
Models of Computation, 2010 1

The Halting Problem

The halting problem is historically important because it was one of the first

problems to be proved undecidable: that is, not computable by, for example,

a register machine. (Turing’s proof using Turing machines went to press in

May 1936, whereas Alonzo Church’s proof using the lambda calculus had al-

ready been published in April 1936.) Subsequently, many other undecidable

problems have been described. The typical method of proving a problem

to be undecidable is to reduce it to a problem that is already known to be

undecidable. To do this, it is sufficient to show that if a solution to the new

problem were found, it could be used to decide an undecidable problem by

transforming instances of the undecidable problem into instances of the new

problem. Since we already know that no method can decide the old problem,

no method can decide the new problem either. Often the new problem is

reduced to solving the halting problem.

Slide 1

Halting Problem for Register Machines

Definition. A register machine H decides the halting problem if for

all e, a1, . . . , an ∈ N, starting H with

R0 = 0 R1 = e R2 = p[a1, . . . , an]q

and all other registers zeroed, the computation of H always halts with

R0 containing 0 or 1; moreover when the computation halts, R0 = 1

if and only if

the register machine program with index e eventually halts when

started with R0 = 0, R1 = a1, . . . , Rn = an and all other

registers zeroed.

Models of Computation, 2010 2

Slide 2

Halting Problem for Register Machines

Definition. A register machine H decides the halting problem if for

all e, a1, . . . , an ∈ N, starting H with

R0 = 0 R1 = e R2 = p[a1, . . . , an]q

and all other registers zeroed, the computation of H always halts with

R0 containing 0 or 1; moreover when the computation halts, R0 = 1

if and only if

the register machine program with index e eventually halts when

started with R0 = 0, R1 = a1, . . . , Rn = an and all other

registers zeroed.

Theorem No such register machine H can exist.

Slide 3

Proof of the theorem

Assume we have a RM H that decides the halting problem and derive

a contradiction, as follows:

• Let H ′ be obtained from H by replacing START→ by

START→ copy R1

to Z
−⊲ push Z

to R2

−⊲

(where Z is a register not mentioned in H ’s program).

• Let C be obtained from H ′ by replacing each HALT (& each

erroneous halt) by // R−

0

**

����

R+

0jj

HALT

.

• Let c ∈ N be the index of C ’s program.

Models of Computation, 2010 3

Slide 4

Proof of the theorem

Assume we have a RM H that decides the halting problem and derive

a contradiction, as follows:

C started with (R0,R1,R2) = (0, c, 0) eventually halts

if and only if

H ′ started with (R0,R1,R2) = (0, c, 0) halts with R0 = 0

Slide 5

Proof of the theorem

Assume we have a RM H that decides the halting problem and derive

a contradiction, as follows:

C started with (R0,R1,R2) = (0, c, 0) eventually halts

if and only if

H ′ started with (R0,R1,R2) = (0, c, 0) halts with R0 = 0

if and only if

H started with (R0,R1,R2) = (0, c, p[c]q) halts with R0 = 0

Models of Computation, 2010 4

Slide 6

Proof of the theorem

Assume we have a RM H that decides the halting problem and derive

a contradiction, as follows:

C started with (R0,R1,R2) = (0, c, 0) eventually halts

if and only if

H ′ started with (R0,R1,R2) = (0, c, 0) halts with R0 = 0

if and only if

H started with (R0,R1,R2) = (0, c, p[c]q) halts with R0 = 0

if and only if

prog(c) started with (R0,R1,R2) = (0, c, 0) does not halt

prog(c) means the program given by the number c.

Slide 7

Proof of the theorem

Assume we have a RM H that decides the halting problem and derive

a contradiction, as follows:

C started with (R0,R1,R2) = (0, c, 0) eventually halts

if and only if

H ′ started with (R0,R1,R2) = (0, c, 0) halts with R0 = 0

if and only if

H started with (R0,R1,R2) = (0, c, p[c]q) halts with R0 = 0

if and only if

prog(c) started with (R0,R1,R2) = (0, c, 0) does not halt

if and only if

C started with (R0,R1,R2) = (0, c, 0) does not halt

Models of Computation, 2010 5

Slide 8

Proof of the theorem

Assume we have a RM H that decides the halting problem and derive

a contradiction, as follows:

C started with (R0,R1,R2) = (0, c, 0) eventually halts

if and only if

H ′ started with (R0,R1,R2) = (0, c, 0) halts with R0 = 0

if and only if

H started with (R0,R1,R2) = (0, c, p[c]q) halts with R0 = 0

if and only if

prog(c) started with (R0,R1,R2) = (0, c, 0) does not halt

if and only if

C started with (R0,R1,R2) = (0, c, 0) does not halt

Contradiction!

