
Models of Computation, 2010 1

Slide 1

Remember this?

Induction

Last year, in Course 141: ‘Reasoning about Programs’, you learned about

using induction to prove properties about Haskell programs.

We use a lot of inductive techniques in this course, both to give definitions

and to prove facts about our semantics. So, it’s worth taking a little while to

refresh our memories about this technique.

When designing an algorithm to solve a problem, we want to know that the

result produced by the algorithm is correct, regardless of the input. For ex-

ample, the quicksort algorithm takes a list of numbers and puts them into

ascending order. In this example, we know that the algorithm operates on a

list of numbers, but we do not know how long that list is or exactly what num-

bers it contains. Similarly, one may raise questions about depth-first search

of a tree: how do we know it always visits all the nodes in a tree if we do not

know the exact size and shape of the tree?

In examples such as these, there are two important facts about the input data

which allows us to reason about arbitrary inputs:

• the input is structured: for example, a non-empty list has a first ele-

Models of Computation, 2010 2

ment and a ‘tail’, which is the rest of the list, and the binary tree has a

root node and two subtrees;

• the input is finite.

In this situation, the technique of structural induction provides a principle by

which we may formally reason about arbitrary lists, trees, and so on.

Slide 2

What is induction for?

Induction is a technique for reasoning about and working with

collections of objects (things!) which are

• structured in some well-defined way;

• finite but arbitrarily large and complex.

Induction exploits the finite, structured nature of these objects to

overcome their arbitrary complexity.

These kinds of structured, finite objects arise in many areas of computer

science. Data structures such as lists and trees are common, but in fact

programs themselves can be seen as structured finite objects. This means

that induction can be used to prove facts about all programs in a certain

language.

Mathematical Induction

The simplest form of induction is mathematical induction: that is to say, in-

duction over the natural numbers. The principle can be described as follows:

given a property P () of natural numbers, to prove that P (n) holds for all

natural numbers n, it is enough to:

• prove that P (0) holds; and

• prove that if P (k) holds for arbitrary natural number k, then P (k+1)

Models of Computation, 2010 4

holds too.

Last year, in ‘Reasoning about Programs’, this principle was written like this:

[P (0) ∧ (∀k : N.(P (k) � P (k + 1)))] � ∀n : N.P (n)

Slide 3

You can use induction...

... to reason about things like

• natural numbers: each one is finite, but a natural number could be

arbitrary big;

• data structures such as lists, trees and so on;

• programs in a programming language: again, you can write

arbitrarily large programs, but they are always finite;

• derivations of semantic assertions like E ⇓ 4: these derivations

are finite trees of axioms and rules.

Models of Computation, 2010 5

Slide 4

Proof by Mathematical Induction

Let P () be a property of natural numbers. The principle of

mathematical induction states that if

P (0) ∧ [∀k.P (k) ⇒ P (k + 1)]

holds then

∀n.P (n)

holds. The number k is called the induction parameter.

Slide 5

Writing an Inductive Proof

To prove ∀n.P (n) by induction on the natural numbers:

Base Case: n = 0

• Prove that P (0) holds, any way we like.

Inductive Case: n = k + 1 for some k.

• Assume P (k) (The Inductive Hypothesis)

• Prove P (k + 1) using that assumption.

Models of Computation, 2010 5

It should be clear why this principle is valid: if we can prove the two things

above, then we know:

• P (0) holds;

• since P (0) holds, P (1) holds;

• since P (1) holds, P (2) holds;

• since P (2) holds, P (3) holds;

• ...

Therefore, P (n) holds for any n, regardless of how big n is. This conclusion

can only be be drawn because every natural number can be reached by

starting at zero and adding one repeatedly. The two elements of the induction

can be read as saying:

• Prove that P is true at the place where you start: that is, at zero.

• Prove that the operation of adding one preserves P : that is, if P (k)
is true then P (k + 1) is true.

