
Computation Exercises 3: Induction

1. Binary trees are a commonly used data structure. Roughly, a binary tree is either a single
leaf node, or a branch node which has two subtrees. The set of binary trees can be defined
formally by the following grammar:

bTree ::= Node | Branch(bTree, bTree)

Note the similarity with arithmetic expressions.

(a) Draw pictures of the following binary trees:

Node

Branch(T1, T2)
Branch(Node, Node)
Branch(Node, Branch(Node, Node))

(b) We define the function leaves which take a binary tree as an argument and returns
the number of leaf nodes, given by Node, in a tree:

Base Case: leaves(Node) = 1

Inductive Case: leaves(Branch(T1, T2)) = leaves(T1) + leaves(T2).

We now define another function, branches, which counts the number of Branch( , )
nodes in a tree:

Base Case: branches(Node) = 0

Inductive Case:

branches(Branch(T1, T2)) = branches(T1) + branches(T2) + 1.

Prove by induction on the structure of trees that, for any tree T ,

leaves(T ) = branches(T ) + 1.

2. (Totality of ⇓) Recall the big-step operational semantics for simple expressions E.
Prove by structural induction on the structure of expressions that, for every E, there is
some number n such that E ⇓ n.

3. Recall the function den from the lectures. For every simple expression E and number n,
prove that

den(E) = n if and only if E ⇓ n

4. (→-normal forms) Recall the small-step operational semantics for simple expressions.
(Consider only the operations + and ×.) Prove, by induction on the structure of simple
expressions, that for every expression E, either E = n for some number n, or E → E′ for
some expression E′.
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5. (Normalisation for →) Recall the small-step operational semantics for simple expres-
sions.

(a) By induction on the structure of simple expressions, define a function

ops : SimpleExp→ N

that gives the number of operators (instances of + and ×) in an expression. (You
need only consider the operators + and ×.)

(b) By induction on the structure of simple expressions, prove that for all simple expres-
sions E,E′ with E → E′, ops(E) > ops(E′).

(c) Hence or otherwise, prove that → is normalising.

6. For any simple expression E, prove by induction on the structure of expressions that:

E ⇓ n if and only if E →∗ n

7. (Determinacy for While) Prove, by induction on the structure of commands, that the
small-step semantics for While is deterministic: that is, for any configurations 〈C, s〉,
〈C1, s1〉, 〈C2, s2〉, if 〈C, s〉 →c 〈C1, s1〉 and 〈C, s〉 →c 〈C2, s2〉 then 〈C1, s1〉 = 〈C2, s2〉. You
may assume that →e and →b are deterministic.

The following questions are more difficult than those in previous sheets, and some of them
should be quite challenging. It might be useful if you attempt them before next week’s tutorial,
when you can ask about any problems you encounter.

8. Consider the following big step semantics for program expressions:

Num
〈n, s〉 ⇓ 〈n, s〉

Var
〈x, s〉 ⇓ 〈s(x), s〉

Plus
〈E1, s〉 ⇓ 〈n1, s〉 〈E2, s〉 ⇓ 〈n2, s〉

〈E1 + E2, s〉 ⇓ 〈n3, s〉
n3 = n1 + n2

(a) Complete these semantics by adding a rule for multiplication.

(b) Let f : Exp → Exp be the expression transformation function defined by induction
as:

f(x) = x

f(n) = n

f(E1 + E2) =

{
2× f(E1) if f(E1) = f(E2)

f(E1) + f(E2) otherwise

f(E1 × E2) = f(E1)× f(E2)

A compiler might use a transformation such as this to optimise a program, since it
simplifies expressions. It is important that optimisations preserve the behaviour of
programs: any behaviour of f(E) must also be a behaviour of E.

Prove by induction on the structure of expressions, that for all expressions E, num-
bers n and states s,

〈f(E), s〉 ⇓ 〈n, s〉 =⇒ 〈E, s〉 ⇓ 〈n, s〉

2



9. Suppose that S is a set ranged over by s, s1, s2, . . . , and that � ⊆ S × S is a binary
relation over this set. (For example, S could be the set of program configurations and �
the small-step transition relation.) One way of defining the reflexive transitive closure,
�∗, of � is by the following two derivation rules:

refl
s�∗ s

step
s1�

∗ s2 s2� s3

s1�
∗ s3

(a) Show, by induction on the structure of derivations, that �∗ is transitive. That is,
show: for all s1, s2, s3 ∈ S, if s1�∗ s2 and s2�∗ s3 then s1�∗ s3.

(Hint: you should do induction on the derivation of s2 �∗ s3; if you try to do the
induction on the derivation of s1�∗ s2, you will find it difficult to make progress.)

(b) Show that the reflexive transitive closure operator is idempotent. That is, show: for
all s1, s2 ∈ S, s1�∗ s2 if and only if s1(�∗)∗s2.

Note, the derivation rules as they apply to (�∗)∗ are:

refl
s (�∗)∗ s

step
s1 (�∗)∗ s2 s2�

∗ s3

s1 (�∗)∗ s3

Remember that in Exercises 1, Question 8 we saw a variation of the small-step operational
semantics for SimpleExpr that was confluent but not deterministic. In the answer sheet, we said
that a good way to show confluence is to show strong confluence. We can show that a strongly
confluent relation is also confluent. By answering the next two questions, you will show both
of these results.

