
Models of Computation, 2012 1

Denotational Semantics of Programs

Slide 1

Denotational Semantics of Programs

Denotational Semantics of SimpleExp

We will define the denotational semantics of simple expressions

using a function

J K : SimpleExp → N.

Denotational Semantics of While

We will later discuss the denotational semantics of our while

programs.

Denotational Semantics for Simple Expressions

As we have seen, operational semantics talks about how an expression is

evaluated to an answer. Denotational semantics, on the other hand, has

grander aspirations. The denotational semantics of a language (such as

While and SimpleExp) attempts to describe what a piece of program text

‘really means’. In the case of simple expressions, a piece of program text ‘is

really’ a number, so we will define a function J K such that, for any expres-

sion E, JEK is a number, giving the meaning of E. Therefore, J K will be a

function from expressions to numbers, and we write

J K : SimpleExp → N

where N is a set of natural numbers. Given this function, the set N is called

the semantic domain of SimpleExp, which just means it is the place where

the meanings live. As we come to study more complex languages, we will find

that we need more complex semantic domains. The construction and study

of such domains is the subject of domain theory, an elegant mathematical

Models of Computation, 2012 2

theory which provides a foundation for denotational semantics; unfortunately,

domain theory is beyond the scope of this course.

For now, notice that our choice of semantic domain has certain conse-

quences for the semantics of our language: it implies that every expression

will ‘mean’ exactly one number, so without even seeing the definition of J K,

someone looking at our semantics already knows that the language is (ex-

pected to be) normalizing and deterministic.

It is easy to give the meaning to expressions that are numbers:

JnK = n.

For expressions E1 + E2, the meaning will of course be the sum of the

meanings of E1 and E2:

JE1 + E2K = JE1K + JE2K.

We could make similar definitions for multiplication and so on.

Slide 2

Denotational Semantics of Simple Expressions

We define J K : SimpleExp → N by induction on the structure of

expressions:

JnK = n

JE1 + E2K = JE1K+ JE2K

The semantics is compostional in that the meaning of the compound

expression E1 + E2 is given in terms of the meaning of its

subexpressions E1 and E2.

Remarks
• The semantic domain is entirely separate from the syntax: for exam-

ple, the set of natural numbers is a mathematical entity in its own right.

Models of Computation, 2012 3

• The meaning of the compound term like E1 + E2 is given in terms of

the meanings of its subterms. Hence, we have really given a meaning

to the syntactic operation +. In this case, the meaning of + is the

usual addition function. We call a semantics compositional when it

has this property, which lets us calculate meanings bit by bit, starting

from the numerals and working up. Slide 3 shows an example of a

calculation.

Slide 3

Calculating Semantics

J(1 + (2 + 3))K = J1K+ J(2 + 3)K

= 1 + J(2 + 3)K

= 1 +(J2K+ J3K)

= 1 + (2 + 3)

= 6.

The denotational semantics for expressions is particularly easy to work with,

and much less cumbersome than the operational semantics. For example,

it is easy to prove simple facts such as the associativity of the syntactic

addition given on slide 4.

Models of Computation, 2012 4

Slide 4

Associativity of addition

Theorem For all E1, E2 and E3,

JE1 + (E2 + E3)K = J(E1 + E2) + E3K

Proof

JE1 + (E2 + E3)K = JE1K+ JE2 + E3K

= JE1K+(JEK2 + JE3K)

= (JE1K+JEK2)+ JE3K

= JE1 + E2K+ JE3K

= J(E1 + E2) + E3)K

Exercise State and prove a similar fact using the big-step semantics.

Contextual Equivalence

We now introduce an important idea in semantics: that of contextual equiv-

alence between programs. Intuitively, we should be able to use equivalent

programs (programs that behave in the same way) interchangeably: that is,

if P1
∼= P2 (the symbol ∼= means that the programs are equivalent) and P1

is used in some context (we write C[P] for program P in program context

C[−]), then we should get the same effect if we replace P1 with P2: that

is, we expect C[P1] ∼= C[P2]. To make this more precise, we say that a

context C[−] is a program with a hole where you would ordinarily expect to

see a subprogram.