Since every natural number can be ‘built’ by starting at zero and adding one

repeatedly, every natural number has the property P : as you build the num-

ber, P is true of everything you build along the way, and it’s still true when

you’ve built the number you’re really interested in.

Example

Here is an example of a proof by mathematical induction. We shall show that

n∑

i=0

i =
n2 + n

2

So here the property P (n) is

the sum of numbers from 0 to n inclusive is equal to n2+n
2 .

Base Case: The base case, P (0), is

the sum of numbers from 0 to 0 inclusive is equal to 02+0
2 .

This is obviously true, so the base case holds.

Inductive Case: Here the inductive hypothesis for parameter k, written IH

for k, is the statement P (k):

the sum of numbers from 0 to k inclusive is equal to k2+k
2 .

From this inductive hypothesis, with parameter k, we must prove that

Models of Computation, 2010 6

the sum of numbers from 0 to k + 1 inclusive is equal to
(k+1)2+(k+1)

2 .

The proof is a simple calculation:

k+1∑

i=0

i = (
k∑

i=0

i) + (k + 1)

=
k2 + k

2
+ (k + 1) using IH for k

=
k2 + k + 2k + 2

2

=
(k2 + 2k + 1) + (k + 1)

2

=
(k + 1)2 + (k + 1)

2

which is what we had to prove.

Defining Functions and Relations over Natural Numbers

As well as using induction to prove properties of natural numbers, we can

use it to define functions which operate on natural numbers.

Just as proof by induction proves a property P (n) by considering the case

of zero and the case of adding one to a number known to satisfy P , so

the definition of a function f by induction works by giving the definition of

f(0) directly, and building the value f(k + 1) out of f(k). This function is

‘unique’ in the sense that that it is completely defined by the information you

have given; there is no choice about what f can be.

Roughly, the fact that we use f(k) to define f(k + 1) in this definition

corresponds to the fact that we assume P (k) to prove P (k + 1) in a proof

by induction.

Models of Computation, 2010 7

Slide 6

Definition by induction

We can define a function f on natural numbers by:

Base Case: giving a value for f(0) directly.

Inductive case: giving a value for f(k + 1) in terms of f(k).

Slide 7

Inductive Definition of Factorial

The factorial function fact is defined inductively on the natural

numbers:

• fact(0) = 1;

• fact(k + 1) = (k + 1) × fact(k).

Models of Computation, 2010 8

For example, slide 7 gives an inductive definition of the factorial function over

the natural numbers. This is exactly like the sort of Haskell program that you

already know how to prove things about! Slide 8 contains another definitional

use of induction. We have already defined the one-step operational seman-

tics on expressions E from SimpleExp. This is represented as a relation

E → E′ over expressions. Suppose we wanted to define what is the effect

of n reduction steps, for any natural number n. This would mean defining a

family of relations→n, one for each natural number n. Intuitively, E →n E′

is supposed to mean that by applying exactly n computation steps to E we

obtain E′.

Slide 8

Multi-step Reductions in SimpleExp

The relation E →n E′ is defined inductively by:

• E →0 E for every simple expression E in SimpleExp;

• E →k+1 E′ if there is some E′′ such that

E →k E′′ and E′′ → E′

In slide 8, the first point defines the relation →0 outright. In zero steps an

expression remains untouched, so E →0 E for every expression E. In the

second clause, the relation →(k+1) is defined in terms of →k . It says that

E reduces to E′ in (k + 1) steps if

• E reduces in k steps to an intermediary expression E′′;

• this intermediary expression E′′ reduces to E′ in one step.

The principle of induction now says that each of the infinite collection of rela-

tions →n is well-defined.

Models of Computation, 2010 9

A Structural View of Mathematical Induction

We said in the last section that mathematical induction is a valid principle

because every natural number can be ‘built’ using zero as a starting point

and the operation of adding one as a method of building new numbers from

old. We can turn mathematical induction into a form of structural induction by

viewing numbers as elements in the following grammar:

N ::= zero |succ(N).

