIGHT)
E → E′

n + E → n + E′

(S-ADD)
n1 + n2 → n3

n3 = n1+n2

These rules say: to evaluate an addition, first evaluate the left-hand argu-

ment; when you get to a number, evaluate the right-hand argument; when

you get to a number there too, add the two together to get a number. Note

that there are no rules to evaluate a number, because it has already been

fully evaluated.

Consider the expression 3+(2+1). By the axiom (S-ADD), we have 2+1 →
3 so, by rule (S-RIGHT), we have 3 + (2 + 1) → 3 + 3. The axiom also

says that 3 + 3 → 6, so we have

3 + (2 + 1) → 3 + 3 → 6.

It is important to realise that the order of evaluation is fixed by this semantics.

We have

(1 + 2) + (3 + 4) → 3 + (3 + 4),

not (1 + 2) + 7. The big-step semantics cannot make such a fine-grained

stipulation.

1.1.3 Getting the final answer

While the intermediate expressions of a computation are interesting, we are

ultimately concerned with the final answer yielded by evaluating an expres-

Models of Computation, 2010 8

sion. To capture this mathematically from the small-step semantics, we de-

fine the relation which expresses multiple-step evaluations.

Slide 8

Many Steps of Evaluation

Given a relation →, we define a new relation →∗ by:

E →∗ E′ holds if and only if either = E′ (so no steps of evaluation

are needed to get from E to E′) or there is a finite sequence

E → E1 → E2 . . . → Ek → E′.

This relation →∗ is called the reflexive transitive closure of →.

For our expressions, we say that number n is the final answer of E if

E →∗ n.

Models of Computation, 2010 9

Slide 9

Normal Form

An expression E is in normal form (and said to be irreducible), if there

is no E′ such that E → E′.

Theorem

The normal forms of expressions are the numbers.

Analogous to the big-step semantics, determinacy for the small-step seman-

tics means that each expression can only evaluate (for one step) in at most

one way. Note that we do not have totality, since normal forms do not eval-

uate any further. A more general property of → is confluence, which states

that if we choose two different evaluation paths for an expression then they

can both be extended so that they eventaully converge. Since → is deter-

ministic, confluence follows trivially, but we shall see other semantics where

determinacy does not hold, but confluence does. Normalisation for→means

that every evaluation path must eventually reach a normal form; it cannot go

on reducing forever. (There is also a property called weak normalisation,

which means that every expression has some evaluation path that eventu-

ally reaches a normal form. This is less interesting for our semantics here,

but is interesting when we consider the lambda calculus alter in the course.)

Since → is both confluent and normalising, it follows that every expression

evaluates to exactly one normal form. As we know, the normal forms are the

numbers. These properties are typically proved by induction, as we shall see.

Models of Computation, 2010 10

Slide 10

Some Properties of →

Determinacy

For all E,E1, E2, if E → E1 and E → E2 then E1 = E2.

Confluence For all E,E1, E2, if E →∗ E1 and E →∗ E2 then

there exists E′ such that E1 →∗ E′ and E2 →∗ E′

(Strong) Normalisation There are no infinite sequences of

expressions E1, E2, E3, ... such that, for all i, Ei → Ei+1. This

means that every evaluation path eventually reaches a normal form.

Theorem

For all E,n1, n2, if E →∗ n1 and E →∗ n2 then n1 = n2.

Both ⇓ and → give semantics to expressions in terms of the numbers to

which they evaluate. Although they were defined differently, we can prove a

theorem which shows that they agree.

Models of Computation, 2010 11

Slide 11

Theorem

Theorem

For all E and n, E ⇓ n if and only if E →∗ n.

Models of Computation, 2010 12

1.2 Operational Semantics of While

We give a small-step operational semantics to the programming language

While, whose syntax was introduced in slide 1 and is repeated in slide 12.

The first immediate issue is what it means to evaluate an assignment:

x := E → ?

where E might now contain variables. We need more information about the

state of the machine’s memory. Slide 13 gives the definition of a state suitable

for modelling While. Intuitively, a state s tells us what, if anything, is stored

in the memory location corresponding to each variable of the language, and

s[x 7→ n] is the state s updated so that the location corresponding to x

contains n. For example, consider the state s[x 7→ 4][y 7→ 5][z 7→ 6]. We

have

s[x 7→ 4][y 7→ 5][z 7→ 6](y) = 5

s[x 7→ 4][y 7→ 5][z 7→ 6](z) = 6

s[x 7→ 4][y 7→ 5][z 7→ 6](x) = 4

Our small-step semantics will therefore be concerned with programs together

with their store.