Models of Computation, 2012 5

Slide 5

Expression Contexts

The set of expression contexts , ContextExp, is defined by

C ∈ ContextExp ::= − | E + C |C + E | ...

where E ∈ ContextExp.

We say that the symbol − denotes the context hole of the context

expression, and write C[−] to emphasise the hole of C .

Exercise Give a different definition of expression contexts that have

zero, one or many holes.

Slide 6

Some Simple Contexts

C1[−] = −

C2[−] = − + 2

C3[−] = (− + 1) + 3

C4[−] = (3 + 4) + −

Models of Computation, 2012 6

Slide 7

Filling the Hole

Given an expression E and context C[−], we can fill the hole with E

yielding a new expression, written C[E].

Context application , C[E], for expression context C and simple

expression E, is definted inductively on the structure of C by:

(−)[E] = E

(E′ + C)[E] = E′ + C[E]

(C + E′)[E] = C[E] + E′

Slide 8

Application Examples

C1[3 + 4] = 3 + 4

C2[3 + 4] = (3 + 4) + 2

C3[3 + 4] = ((3 + 4) + 1) + 3

C4[3 + 4] = (3 + 4) + (3 + 4)

Models of Computation, 2012 7

Slide 9

Contextual Equivalence for Expressions

Expressions E1 and E2 are contextually equivalent with respect to

the big-step semantics if and only if, for all contexts C[−] and all

numerals n,

C[E1] ⇓ n ⇔ C[E2] ⇓ n.

Contextual equivalence for expressions is quite simple. Contextual

expressions for programs is more interesting.

For a simple language like SimpleExp, contextual equivalence does not mean

very much; it turns out that two expressions are contextually equivalent if

and only if they have the same final answer. In general though, it is a very

important notion. To see this, think of the following two pieces of code which

compute factorials.

Models of Computation, 2012 8

Slide 10

Two Factorial Programs

int fact(int x){ int fact(int x){

int i = 1; if (x <= 0)

int j = x; { return 1; }

while (j > 0){ else

i = i * j; {return (x*fact(x - 1));}

j = j - 1; }

}

return i;

}

In ML (with the syntax suitably altered), these programs are

contextually equivalent. In Java, they are not.

These two pieces of code do the same thing, in that they each take an in-

teger and return its factorial. Whether these pieces of code are contextually

equivalent or not, depends on what contexts are available, which depends on

the programming language under consideration:in ML (with the syntax suit-

ably altered), they are equivalent. In Java, they are not (it’s tricky, think about

overriding the fact() method).

Compositionality and Context Equivalence

Recall that the denotational semantics is compositional: that is, the meaning

of a large expression is built out of the meanings of its subphrases. It follows

that each context determines a ‘function between meanings’: that is, for each

C[−], there is a function f : N → N such that

JC[E]K = f(JEK)

for any expression E. For us, the most important consequence of this is that

if JE1K = JE2K then JC[E1]K = JC[E2]K for all C[−].

Therefore, if we show

JEK = n if and only if E ⇓ n

Models of Computation, 2012 9

we can use our semantics to reason about contextual equivalence: that is,

we will know that denotationally equivalent phrases are in fact contextually

equivalent. For SimpleExp, this is indeed the case.

Slide 11

Compositionality and Contextual Equivalence

Theorem

For arbitrary expression E, JEK = n if and only if E ⇓ n.

By compositionality of J K, expressions E1 and E2 are contextually

equivalent if and only if JE1K = JE2K.

This result holds because the denotational semantics is

compositional .

For more interesting languages, the relationship between the operational and

denotational semantics can be more subtle, but the principle of composition-

ality allows the denotational semantics to be used to reason about contextual

equivalence in just the same way.

Denotational Semantics of While

We shall now begin to explore a denotational semantics of our simple lan-

guage While. The first step is to choose our semantic domains.