Here succ, short for successor, should be thought of as the operation of

adding one. Therefore, the number 0 is represented by zero and 3 is rep-

resented by

succ(succ(succ(zero)))

With this view, it really is the case that a number is built by starting from

zero and repeatedly applying succ. Numbers, when thought of like this,

are finite, structured objects. The principle of induction now says that, to

prove P (N) for all numbers N , it suffices to do two things:

Base Case: prove that P (zero) holds.

Inductive Case: prove that, for all numbers K , P (succ(K)) holds, as-

suming the inductive hypothesis that P (K) holds.

This is summarized in slide 9.

Models of Computation, 2010 10

Slide 9

Structural view of Mathematical Induction

We can view the natural numbers as elements of the following

grammar:

N ::= zero |succ(N).

To prove that property P (N) holds for every number N :

Base Case: prove P (zero) holds.

Inductive Case: prove that, for all numbers K , P (succ(K)) holds,

assuming the inductive hypothesis that P (K) holds.

Defining Functions

The principle of defining functions by induction works for this representation

of the natural numbers in exactly the same way as before. To define a function

f which operates on these numbers, we must

• define f(zero) directly;

• define f(succ(K)) in terms of f(K).

Structural Induction for Binary Trees

Binary trees are a commonly used data structure. Roughly, a binary tree is

either a single leaf node, or a branch node which has two subtrees.

Models of Computation, 2010 11

Slide 10

A Syntax for Binary Trees

Binary trees are defined as elements of the following grammar:

bTree ::= Node | Branch(bTree,bTree)

Note the similarity with arithmetic expressions.

The principle of structural induction over binary trees states that to prove a

property P (T) for all trees T , it is sufficient to do the following two things:

Base Case: prove that P (Node) holds;

Inductive Case: prove that, for all binary trees T1 and T2,

P (Branch(T1, T2))

holds, assuming the inductive hypotheses that P (T1) and P (T2) hold.

Models of Computation, 2010 12

Slide 11

Writing an Inductive Proof: Revisited

Say what you want to prove, and what you’re doing induction over.

Base Case(s) For each base case X :

• Say what the base case X is.

• Prove that P (X) holds, any way we like.

Inductive Case(s) For each inductive case I :

• Say what the inductive case I is.

• Say what the inductive hypotheses are (there may be more than

one!).

• Prove P (I), assuming the inductive hypotheses.

Slide 12

Writing an Inductive Proof About Trees

To prove ∀T.P (T) by induction on binary trees:

Base Case

• The base case is where T = Node

• Prove that P (Node) holds, any way we like.

Inductive Case

• The inductive case is where T = Branch(T1, T2)

• There are two inductive hypotheses: IH1 is P (T1). IH2 is P (T2).

• Prove P (Branch(T1, T2)), assuming that P (T1) and P (T2)

hold.

Models of Computation, 2010 12

Structural Induction over Simple Expressions

The syntax of our illustrative language SimpleExp also gives a collection of

structured, finite, but arbitrarily large objects over which induction may be

used. The syntax is repeated below:

E ∈ SimpleExp ::= n |E + E |E × E

Recall that n ranges over the natural numbers 0, 1, 2, ... This means that, in

this language, there are in fact an infinite number of indecomposable expres-

sions; contrast this with the cases above, where zero is the only indecom-

posable natural number, and Node is the only indecomposable binary tree.

Also, note that we can build new expressions from old in two ways, by using

+ and ×.

The principle of induction for expressions reflects these differences as fol-

lows. If P is a property of expressions, then to prove that P (E) holds for

any E, we must do the following:

Base Cases: prove that P (n) holds for every number n.

Inductive Case 1: prove that, for all E1 and E2, P (E1 + E2) holds,

assuming the inductive hypotheses that P (E1) and P (E2) hold.

Inductive Case 2: prove that, for all E1 and E2, P (E1 × E2) holds,

assuming the inductive hypotheses that P (E1) and P (E2) hold.

The conclusion will then be that P (E) is true for every expression E. Again,

this induction principle can be seen as a case analysis. Expressions come in

three forms: numbers, sums and products.