Slide 9

Enumerating computable functions

For each e ∈ N, let ϕe ∈ N⇀N be the unary partial function

computed by the RM with program prog(e). So for all x, y ∈ N:

ϕe(x) = y holds iff the computation of prog(e) started with

R0 = 0,R1 = x and all other registers zeroed eventually halts with

R0 = y.

Thus

e 7→ ϕe

defines an onto function from N to the collection of all computable

partial functions from N to N.

Models of Computation, 2010 6

Notice that the collection of all computable partial functions from N to N is

countable. So N⇀N (uncountable, by Cantor) contains uncomputable func-

tions.

Slide 10

An uncomputable function

Let f ∈ N⇀N be the partial function {(x, 0) | ϕx(x)↑}.

Thus f(x) =







0 if ϕx(x)↑

undefined if ϕx(x)↓

Models of Computation, 2010 7

Slide 11

An uncomputable function

Let f ∈ N⇀N be the partial function {(x, 0) | ϕx(x)↑}.

Thus f(x) =







0 if ϕx(x)↑

undefined if ϕx(x)↓

f is not computable, because if it were, then f = ϕe for some e ∈ N and

hence

• if ϕe(e)↑, then f(e) = 0 (by def. of f); so ϕe(e) = 0 (by def. of e),

i.e. ϕe(e)↓

• if ϕe(e)↓, then f(e)↑ (by def. of e); so ϕe(e)↑ (by def. of f)

Contradiction! So f cannot be computable.

Slide 12

(Un)decidable sets of numbers

Given a subset S ⊆ N, its characteristic function χS ∈ N�N is

given by: χS(x),







1 if x ∈ S

0 if x /∈ S.

Models of Computation, 2010 8

Slide 13

(Un)decidable sets of numbers

Definition. S ⊆ N is called (register machine) decidable if its

characteristic function χS ∈ N�N is a register machine computable

function. Otherwise it is called undecidable .

So S is decidable iff there is a RM M with the property: for all x ∈ N, M

started with R0 = 0,R1 = x and all other registers zeroed eventually halts

with R0 containing 1 or 0; and R0 = 1 on halting iff x ∈ S.

In order to prove that a set S ⊆ N is undecidable, we show that the decid-

ability of S would imply the decidability of the halting problem.

Models of Computation, 2010 9

Slide 14 Claim: S0 , {e | ϕe(0)↓} is undecidable.

Slide 15

Claim: S0 , {e | ϕe(0)↓} is undecidable.

Proof (sketch): Suppose M0 is a RM computing χS0
. From M0 ’s program

(using similar techniques to those used for constructing a universal RM) we

can construct a RM H to carry out:

let R0 = 0,R1 = e,R2 = p[a1, . . . , an]q in

R1 ::= p(R1 ::= a1) ; · · · ; (Rn ::= an) ; prog(e)q ;

R2 ::= 0 ;

run M0

Then by assumption on M0, H decides the halting problem. Contradiction.

So no such M0 exists, i.e. χS0
is uncomputable, i.e. S0 is undecidable.

[The program instruction R1 ::= a1 means copy a1 into the register R1.]

Models of Computation, 2010 10

Slide 16 Claim: S1 , {e | ϕ
e
total function} is undecidable.

Slide 17

Claim: S1 , {e | ϕe total function} is undecidable.

Proof (sketch): Suppose M1 is a RM computing χS1
. From M1’s

program we can construct a RM M0 to carry out:

let R0 = 0,R1 = e in R1 ::= pR1 ::= 0 ; prog(e)q ;

run M1

Then by assumption on M1, M0 decides membership of S0 from

previous example (i.e. computes χS0
). Contradiction. So no such

M1 exists, i.e. χS1
is uncomputable, i.e. S1 is undecidable.