Models of Computation, 2012 10

Slide 12

Semantic Functions for While

We will define the denotational semantics of commands,

expressions and booleans using the functions of the form

CJ−K : Com→ ?

EJ−K : Exp→ ?

BJ−K : Bool→ ?

We need to choose our semantic domains.

Semantic Domain for Commands

Let us first focus on commands, which provide the biggest difference be-

tween While and SimpleExp. Let Σ be the set of all states. Define Σ⊥to

be the set Σ ∪ {⊥}: that is, the set Σ together with the extra element ⊥,

called undefined or bottom, which represents the stuck computation or an in-

finite loop. Then, the semantic domain for commands, called the set of state

transformers, is defined on slide 13.

Models of Computation, 2012 11

Slide 13

Semantic Domain for While

The semantic domain of commands is given by the set of state

transformers defined by

ST = [Σ → Σ⊥] :

that is, the set of (total) functions which take a starting state and

return either a final state, or the element ⊥ (called undefined or

bottom), to indicate that the computation got stuck or looped for ever.

A Note on Notation The metavariable s, and variants of it like s′ and so on,

will be used to range over proper states, not including ⊥. So, if we say that

f(s) = s′, it is implicit that s′ 6=⊥.

Other Semantic Domains

For expressions and booleans, note that out language allows an expression

or a boolean to depend upon the store, but not to change it. Also, though

expressions and booleans cannot get into infinite loops, they may become

stuck, so we have to account for this in our choice of semantic domain.

Models of Computation, 2012 12

Slide 14

Semantic Domains for Expressions and Booleans

The semantic domain of expressions is

E = [Σ → N⊥]

The semantic domain of booleans is

P = [Σ → B⊥]

where B = {true,false}.

Remark As before, fixing the semantic domains tells us something about

the language. For example, using ST for the commands acknowledges the

possibility of non-termination, but makes clear that the command will yield at

most one final state in any given starting state. Similarly, our choice of domain

for the booleans automatically eliminates any possibility of side-effects being

caused by boolean expressions.

Semantic Functions

We shall now explore three semantic functions, one for each category in the

grammar for While. See slide 15.

Models of Computation, 2012 13

Slide 15

Semantic Functions for While

CJ−K : Com→ ST

EJ−K : Exp→ E

BJ−K : Bool→ P

Models of Computation, 2012 14

Denotational Semantics of Expressions The denotational semantics of ex-

pressions is defined by induction on the structure of expressions. We shall

only give the variable case; the others follow as you would expect from adapt-

ing the denotational SimpleExp. The case for a variable is simple. The store

is examined to see if there is a value for the variable: if so, this value is

returned; if not, the expression is stuck and we return ⊥.

Slide 16

Denotational Semantics of Expressions

The function EJ−K : Exp→ E is defined inductively by induction on

the structure of Exp, with the variable case given by:

EJxK(s) = s(x) if s(x) is defined

= ⊥ otherwise

Exercise Do the other cases.

Denotational Semantics of Booleans The function BJ−K : Bool→ P is

defined inductively by induction on the structure of Bool. This is straightfor-

ward and left as an exercise.

Denotational Semantics of Commands The function CJ−K : Com → ST
is defined inductively by induction on the structure of Cmd. In each case, we

ask ourselves how the command transforms the state, and attempt to write

down a function which captures our intuition. The next few slides give the

definitions. I will not be able to give a full definition (it is difficult), but I will be

able to give you the intuition.

Models of Computation, 2012 15

Slide 17
Denotational Semantics of Commands

The function CJ−K : Com → ST is defined inductively by induction

on the structure of Com, over the next few slides....

Slide 18

Assignment

The state transformer CJx := EK is defined by

CJx := EK(s) = s[x 7→ EJEK(s)] if EJEK(s) 6=⊥

= ⊥ otherwise

An assignment x := E transforms store s by updating x to contain

the value of E: Note that, in this definition, E is evaluated in store s.

Models of Computation, 2012 16

Slide 19

skip

The state transformer CJskipK is just the identity function, defined

by

CJskipK(s) = s

skip is the easiest command of all. It simply leaves the store alone.