• numbers , cannot be decomposed, so we have to prove P (n) directly

for each of them. This is the base case.

• composite expressions E1+E2 and E1×E2, can be decomposed

into subexpressions E1 and E2. These are inductive cases: the in-

duction hypothesis says that we may assume P (E1) and P (E2)
when trying to prove P (E1 + E2) and P (E1 × E2).

The reason this principle holds is similar to the reason the principle of math-

ematical induction (over natural numbers) holds. If we can prove the base

case for numbers, and the inductive cases for composite expressions then

we know, for example:

• P (12) and P (7) and P (3) and P (8) and . . . all hold;

Models of Computation, 2010 14

• therefore P (12 + 7) and P (3 + 8) and . . . all hold;

• therefore P ((12 + 7) × (3 + 8)) and . . . all hold;

• . . .

Slide 13

Writing an Inductive Proof About SimpleExp (1)

To prove that P (E) holds for all expressions E ∈ SimpleExp by

induction on the structure of expressions:

Base Cases:

• The base cases are P (n) for all n.

• Prove P (n) any way we like.

Inductive Case 1:

• The first inductive case is P (E1 + E2).

• The inductive hypotheses are P (E1) and P (E2).

• Prove P (E1 + E2) assuming P (E1) and P (E2).

Models of Computation, 2010 15

Slide 14

Writing an Inductive Proof About SimpleExp (2)

Inductive Case 2:

• The second inductive case is P (E1 × E2).

• The inductive hypotheses are P (E1) and P (E2).

• Prove P (E1 × E2) assuming P (E1) and P (E2).

Slide 15

Some Properties of ⇓ for SimpleExp

Determinacy says that a simple expression cannot evaluate to more

than one answer:

for any expression E, if E ⇓ n1 and E ⇓ n2 then n1 = n2.

Totality says that a simple expression evaluates to at least one

answer:

for every expression E, there is some n such that E ⇓ n.

Both of these properties can be proved by induction on the structure

of expressions.

Models of Computation, 2010 16

We give the proof of determinacy here. Totality is left as an exercise (see

Exercises: Induction I).

Proposition (Determinacy of ⇓) For every simple expression E and all

numbers n1, n2 with E ⇓ n1 and E ⇓ n2, n1 = n2.

Proof. We wish to show P (E) for all E, where

P (E) ≡ ∀n1, n2. E ⇓ n1 ∧ E ⇓ n2 =⇒ n1 = n2

Proceed by induction on the structure of the expresison E.

Base Case: We must prove that P (n) holds for arbitrary number n. Assume

that n1 and n2 are such that n ⇓ n1 and n ⇓ n2. By the derivation rules

for ⇓, it must be that n1 = n and n2 = n. Thus, n1 = n2 as required.

Inductive Case: We must prove P (E1 + E2), assuming P (E1) and

P (E2) as inductive hypotheses. Specifically, the inductive hypotheses are:

∀n1,1, n1,2. E1 ⇓ n1,1 ∧ E1 ⇓ n1,2 =⇒ n1,1 = n1,2

∀n2,1, n2,2. E2 ⇓ n2,1 ∧ E2 ⇓ n2,2 =⇒ n2,1 = n2,2

Suppose that E1 + E2 ⇓ n1 and E1 + E2 ⇓ n2. The big step rules for

deriving these require that E1 ⇓ n1,1 and E2 ⇓ n2,1 for some n1,1 and

n2,1 with n1 = n1,1 + n2,1. Similarly, we have E1 ⇓ n1,2 and E2 ⇓
n2,2 for some n1,2 and n2,2 with n2 = n1,2 + n2,2. Now the inductive

hypotheses imply that n1,1 = n1,2 and n2,1 = n2,2. Therefore, n1 = n2,

as required.

Inductive Case: We must prove P (E1 × E2), assuming P (E1) and

P (E2) as inductive hypotheses. This case follows the same pattern as the

previous case, so we omit the details.