Slide 12

Syntax of While

B ∈ Bool ::= true | false | E = E | E < E | . . .

| B&B | ¬B | . . .

E ∈ Exp ::= x | n | E + E | . . .

C ∈ Com ::= x := E | if B then C else C

| C;C | skip | while B do C

where x is variable and n is a number.

Models of Computation, 2010 13

Slide 13

States

A state is a partial function from variables to numbers such that s(x)

is defined for finitely many x.

We have

s[x 7→ n](y) = n if y = x

= s(y) otherwise

Our small-step semantics for While will be defined using

configurations of the form 〈E, s〉, 〈B, s〉 and 〈C, s〉. The idea is

that we evaluate E, B and C with respect to state s.

Expressions and Booleans Expressions and booleans to do not present

any difficulty. The only new kind of expression is the variable. Its semantics

involves fetching the appropriate value of the variable from the state (the

variable store). The expression evaluation relation →e is described using

the rules in slide 14. The rules describing the the boolean evaluation relation

→b are left as an exercise. We usually omit the subscripts e and b, since it is

clear from the context which evaluation relation is appropriate. We use them

in the formal definitions, to clarify the interactions between these relations

and also the execution relation →c for our language While.

Models of Computation, 2010 14

Slide 14

Expressions

(W-EXP.LEFT)
〈E1, s〉 →e 〈E′

1, s
′〉

〈E1 + E2, s〉 →e 〈E′
1 + E2, s

′〉

(W-EXP.RIGHT)
〈E, s〉 →e 〈E′, s′〉

〈n + E, s〉 →e 〈n + E′, s′〉

(W-EXP.NUM)
〈x, s〉 →e 〈n, s〉

s(x) = n

(W-EMP.ADD)
〈n1 + n2, s〉 →e 〈n3, s〉

n3 = n1+n2

Exercise: Now write down the rules for booleans.

Notice that the rules for evaluating expressions do not affect the state. Can

you explain in words why this is the case? How might you prove it (difficult at

the moment)?

Commands The command execution relation has the form 〈C, s〉 →c

〈C ′, s′〉. The rules for →c (again, we often omit the subscript c) are dif-

ferent from the rules for →e and →b, in that they will directly alter the state.

Intuitively, we want our rules to show how the commands update the state,

and we will know that a command has finished its work when it reduces to

skip. We shall now consider each command in turn and write down the

appropriate rules. For assignment, x := E, we first want to evaluate E to

some number n, and then update the state so that x contains the number n.

For sequential composition, C1;C2, we first allow C1 to run to completion,

changing the state as it does so, and then compute C2. For conditionals, we

first evaluate the boolean guard: if it returns true we take the first branch;

if it returns false, we take the second branch.

Models of Computation, 2010 15

Slide 15

Assignment

(W-ASS.EXP)
〈E, s〉 →e 〈E′, s′〉

〈x := E, s〉 →c 〈x := E′, s′〉

(W-ASS.NUM)
〈x := n, s〉 →c 〈skip, s[x 7→ n]〉

Slide 16

Sequential Composition

(W-SEQ.LEFT)
〈C1, s〉 →c 〈C

′
1, s

′〉

〈C1;C2, s〉 →c 〈C
′
1;C2, s

′〉

(W-SEQ.SKIP)
〈skip;C2, s〉 →c 〈C2, s〉

Models of Computation, 2010 16

Slide 17

Conditional

(W-COND.TRUE)

〈if true then C1 else C2, s〉 →c 〈C1, s〉

(W-COND.FALSE)

〈if false then C1 else C2, s〉 →c 〈C2, s〉

(W-COND.TRUE)

〈B, s〉 →b 〈B′, s′〉

〈if B then C1 else C2, s〉 →c 〈if B
′ then C1 else C2, s

′〉

What about while? Intuitively, we want to evaluate the boolean guard,

and, if true, run the command then go back to the beginning and start again.

Consider as a first try slide 18. The problem with this approach is that the

only rule we’ve got which is capable of entering the loop body is the one for

while true do C , which ought to be an infinite loop. By evaluating

the boolean guard in place, as in the first rule of slide 18, we have made a

serious error. The point is that we do not want to evaluate that boolean once

and use that value for ever more, but rather we want to evaluate that boolean

every time we go through the loop. So, when we evaluate it the first time, it is

vital that we don’t throw away the ‘old’ B, which this rule does. The solution

is to make a copy of B to evaluate each time. In fact, we are able to give a

single rule for while using the conditional command, as shown in slide 19.