Now consider the case for sequential composition. How does C1;C2 trans-

form a store? Intuitively, first C1 transforms the original state s to some s′,

then C2 starts running in state s′, leaving some s′′, which is the outcome

of the whole command. If C1 gets stuck or into an infinite loop, so does the

whole command; similarly for C2.

Models of Computation, 2012 17

Slide 20

Sequential Composition

The state transformer CJC1;C2K is defined by

CJC1;C2K(s) = ⊥ if CJC1K(s) =⊥

= CJC2K(CJC1K(s)) otherwise

Notice that this second line is ‘well-typed’, because if CJC1K(s) 6=⊥

then CJC1K(s) ∈ Σ, so we can indeed apply CJC2K to it.

Slide 21

Example

We calculate the meaning of the command

C = x := 0;x := x + 1. For arbitrary state s:

CJCK(s) = (CJx := 0K;CJx := x + 1K)(s)

= CJx := x + 1K(CJx := 0K(s))

= CJx := x + 1K(s[x 7→ 0])

= s[x 7→ EJx + 1K(s[x 7→ 0])].

Since EJx + 1K(s[x 7→ 0]) = 1, we have CJCK(s) = s[x 7→ 1].

Models of Computation, 2012 18

Slide 22

Conditional

A command (if B then C1 else C2) transforms a state s as

follows:

• work out if B is true or false in state s

• if true, transform the state s by running C1

• if false, transform the state s by running C2

Slide 23

Conditional continued

The state transformer CJif B then C1 else C2K is defined by

CJC1K(s) if BJBK(s) = true

CJC2K(s) if BJBK(s) = false

⊥ otherwise

Models of Computation, 2012 19

Compositionality

Recall that we want the denotational semantics to be compositional, with the

meaning of a program built up out of the meanings of its subprograms. This

means that each of the command-forming operations in the language While

has a denotational meaning. For example, the operation ‘;’, which takes two

commands and gives back their sequential composition, has as its meaning

the functionseq defined on slide 24. It is reasonable to say that J; K = seq.

This is really no more than rewriting the original definitions, but it makes the

point that denotational semantics gives meaning to the command-forming

operations, not just the commands.

Slide 24

The Sequential Composition Operator

We define the function

seq : ST× ST→ ST

by

seq(f, g)(s) = ⊥ if f(s) =⊥

= g(f(s)) otherwise

Models of Computation, 2012 20

Slide 25

The Semantics of the Conditional Operator

We define the function

cond : P× ST× ST → ST

by

cond(p, f, g)(s) = f(s) if p(s) = true

= g(s) if p(s) = false

= ⊥ otherwise

Semantics of while

Now what about while? How can we write a ‘looping’ state transformer?
Recall the trick that we used to give a small-step semantics to while:

〈while B do C, s〉 → 〈if B then (C;while B do C)else skip, s〉.

This says that the way (while B do C) transforms the state is the same

as the transformation given by

if B then (C;while B do C)else skip

In denotational terms, the statement looks like the equation on slide 26.

Models of Computation, 2012 21

Slide 26

An Equation for while

CJwhile B do CK =

CJif B then (C;while B do C)else skipK.

But can we use this equation as a definition? We are trying to define the

semantics of program phrases by induction on their structure. That means,

as usual, that when we define the semantics of a compound phrase, we

may assume that the semantics of each of its subphrases have already been

defined. Bearing this in mind, it is clear that each of the definitions we have

given so far is well-defined: that is, the formula on the right-hand side denotes

an element of the semantic domain.

The equation above is different. It contains, on the right, a reference to

CJwhile B do CK

which we have not yet defined: it is not a subphrase of itself! So we have

a circular definition, or to put it another way, we do not have a definition at

all. However, it does help to think of a while statement as a conditional and

analyse how (while B do C) transforms a state s.

Models of Computation, 2012 22

Slide 27

Introducing Fixed Points

We need to find some f ∈ ST such that

f = cond(BJBK, (CJCK; f),id)

where id, the identity function , is the semantic function for skip

we have already defined. We can then use f as the semantics of

while B do C .