(Later, we shall see how to do this proof by induction on the structure of

derivations, which, in some cases, leads to more concise proofs.)

Defining Functions over Simple Expressions

We may also use the principle of induction to define functions which operate

on simple expressions.

Models of Computation, 2010 17

Slide 16

Definition by Induction for SimpleExp

To define a function on all expressions in SimpleExp, it suffices to do

the following:

• define f(n) directly, for each number n;

• define f(E1 + E2) in terms of f(E1) and f(E2); and

• define f(E1 × E2) in terms of f(E1) and f(E2).

For example, we will soon define the denotational semantics of simple ex-

pressions and programs as a function defined inductively on simple expres-

sions and programs. As a precursor to this, we define, for each expression

E, a number den(E) which is the ‘meaning’ or the ‘final answer’ for E.

Models of Computation, 2010 17

Slide 17

The function den

For each simple expression E, a number den(E) is defined

inductively on the structure of E by:

• den(n) = n for each number n;

• den(E1 + E2) = den(E1) + den(E2);

• den(E1 × E2) = den(E1) × den(E2);

Exercise For every simple expression E and number n,

den(E) = n if and only if E ⇓ n.

Again, this definition should be regarded as showing how to build up the

‘meaning’ of a complex expression, as the expression itself is built up from

numbers and uses of + and ×.

Structural Induction over Derivations

Another example of a collection of finite, structured objects which we have

seen is the collection of proofs of statements E ⇓ n in the big-step seman-

tics of SimpleExp. In general, an operational semantics given by axioms and

proof rules defines a collection of proofs of this kind, and induction is avail-

able to us for reasoning about them. [To clarify the presentation, we will refer

to such proofs as derivations in this section.]

Recall the derivation of 3+(2+1) ⇓ 6:

(B-ADD)

(B-NUM)
3 ⇓ 3

(B-ADD)

(B-NUM)
2 ⇓ 2

(B-NUM)
1 ⇓ 1

2 + 1 ⇓ 3

3+(2+1) ⇓ 6

Models of Computation, 2010 17

This derivation has three key elements: the conclusion 3+(2+1) ⇓ 6, and

the two subderivations, which are

(B-NUM)
3 ⇓ 3

(B-ADD)

(B-NUM)
2 ⇓ 2

(B-NUM)
1 ⇓ 1

2 + 1 ⇓ 3

We can think of a complex derivation like this as a structured object:

...
...

D1 D2

...
...

h1 h2

c

Here, we see a derivation whose last line is

h1 h2

c

where h1 and h2 are the hypothesis (or premises) of the rule and c is the

conclusion of the rule; c is also the conclusion of the whole derivation. Since

the hypotheses themselves must be derived, there are subderivations D1

and D2 with conclusions h1 and h2.

The only derivations which do not decompose into a last rule and a collection

of subderivations are those which are simply axioms. Our principle of induc-

tion will therefore treat the axioms as the base cases, and the more complex

proof as the inductive case.

The principle of structural induction for derivations says that, to prove a

property P (D) for every derivation D, it is enough to do the following:

Base Cases: Prove that P (A) holds for every axiom. In the case of the

big-step semantics, we must prove that every derivation

n ⇓ n

satisfies property P .

Inductive Cases: For each rule of the form

h1 · · · hn

c

Models of Computation, 2010 17

prove that any derivation ending with a use of this rule satisfies the property.

Such a derivation has subderivations with conclusions h1, ..., hn, and we

may assume that property P holds for each of these subderivations. These

assumptions form the inductive hypothesis.

We already gave a proof of determinacy of ⇓ by induction on the structure of

expressions. Now let’s do the proof by induction on the structure of deriva-

tions.

Proposition (Determinacy of ⇓) For every simple expression E and all

numbers n1, n2 with E ⇓ n1 and E ⇓ n2, n1 = n2.