Models of Computation, 2010 17

Slide 18

Incorrect Semantics for while

(W-WHILE?)
〈B, s〉 →b 〈B

′, s′〉

〈while B do C, s〉 →c 〈while B′ do C, s′〉

(W-WHILE?)
〈while false do C, s〉 →c 〈skip, s〉

(W-WHILE?)
〈while true do C, s〉 →c 〈 ? 〉

Slide 19

Correct Semantics for while

(W-WHILE)

〈while B do C, s〉 →c

〈if B then (C;while B do C) else skip, s〉

All this rule does is ‘unfold’ the while loop once. If we could write down

the infinite unfolding, there would be no need for the while syntax.

Models of Computation, 2010 18

1.2.1 An Example

Slide 20 shows a program for computing the factorial of x and storing the

answer in variable a. Let s be the state (x 7→ 3, y 7→ 2, a 7→ 9), using an

obvious notation for states. It should be the case that

〈C, s〉 →∗ 〈skip, s′〉

where s′(a) = 6. (Can you predict the final values of x and y?) Let’s check

that this is correct. First some abbreviations: we write C ′ for the sub-program

while y > 0 do

(a := a × y;

y := y − 1)

and si,j,k for the state (x 7→ i, y 7→ j, a 7→ k). Thus, for our factorial

example, the initial state s can be written s3,2,9. Now let’s do the evaluation.

Each line should really be justified by reference to one of the rules of the

operational semantics.

Slide 20

A factorial program!

C = y := x; a := 1;

while y > 0 do

(a := a × y;

y := y − 1)

Models of Computation, 2010 19

〈y := x; a := 1; C′, s3,2,9〉
→ 〈y := 3; a := 1; C′, s3,2,9〉
→ 〈skip; a := 1; C′, s3,3,9〉
→ 〈a := 1; C′, s3,3,9〉
→ 〈skip; C′, s3,3,1〉
→ 〈C′, s3,3,1〉
→ 〈if y > 0 then (a := a × y; y := y − 1; C′) else skip, s3,3,1〉
→ 〈if 3 > 0 then (a := a × y; y := y − 1; C′) else skip, s3,3,1〉
→ 〈if true then (a := a × y; y := y − 1; C′) else skip, s3,3,1〉
→ 〈a := a × y; y := y − 1; C′, s3,3,1〉
→ 〈a := 1 × y; y := y − 1; C′, s3,3,1〉
→ 〈a := 1 × 3; y := y − 1; C′, s3,3,1〉
→ 〈a := 3; y := y − 1; C′, s3,3,1〉
→ 〈skip; y := y − 1; C′, s3,3,3〉
→ 〈y := y − 1; C′, s3,3,3〉
→ 〈y := 3 − 1; C′, s3,3,3〉
→ 〈y := 2; C′, s3,3,3〉
→ 〈skip; C′, s3,2,3〉
→ 〈C′, s3,2,3〉
→ 〈if y > 0 then (a := a × y; y := y − 1; C′) else skip, s3,2,3〉
→ 〈if 2 > 0 then (a := a × y; y := y − 1; C′) else skip, s3,2,3〉
→ 〈if true then (a := a × y; y := y − 1; C′) else skip, s3,2,3〉
→ 〈a := a × y; y := y − 1; C′, s3,2,3〉
→ 〈a := 3 × y; y := y − 1; C′, s3,2,3〉
→ 〈a := 3 × 2; y := y − 1; C′, s3,2,3〉
→ 〈a := 6; y := y − 1; C′, s3,2,3〉
→ 〈skip; y := y − 1; C′, s3,2,6〉
→ 〈y := y − 1; C′, s3,2,6〉
→ 〈y := 2 − 1; C′, s3,2,6〉
→ 〈y := 1; C′, s3,2,6〉
→ 〈skip; C′, s3,1,6〉
→ 〈C′, s3,1,6〉
→ 〈if y > 0 then (a := a × y; y := y − 1; C′) else skip, s3,1,6〉
→ 〈if 1 > 0 then (a := a × y; y := y − 1; C′) else skip, s3,1,6〉
→ 〈if true then (a := a × y; y := y − 1; C′) else skip, s3,1,6〉
→ 〈a := a × y; y := y − 1; C′, s3,1,6〉
→ 〈a := 6 × y; y := y − 1; C′, s3,1,6〉
→ 〈a := 6 × 1; y := y − 1; C′, s3,1,6〉
→ 〈a := 6; y := y − 1; C′, s3,1,6〉
→ 〈skip; y := y − 1; C′, s3,1,6〉
→ 〈y := y − 1; C′, s3,1,6〉
→ 〈y := 1 − 1; C′, s3,1,6〉
→ 〈y := 0; C′, s3,1,6〉
→ 〈skip; C′, s3,0,6〉
→ 〈C′, s3,0,6〉
→ 〈if y > 0 then (a := a × y; y := y − 1; C′) else skip, s3,0,6〉
→ 〈if 0 > 0 then (a := a × y; y := y − 1; C′) else skip, s3,0,6〉
→ 〈if false then (a := a × y; y := y − 1; C′) else skip, s3,0,6〉
→ 〈skip, s3,0,6〉