Slide 28

A Helper Function

To put it another way, define a function F : ST → ST by

F (f) = cond(BJBK, (CJCK; f),id).

Models of Computation, 2012 23

Slide 29

A First Approximation of while

If B is false in state s, it does nothing: that is, it returns the state s.

In this particular case, the transformation is the same as that given by

if B then anything else skip

Slide 30

A Sneaky Step

Since the ‘anything’ above could be anything (!!), let us replace it with

the phrase (C; anything). This gives us

if B then (C; anything)else skip.

This state transformer is F (anything).

Models of Computation, 2012 24

Slide 31

A Second Approximant

If B is true in state s but becomes false after running the loop body C

once, then the loop transforms the state in the same way as

ifB thenC; (if B then C;anything else skip)

else skip

This state transformer is F (F (anything)).

• If B is false in state s, it does nothing: that is, it returns the state s. In

this particular case, the transformation is the same as that given by

ifB then anything elseskip.

Since the ‘anything’ above could be anything, let us replace it with the

phrase (C; anything). That gives us

F (anything) = if B then (C; anything)else skip.

where F is the function we defined earlier. This command acts the

same way as (while B do C) on those states which do not re-

quire entering the loop body at all. Of course, if the loop body is en-

tered, it is very different.

The key point is that this is a command for which we already have a

denotational semantics, and it gives us the right answer some of the

time! We shall now improve on this, by finding a command which gives

us the right answer more often.

• If B is true in state s, (while B do C) runs the command C ,
transforming the state to s′; if B is now false then this is the end

Models of Computation, 2012 25

of the computation. In this case, therefore, the transformation is the
same as that given by

if B then (C;if B then anything else skip)else skip

Again replacing anything with (C; anything) gives F (F (f)) =

if B then (C;if B then (C; anything)else skip)else skip

This command gives the right state transformation in the case that

the loop body is entered no times, or one time; but if the loop body

needs to be entered more than once, it might not be correct. Still,

we’re getting closer.... Our new command works for all the states the

previous one worked for, and some more.

• The command corresponding to F (F (F (f))) gives the correct

transformation for states which require going round the loop no times,

once or twice. If we write F n(f) for the command with n uses of F ,

we get the loop n − 1 or fewer times.

Slide 32

A Sequence of Approximants

Give a starting state s:

• if, starting in state s, the loop body is executed less than n times,

then for any state transformer f , F n(f)(s) gives the same final

state that the loop would give;

• if more than n executions of the loop body is required, F n(f)(s)

is right on more and more starting states.

Models of Computation, 2012 26

Slide 33

Better Approximants

Let f to be the state transformer which gives ⊥ for any starting state

s. Write this state transformer as ⊥ too! Then

• if, starting in state s, the loop body is executed less than n times,

then F n(⊥)(s) gives the same final state that the loop would

give;

• for any natural number n and state s, if F n(⊥)(s) 6=⊥ then

F n(⊥)(s) = F n+1(⊥)(s).

Models of Computation, 2012 27

Slide 34

We’ve Got a Fixed Point

Define a state transformer f as follows:

f(s) = F n(⊥)(s) if F n(⊥)(s) 6=⊥ for some n

= ⊥ otherwise

This is well-defined and is a fixed point of F .

These ideas are enough to let us define a state transformer which gives the

fixed point we require. Rather than going into the proof that the f we just

defined (on slide 34) is really a state transformer and is really a fixed point of

F , let us try to do the same tricks using the syntax of While.

Consider a program diverge which immediately goes into an infinite loop,

without changing the state. Add diverge as a primitive to our language,

just for now, and define

CJdivergeK(s) =⊥

for all states s. Then we can define a sequence of syntactic approximants to

the loop while B do C as shown in slide 35.

Models of Computation, 2012 28

Slide 35

Approximating a While Loop

We define the approximants of while B do C as follows:

C0 = diverge

C1 = if B then (C;diverge)else skip

...