Proof. We wish to show P (E,n1) for all E,n1 with E ⇓ n1, where

P (E,n1) ≡ ∀n2. E ⇓ n2 =⇒ n1 = n2

Proceed by induction on the structure of the derivation of E ⇓ n1.

Base Case: The derivation has the form

(B-NUM)
n1 ⇓ n1

with E = n1. We must prove P (n1, n1). Suppose that n1 ⇓ n2 also. The

only rule that gives such a derivation is B-NUM, which ensures that n1 = n2

as required.

Inductive Case: The derivation has the form

(B-ADD)
E1 ⇓ n1,1 E2 ⇓ n2,1

E1 + E2 ⇓ n1

with E = E1 + E2 and n1 = n1,1 + n2,1. For the inductive hypotheses,

we have P (E1, n1,1) and P (E2, n2,1), namely:

∀n1,2. E1 ⇓ n1,2 =⇒ n1,1 = n1,2

∀n2,2. E2 ⇓ n2,2 =⇒ n2,1 = n2,2

Suppose that E1 + E2 ⇓ n2. The only rule that gives such a derivation is

B-ADD:

(B-ADD)
E1 ⇓ n1,2 E2 ⇓ n2,2

E1 + E2 ⇓ n2

n2 = n1,2+n2,2

Now the inductive hypotheses imply that n1,1 = n1,2 and n2,1 = n2,2.

Therefore, n1 = n2, as required.

Inductive Case: The last rule in the derivation is B-MULT. This case follows

the same pattern as for B-ADD, so we omit the details.

Models of Computation, 2010 18

Some Proofs about the Small-step Semantics

We have seen how to use induction to prove some simple facts about the

big-step semantics of SimpleExp. In this section, we will see how to carry out

similar proofs for the small-step semantics, both to reassure ourselves that

we are on the right course and to make some intuitively obvious facts about

our language into formal theorems.

Slide 18

Some properties of → for SimpleExp

Determinacy If E → E1 and E → E2 then E1 = E2.

Confluence If E →∗ E1 and E →∗ E2 then there exists E′ such

that E1 →∗ E′ and E2 →∗ E′.

Unique Answer If E →∗ n1 and E →∗ n2 then n1 = n2.

Normal forms The normal forms are exactly the numbers: either

E = n for some n or E → E′ for some E′.

Normalization There are no infinite sequences of expressions

E1, E2, E3, . . . such that, for all i, Ei → Ei+1. (Every evaluation

path eventually reaches a normal form.)

An important property of the small-step semantics is that it is confluent : any

two evaluation paths can eventually converge to the same state. This implies

that an expression can be reduced to at most one number (since different

numbers can certainly not be reduced to each other). In fact, → has the

stronger determinacy property, which ensures that it is confluent.

Here, we give a proof of determinacy using structural induction on deriva-

tions. It is also possible to do a proof by induction on the structure of expres-

sions.

(Determinacy of →) If E → E1 and E → E2 then E1 = E2.

Proof. We wish to show P (E,E1) for all E,E1 with E → E1, where

P (E,E1) ≡ ∀E2. E → E2 =⇒ E1 = E2

Models of Computation, 2010 18

Proceed by induction on the structure of the derivation of E → E1.

Base Case: The derivation has the form

(S-ADD)
n1 + n2 → n3

with E = n1 + n2, E1 = n3 and n3 = n1 + n2. Only the S-ADD

rule applies to evaluate E, so if E → E2 then it must be that E2 = n′

3

for some n′

3 with n′

3 = n1+n2. But there is only one such number, so

E2 = n3 = E1, as required.

Inductive Case: The derivation has the form

(S-LEFT)
F1 → F ′

1

F1 + F2 → F ′

1 + F2

with E = F1 + F2 and E1 = F ′

1 + F2. For the inductive hypothesis, we

have P (F1, F
′

1), namely:

∀F ′′

1 . F1 → F ′′

1 =⇒ F ′

1 = F ′′

1

Suppose that E2 is such that E → E2. It must be that F1 is not a number

(since F1 → F ′

1), so E → E2 must be derived by the S-LEFT rule as

follows:

(S-LEFT)
F1 → F ′′

1

F1 + F2 → F ′′

1 + F2

for some F ′′

1 with E2 = F ′′

1 + F2. Now, since the derivation requires

F1 → F ′′

1 , the inductive hypothesis gives us that F ′

1 = F ′′

1 . Therefore

E1 = F ′

1 + F2 = F ′′

1 + F2 = E2, as required.