As you can see, this kind of calculation is horrible to do by hand. It can,

however, be automated to give a simple interpreter for the language, based

directly on the semantics. It is also formal and precise, with no argument

about what should happen at any given point. Finally, it did compute the right

answer!

Models of Computation, 2010 20

1.2.2 Some Facts

Recall that the small-step semantics for expressions satisfies determinacy,

confluence and normalisation, slide 10. Determinacy and confluence hold

for the execution relation →c for While, but normalisation does not hold.

Slide 21

Determinacy and Confluence for →c

The execution relation →c for While is deterministic : that is, for all

C , s, C1, s1, C2, s2,

if 〈C, s〉 →c 〈C1, s1〉 and 〈C, s〉 →c 〈C2, s2〉 then

〈C1, s1〉 = 〈C2, s2〉.

Thus, the relation →c is confluent : that is, for all C , s, C1, s1, C2,

if 〈C, s〉 →∗
c 〈C1, s1〉 and 〈C, s〉 →∗

c 〈C2, s2〉 then there exists

〈C ′, s′〉 such that 〈C1, s1〉 →
∗
c 〈C ′, s′〉 and 〈C2, s2〉 →

∗
c 〈C ′, s′〉

Analogous results hold for the relations →e and →b.

However, normalisation does not hold, as illustrated in slide 24. It is possible

for a computation to be non-terminating: that is, a computation to result in an

infinite loop. Let us prove that (while true do skip) never reaches

a result, using the fact that the small-step semantics of While is deterministic.

Models of Computation, 2010 21

Slide 22

Answer Configurations

A configuration 〈skip, s〉 is said to be an answer configuration .

Since there is no rule for executing skip, answer configuations are

normal forms : that is, there is no 〈C ′, s′〉 with

〈skip, s〉 →c 〈P
′, s′〉.

For expressions, the answer configurations are 〈n, s〉 for number n.

For booleans, the answer configurations are 〈true, s〉 and

〈false, s〉.

Slide 23

Stuck Configurations

There are other normal forms for configurations, called stuck

configurations .

For example, 〈y, (x 7→ 3)〉 is a normal expression configuration,

since y cannot be evaluated in the state (x 7→ 3).This configuration

is stuck .

Another example is the stuck command configuration

〈x := y + 7; y := y − 1, (x 7→ 3)〉.

A further example is the stuck boolean configuration

〈5 < y, (x 7→ 2)〉. Note that the configuration 〈x < y, (x 7→ 2)〉 is

not stuck, but reduces to a stuck state.

Models of Computation, 2010 22

Slide 24

Normalisation

The evaluation relations →e and →b are normalising.

The execution relation →c is not normalising.

Specifically, we can have infinite loops. For example, the program

(while true do skip) loops forever.

Let s be any state. We have the execution path

〈while true do skip, s〉 →3
c 〈while true do skip, s〉

where →3
c means three steps. Hence, we have an infinite execution

path.

Theorem For any state s, there is no s′ such that

〈while true do skip, s〉 →∗ 〈skip, s′〉

Proof Let us first calculate a few steps of the evaluation of this program:

〈while true do skip, s〉

→ 〈if true then (skip;while true do skip) else skip, s〉

→ 〈skip;while true do skip, s〉

→ 〈while true do skip, s〉

As you can see, it seems unlikely that this will ever get anywhere. But we

need to prove this! Suppose to the contrary that it is possible for

〈while true do skip, s〉 →∗ 〈skip, s′〉,

and let n be the number of steps taken for this evaluation. Note that, since

the semantics is deterministic, this number n is well-defined.