Cn+1 = if B then (C;Cn)else skip

where diverge is a new command which immediately goes into an

infinite loop, without changing the state.

(This definition is given by induction on the subscript i of C).

We have argued before that the command Cn has the same effect as

(while B do C) in those states which require going fewer than n

times round the loop to terminaton. Let us now prove that this sequence of

approximations really does get better as n increases.

Models of Computation, 2012 29

Slide 36

Theorem

For any natural number n and any state s, if CJCnK(s) 6=⊥ then

CJCn+1K(s) = CJCnK(s).

Theorem For any natural number n and any state s, if CJCnK(s) 6=⊥ then

CJCn+1K(s) = CJCnK(s).

Proof By induction on n.

Base case: In the case n = 0, Cn = diverge so it is never the case

that CJCnK(s) 6=⊥. There is therefore nothing to prove.

Inductive step: Consider the case n = k + 1. By definition,

CJCk+1K = CJif B then (C;Ck)else skipK

= cond(BJBK, (CJCK;CJCkK),id).

Since we are assuming that CJCk+1K(s) 6=⊥, it cannot be that

BJBK(s) =⊥. There are therefore two subcases to consider.

• If BJBK(s) = false, then clearly CJCk+1K(s) = s, and similarly

CJCk+2K(s) = s, which gives the desired conclusion.

• If BJBK(s) = true then CJCk+1K(s) = (CJCK;CJCkK)(s).

Since we know that this is not ⊥, it must be the case that

Models of Computation, 2012 30

CJCK(s) 6=⊥, so,

CJCk+1K(s) = CJCkK(CJCK(s)).

By the inductive hypothesis,

CJCk+1K(CJCK(s)) = CJCkK(CJCK(s)).

Putting these two together, we get

CJCk+1K(s) = CJCk+1K(CJCK(s)) = CJCk+2K(s)

Hence, we have proved the result.

�

We therefore have an improving sequence of approximations to our while
loop. We can now define the semantics of (while B do C) as in slide 37.

Slide 37

Semantics of while

CJwhile B do CK(s) = s′, if any CJCkK(s) = s′

= ⊥, otherwise

It should be reasonably obvious that this is the same state transformer we

previously claimed was a fixed point of F ; see slide 34. The preceding

theorem tells us that this does indeed define a function.

Let us now make use of our semantics of while to prove a simple fact.

Here we will provide that the state left after the execution of a loop always

Models of Computation, 2012 31

makes the boolean guard B to be false. We prove this by first showing an

appropriate fact about the syntactic approximants to the loop.

Lemma For any natural number n and any state s, if CJCnK(s) = s′ then

BJBK(s′) = false.

Proof By induction on n.

Base case: In the case n = 0, C0 = diverge so it never holds that

CJCnK(s) = s′, so there is nothing to prove.

Inductive step: Consider the case n = k + 1. By definition,

CJCk+1K = CJif B then (C;Ck)else skipK

= cond(BJBK, (CJCK;CJCkK),id)

So, if CJCk+1K(s) = s′, there are two cases:

• either BJBK(x) = false and s = s′, in which case BJBK(s′) =
false as required, or

• BJBK(s) = true, and then

s′ = (CJCK;CJCkK)(s).

In this case, it is clear that

s′ = CJCkK(s′′)

where s′′ = CJCK(s). But the inductive hypothesis tells us that any

state coming from CJCkK makes BJBK false: that is,

BJBK(s′) = false

as required. �

Theorem If CJwhile B do CK(s) = s′ then BJBK(s′) = false.

Proof By definition of the semantics ofwhile, if CJwhile B do CK(s) =
s′ then s′ = CJCnK(s) for some n. By the previous lemma,

BJBK(s′) = false as required. �

Exercise Prove that

Models of Computation, 2012 32

1. CJx := y; y := zK = CJx := yK

2. CJx := z; y := zK = CJy := z;x := zK

3. CJC1; (C2;C3)K = CJ(C1;C2);C3K