Inductive Case: The derivation has the form

(S-RIGHT)
F → F ′

n + F → n + F

with E = n + F and E1 = n + F ′. For the inductive hypothesis, we have

P (F, F ′), namely:

∀F ′′. F → F ′′ =⇒ F ′ = F ′′

Suppose that E2 is such that E → E2. It must be that F is not a number

(since F → F ′), so E → E2 must be derived by the S-RIGHT rule as

follows:

(S-RIGHT)
F → F ′′

n + F → n + F ′′

Models of Computation, 2010 18

for some F ′′ with E2 = F ′′

1 + F2. Now, since the derivation requires

F → F ′′, the inductive hypothesis gives us that F ′ = F ′′. Therefore

E1 = n + F ′ = n + F ′′ = E2, as required.

There are also base and inductive cases for ×, but they are similar to those

for +, so we omit the details.

This result says that the one-step relation is deterministic. Let us now see

how from this we can prove that the relation is confluent.

Proposition (Confluence of →) If E →∗ E1 and E →∗ E2 then there

exists E′ such that E1 →∗ E′ and E2 →∗ E′.

Propositions involving →∗ are typically proved by induction on the number of

evaluation steps.

Proof. Note that E →∗ E1 if and only if E →n E1 for some n. Thus, it is

sufficient to prove P (n) for all natural numbers n, where

P (n) ≡ ∀E,E1, E2. E →n E1 ∧ E →∗ E2 =⇒

∃E′. E1 →∗ E′ ∧ E2 →∗ E′

Proceed by induction on n.

Base Case: n = 0. Suppose E →0 E1 and E →∗ E2. Then E = E1

and so E1 →∗ E2. Let E′ = E2. We have E1 →∗ E′ and E2 →∗ E′,

as required.

Inductive Case: For the inductive hypothesis, we assume P (k), namely:

∀E,E′

1, E2. E →k E′

1 ∧ E →∗ E2 =⇒

∃E′′. E′

1 →∗ E′′ ∧ E2 →∗ E′′

Suppose that E →k+1 E1 and E →∗ E2. We must have E →k E′

1 →
E1 for some E′

1. By the inductive hypothesis, there exists E′′ with E′

1 →∗

E′′ and E2 →∗ E′′. It must be that either E′

1 = E′′ or E′

1 → E′′

1 →∗

E′′ for some E′′

1 . Consider each case.

• In the first case, let E′ = E1. We have that E1 →∗ E′. We also have

that E2 →∗ E′′ = E′

1 → E1 = E′, so E2 →∗ E′ as required.

• In the second case, let E′ = E′′. Since E′

1 → E1 and E′

1 → E′′

1 , it

must be that E1 = E′′

1 by determinacy of →. Hence, E1 →∗ E′′ = E′.

We also have that E2 →∗ E′′ = E′, as required.

Of course, not every result needs to be proved by induction!

Corollary (Unique Answer for →) If E →∗ n1 and E →∗ n2 then n1 =
n2.

Models of Computation, 2010 19

Proof. Suppose that E →∗ n1 and E →∗ n2. By confluence, there

is some E′ with n1 →∗ E′ and n2 →∗ E′. Since numbers have no

reductions (they are normal forms) it must be that n1 = E′ and n2 = E′.

Hence n1 = n2, as required.

Slide 19

Connecting ⇓ and →∗ for SimpleExp

Exercise (see sheet)

For all E and n, E ⇓ n if and only if E →∗ n.

Normalization and the equivalence of the big-step and small-step semantics

are for you to do in Exercises: Induction I.