10. (Strong Confluence implies Confluence) Suppose that  is a strongly confluent
rewrite relation (perhaps similar to our small-step operational semantics for SimpleExpr).
That is, for all t, t1, t2 such that t t1 and t t2, either t2  ∗ t1 or there exists some t′

such that t1  t′ and t2  ∗ t′. We can represent this by the following diagram:

t

t1 t2

t′

1

{0, 1}

1

*

Prove that  is confluent. That is, for all t, t1, t2 such that t  ∗ t1 and t  ∗ t2 there
exists some t′ such that t1  ∗ t′ and t2  ∗ t′. We can represent this by the following
diagram:

t

t1 t2

t′

*

*

*

*

It will probably be easiest if you do the proof in the following two stages:
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(a) Prove, by induction on n, ∀n. P1(n), where

P1(n) ≡ ∀t, t1, t2. t n t1 ∧ t t2 =⇒ t2  
∗ t1 ∨ ∃t′. t1  t′ ∧ t2  

∗ t′

You will use strong confluence of  to establish the inductive step. (As a diagram,
the inductive step will look like:

t

t′1 t2

t′′t1

t′

n

{0, 1}

1

∗
1

{0, 1} ∗

The upper-right part of the diagram is established by the inductive hypothesis. The
lower-left part is established by strong confluence.)

(b) Prove, by induction on m, ∀m.P2(m), where

P2(m) ≡ ∀t, t1, t2. t ∗ t1 ∧ t m t2 =⇒ ∃t′. t1  ∗ t′ ∧ t2  
∗ t′

You will use 10a to establish the inductive step. (As a diagram, the inductive step
will look like:

t

t1 t′2

t′′ t2

t′

∗

∗

m

∗
1

∗{0, 1}

The upper-left part of the diagram is established by the inductive hypothesis. The
lower-right part is established using 10a.)

11. Recall the modified small-step semantics for SimpleExp that we saw in Question 8 of
Exercise sheet 1, which had the following three rules:

(s-left)
E1 → E′1

(E1 + E2)→ (E′1 + E2)
(s-right’)

E2 → E′2

(E1 + E2)→ (E1 + E′2)

(s-add)
(n1 + n2)→ n3

n3 = n1 + n2

Prove that → is strongly confluent. That is, for all E,E1, E2 such that E → E1 and
E → E2, either E2 →∗ E1 or there exists some E′ such that E1 → E′ and E2 →∗ E′.
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To establish this, it is sufficient to prove

E → E1 ∧ E → E2 =⇒ E1 = E2 ∨ ∃E′. E1 → E′ ∧ E2 → E′

This may be done by induction on the structure of the derivation of E → E1.

12. Prove that the ; operator is associative by induction on the length of computation se-
quences. That is, prove that

〈C1; (C2;C3), s〉 →∗ 〈skip, s′〉 if and only if 〈(C1;C2);C3, s〉 →∗ 〈skip, s′〉.

(A good approach is to prove that, for all n,

〈C1; (C2;C3), s〉 →n 〈skip, s′〉 if and only if 〈(C1;C2);C3, s〉 →n 〈skip, s′〉.

by induction on n.)

13. [Historical aside:] In this course, we look at lots of models of computation: While,
register machines, Turing machines and the lambda calculus. One thing these models
have in common, which we will look at later, is Turing completeness: anything that is
computable in one model is computable in the others. Among the oldest Turing-complete
models of computation are combinator calculi, developed by Schönfinkel and Curry (after
whom the Haskell language is named) in the 1920s. (Lambda calculus and Turing machines
were introduced (by Church and Turing respectively) in the 1930s. The notion of Turing
completeness didn’t exist when combinator calculi were developed.)

The best-known combinator calculus is the SKI combinator calculus. The abstract syntax
of terms of SKI, which are ranged over by t, t′, t1, x, y, z . . . , is defined by the following
grammar:

t ::= S
∣∣ K

∣∣ I
∣∣ t1t2

Thus, the combinators S, K and I are terms, and for any two terms x and y, the application
of x to y, (xy) is also a term. Of course ((xy)z) and (x(yz)) are different terms. Application
is considered to associate to the left, so xyz represents ((xy)z).

The reduction relation → on terms is like a small-step operational semantics. It is given
by the following derivation rules:

ap-l
x→ x′

xy → x′y
ap-r

y → y′

xy → xy′

red-I
Ix→ x

red-K
Kxy → x

red-S
Sxyz → xz(yz)

You can think of combinators as functions. I returns its argument; K takes two arguments
and returns the first; S takes three arguments and applies the first to the third and the
application of the second to the third.

Reductions can happen at any level in the term. For instance, the term I(KIS) can reduce
to both KIS (by red-I) and II (by ap-r with red-K); both of these terms reduce to I
(by red-K and red-I respectively).

(a) Prove that, for all x, x′, y, y′, if x→∗ x′ and y →∗ y′ then xy → x′y′. (If you do the
proof by induction on (the number of steps in) the derivation of x →∗ x′, you will
need to do induction on the derivation of y →∗ y′ to prove the base case.)
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(b) Prove that → is locally confluent. That is, for all t, t1, t2, if t → t1 and t → t2
then there exists t′ such that t1 →∗ t′ and t2 →∗ t′. (A good approach to this is
by induction on the derivation of t → t1; to prove each case, you then consider the
possible cases for the derivation of t→ t2.)

14. (SKI Confluence Challenge) Prove that the SKI combinator calculus is confluent.

This is a difficult problem, and a CASH PRIZE of £10 is offered to the first student to
submit a correct and complete proof to Dr. Thomas Dinsdale-Young (td202@doc.ic.ac.uk).
(You may, and probably will, use one or more results from this question sheet; these do
not have to be part of the solution.)
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