
Computation Answers 5: The Universal Register Machine

1.

pB0q = 〈〈2× 1 + 1, 〈1, 6〉〉〉 = 〈〈3, 21(2× 6 + 1)− 1〉〉
= 〈〈3, 25〉〉 = 23(2× 25 + 1) = 8× 51 = 408

pB1q = 〈〈2× 2 + 1, 〈2, 4〉〉〉 = 〈〈5, 22(2× 4 + 1)− 1〉〉
= 〈〈5, 35〉〉 = 25(2× 35 + 1) = 32× 71 = 2272

pB2q = 〈〈2× 0, 3〉〉 = 〈〈0, 3〉〉 = 20(2× 3 + 1) = 7

pB3q = 〈〈2× 3, 1〉〉 = 〈〈6, 1〉〉 = 26(2× 1 + 1) = 192

pB4q = 〈〈2× 3 + 1, 〈5, 0〉〉〉 = 〈〈7, 25(2× 0 + 1)− 1〉〉
= 〈〈7, 31〉〉 = 27(2× 31 + 1) = 8064

pB6q = 〈〈2× 2, 4〉〉 = 〈〈4, 4〉〉 = 24(2× 4 + 1) = 144

pB7q = 0

2. (a) To decode the program, we first decode it as a list l and then decode each individual
instruction. First, observe that

2216 × 833 = 2216(2× 416 + 1) = 〈〈216, 416〉〉

so l = 216 :: l1 for some list l1 with pl1q = 416.

To decode l1, we need to find x, y such that 2x(2y + 1) = 416. We should therefore
work out what power of 2 divides 416, which we can do by repeatedly factoring out
2:

416 = 2× 208 = 22 × 104 = 23 × 52 = 24 × 26 = 25 × 13

Now, 2 does not divide 13, but 2×6+1 = 13. Therefore pl1q = 25(2×6+1) = 〈〈5, 6〉〉.
Consequently, l1 = 5 :: l2 for some list l2 with pl2q = 6.

To decode l2, we need to find x, y such that 2x(2y + 1) = 6. It is easy to see that the
solution is x = y = 1, so l2 = 1 :: l3 for some list l3 with pl3q = 1.

Now 1 = 20(2× 0 + 1), so l3 = 0 :: l4 for some list l4 with pl4q = 0. It must be that
l4 = [].

Thus, we have
l = [216, 5, 1, 0]

Now we have to decode each instruction.

216 is non-zero, so it represents either an increment or decrement instruction. To
find out which, we should decode it as 〈〈x, y〉〉 = 2x(2y + 1):

216 = 2× 108 = 22 × 54 = 23 × 27 = 23(2× 13 + 1) = 〈〈3, 13〉〉

Now 3 = 2 × 1 + 1, so the instruction is a decrement to register 1. To determine
which labels the instruction goes to, we need to decode 13 as 〈j, k〉 = 2j(2k + 1)− 1:

13 = 14− 1 = 2× 7− 1 = 21(2× 3 + 1)− 1 = 〈1, 3〉

1



We have determined that 216 = 〈〈2× 1 + 1, 〈1, 3〉〉〉, so we have

L0 : R−
1 → L1, L3

5 is also non-zero.
5 = 20(2× 2 + 1) = 〈〈0, 2〉〉 = 〈〈2× 0, 2〉〉

This therfore represents the instruction that increments R0 and jumps to L2:

L1 : R+
0 → L2

1 is also non-zero.
1 = 20(2× 0 + 1) = 〈〈0, 0〉〉 = 〈〈2× 0, 0〉〉

This therefore represents the instruction that increments R0 and jumps to R0:

L2 : R+
0 → L0

0 represents the halting instruction:

L3 : HALT

Consequently, the complete decoded program is:

L0 : R−
1 → L1, L3

L1 : R+
0 → L2

L2 : R+
0 → L0

L3 : HALT

(b) The program increments R0 by twice the initial value of R1. If f is the function of
one argument computed by the register machine with this program, f(x) is the final
value of R0 when the machine is run from the intial state with R0 = 0 and R1 = x.
Therefore f(x) = 2x — the machine computes the doubling function.

3. (a) “test L = 0”:

L−

L+

no

yes

(b) “Z ← L”:

L− Z+

out

2



(c) “L← Z/2”:

Z− Z−

L+

rem 0

rem 1

(d) “L ::= L/2”:

Z ← L

L← Z/2

rem 0

rem 1

rem 0

rem 1

(e) “〈〈X,L〉〉 ::= L”:

zero X

test L = 0 empty

L← Z/2X+

done

no

yes

rem 0

rem 1

(f) If you have made the same design choices as here, you should get something like:

3



X− L−

L+

empty

L−

Z+

Z− Z−

L+

X+

done

This should be familiar as the implementation of the “pop L to X” graph component
from the lectures.

4. No solution, but a hint: it is possible to simulate three registers using two registers by
representing the values x, y, z of the three registers as 2x3y5z.

4


