
Computation Exercises 4: Register Machines

1. Consider the register machine given by the following code:

L0 : R−
1 → L1, L7

L1 : R+
0 → L2

L2 : R−
2 → L3, L5

L3 : R+
3 → L4

L4 : R+
0 → L1

L5 : R+
2 → L6

L6 : R−
3 → L5, L0

L7 : HALT

(a) Give the graphical representation of the register machine.

(b) Give the computation (that is, the sequence of configurations) when the register
machine is run from the initial configuration (0, 0, 2, 0, 0).

2. In this question, you will design register machines that implement subtraction.

(a) Consider the function f(x1, x2) defined as

f(x1, x2) ,

{
x1 − x2 if x1 ≥ x2

0 otherwise

i. Define a register machine that computes the function f .

ii. Draw the graph corresponding to the register machine.

(b) Consider the partial function g(x1, x2) defined as

g(x1, x2) ,

{
x1 − x2 if x1 ≥ x2

undefined otherwise

i. How would a register machine implementing g(x1, x2) behave when x2 > x1?
(Hint: consider the definition on Slide 14 of the notes carefully.)

ii. By adapting your answer to part (a) (or otherwise), define a register machine
that computes the partial function g.

3. Consider the register machine represented by the following graph:

R−
1START R−

1

HALT R+
0

(a) Give the code of the register machine. (Note, there is more than one way to do this,
depending on how you label the states.)

(b) Describe the function of one argument, f(x), that is computed by the register ma-
chine.

1



4. In order to construct register machines to perform complex operations, it is useful to build
them from smaller components that we’ll call gadgets, which perform specific operations.

A gadget will be defined by a (partial) register machine graph that has a designated initial
label and one or more designated exit labels (which contain no instructions). The gadget
will operate on registers that are specified in the gadget’s name, and are used for input and
output — we call these the input/output registers. The gadget may use other registers for
temporary storage — we call these scratch registers. The gadget may assume the scratch
registers are initially set to 0, and must ensure that they are set back to 0 when the gadget
exits. (Ensuring that the scratch registers are reset to 0 is important so that the gadget
may be safely used within loops.)

The gadget “zero R0” sets register R0 to be zero, whatever its initial value. It is defined
by the graph:

R−
0

out

A slightly more complicated example is the gadget “test R1 = R2”, which determines
whether the initial values of R1 and R2 are equal, possibly overwriting their values in the
process. The gadget has two exit labels: “yes” and “no”. The gadget exits to “yes” if the
values are equal and “no” if they are unequal. It is defined by the graph:

R−
1

R−
2 R−

2

no

yes

We can use gadgets to help us construct other gadgets and complete register machines.
For instance we can construct the following register machine, M , using gadgets for copy,
multiply and test for <:

2



R+
2START

copy R2 to R3

copy R2 to R4

multiply R3 by R4 to R6

copy R1 to R5

test R5 < R6

R+
0

HALT

no
yes

When we use gadgets this way, we draw the links out of them like . If there is more
than one exit point from the gadget, we label these links accordingly. Each of these links
can stand for any number of actual edges out of the gadget (for example, with the “test
R1 = R2”, the “no” link would correspond to both of the “no” edges).

In constructing such machines, we rename the registers used by each gadget: all of its
scratch registers should be renamed to things that do not occur in the rest of the machine,
and its input/output registers should be renamed to whichever registers the program
requires. As an example, suppose we defined the gadget “copy R1 to R2” using a R3 as a
scratch register. To construct the instance “copy R2 to R3” that is used in M , we would
rename R3 in the gadget to something fresh, say R7, and rename R1 and R2 to R2 and
R3 respectively. We would then wire the output edge of the R+

2 instruction to the input
location in the gadget instance, and all of the output edges of the gadget instance to the
input instruction of a second instance of the copy gadget corresponding to “copy R2 to
R4”.

(a) Define a gadget “add R1 to R2” which adds the initial value of R1 to register R2,
storing the result in R2 but restoring R1 to its initial value. That is, if the initial
state is R1 = r1 and R2 = r2 then the final state will be R1 = r1 and R2 = r1 + r2.
(You will need to use a scratch register to restore R1 to its initial value. Remember:
you can assume the scratch register initially has value 0, but must ensure that it also
have value 0 when the gadget exits.)

(b) Define a gadget “copy R1 to R2” which copies the value of R1 into register R2,
leaving R1 with its initial value. You may construct this gadget from gadgets that
have already been defined.

(c) Define a gadget “multiply R1 by R2 to R0” which multiplies R1 by R2 and stores the
result in R0, possibly overwriting the initial values of R1 and R2. Again, you may
use already-defined gadgets in your definition.

(d) Define a gadget “test R1 < R2” which determines whether the initial value of R1 is
less than that of R2, possibly overwriting their values in the process. The gadget
should exit to “yes” if it is, and “no” otherwise.

(e) Describe the function of one argument f(x) computed by the register machine M
defined above.

3