Again, determinacy tells us that the first three steps of the evaluation must

be the steps we calculated above, and then the remaining n− 3 steps of the

Models of Computation, 2010 23

evaluation show that

〈while true do skip, s〉 →∗ 〈skip, s′〉,

which is not possible, since this takes n steps! This is a contradiction, so we

deduce that no such evaluation exists. �

This result demonstrates that inherent in our language is the fact that some

computations do not yield final answers. It fits our intuition about how pro-

grams work!

1.2.3 Discussion: Side-effects and Evaluation Order

Something worth noticing about our language is that the only phrases which

affect the state directly are the assignment commands. Assignments are al-

ways found inside commands rather than inside expressions or booleans.

Furthermore, commands are strictly sequenced by the ; operator. This

means that there is never any confusion about what should be in the state

at a given time, and none of the decisions we have made about the order of

evaluation affect the final answer configurations.

In more sophisticated languages, this situation can be compromised. For

example, commands can often creep into the language of expressions via

constructs like a return command. For example, we think of

do x := x + 1 return x,

as an expression because it returns a numerical result. However, it does

have a side-effect on the state. We can also write composite expressions

such as

(do x := x + 1 return x) + (do x := x × 2 return x)

It is now vital that we pay close attention to the semantics of addition. Does

+ evaluate its argument left-to-right or right-to-left?

Exercise Write down the sets of rules corresponding to each evaluation

strategy for +, and evaluate the above in the state (x 7→ 0) under each set

of rules.

Models of Computation, 2010 24

Slide 25

Side-effecting expressions

If we allow expressions like

do x := x + 1 return x

then the result of evaluating

(do x := x+1 return x)+(do x := x×2 return x)

depends on the evaluation order.

Strictness In the case of addition, the only reasonable choices for evalu-

ation are left-to-right or right-to-left, although other choices do exists, such

as evaluating both arguments twice! In any case, it is clear that both argu-

ments must be evaluated at least once before the result of the addition can

be calculated. Sometimes, this is not the case. For example, the logical ‘and’

operator, written & in our syntax, when applied to false and any other

boolean, must return false. It is therefore possible to write a semantics for

& as on slide 26. In this case, the programmer really must know what the

semantics is. For example, in any state

false& (while true do skip;return(true)) → false

while (while true do skip;return(true))&false gets into

an infinite loop.

Models of Computation, 2010 25

Slide 26

Short-circuit Semantics of &

B1 → B′
1

B1 & B2 → B′
1 & B2

false& B2 → false

true& B2 → B2

Slide 27

Strictness

An operation is called strict in one of its arguments if it always needs

to evaluate that argument.

Addition is strict in both arguments.

The semantics of & given in slide 26 makes & a left-strict operator.

It is non-strict in its right argument.

Models of Computation, 2010 26

Procedure and Method Calls Though we will not formally consider lan-

guages with procedures or method calls, we can informally apply the ideas

given in this course to obtain a deeper understanding of such languages.

The issues of strictness and evaluation order crop up again and again. For

example, in a method like

void aMethod(int x){
return;

}

the argument x is never used. So in a call such as

aMethod(do y := y + 1 return y)

do we need to evaluate the argument? Clearly, the outcome of a program

containing a call like this will depend on the semantic decision we make here.

In a method call such as

anotherMethod(exp1, exp2)

in what order should we evaluate the arguments, if they are used? If an

argument is used twice in the body of the method, should it be evaluated

twice? There are plenty of different semantic decisions to be made here.

Here are some popular choices.

• Evaluate all the arguments, left to right, and use the result of this eval-

uation each time the argument is used. This is called call-by-value,

and is roughly what Java and ML do.

• Replace each use of an argument in the method body by the text of

the actual parameter the programmer has supplied, so that each time

the argument is called, it is re-evaluated. This is called call-by-name,

and is what Algol 60 did (does?).

• Evaluate an argument only when it is actually used in the body of the

method, but then remember the result so that if the argument is used

again, it is not re-evaluated. The is called call-by-need, and is what

Haskell does.

Exercise Write the code of a method myMethod(exp1, exp2) and a

particular call to this method, such that the three evaluation strategies above

all give different results.

Models of Computation, 2010 27

The purpose of this discussion is to alert you to the fact that there may be

several reasonable, but nonetheless crucially different, choices to be made

about the semantics of various language constructs. One role of a formal

study of semantics is to help discover where such choices and ambiguities

lie, and to resolve them in a fixed, clear and well-documented way.

