
Models of Computation, 2012 1

Slide 1 Turing Machines

Slide 2

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert posed the

Entscheidungsproblem, just examples.

Common features of the examples of algorithms:

• finite description of the procedure in terms of elementary

operations;

• deterministic, next step is uniquely determined if there is one;

• procedure may not terminate on some input data, but we can

recognise when it does terminate and what the result is.

Models of Computation, 2012 2

Register Machine computation works with natural numbers and the associ-

ated elementary operations of increment/decrement/zero-test. It abstracts

away from any particular, concrete representation of numbers (e.g. as bit

strings). Turing’s original model of computation (now called a Turing ma-

chine) is more concrete. Numbers are represented in terms of a fixed, finite

alphabet of symbols and the increment/decrement/zero-test programmed in

terms of more elementary symbol-manipulating operations. In fact, Turing

argued that he had formalized the notion of "algorithm" in the most concrete

possible form.

Slide 3

Turing machines, informally

q

↓

· · · 0 1 0 1 1 · · ·

A Turing machine consists of a linear tape unbounded to the left and right,

which is divided into cells. Each cell contains either a symbol from a finite

alphabet of tape symbols, in this case 0 and 1, or the special blank symbol

. Only finitely many cells may contain non-blank symbols. In slide 3, the

Turing machine is in state q with its tape head (the arrow) scanning the tape

cell with tape symbol 0.

Models of Computation, 2012 3

Slide 4

Turing machines, informally

q

↓

· · · 0 1 0 1 1 · · ·

• The machine starts in state s with the tape head pointing to the first

symbol of the finite input string. (Everything to the left and right of the

input string is initially blank.)

• The machine computes in steps, each depending on the current state (q)

and symbol being scanned by tape head (0)

• An action at each step is: to overwrite the current tape cell with a symbol;

to move left or right one cell; and to change state.

There are many variations of the definition of a Turing machine. The defi-

nition of a Turing machine in this course consists of a two-way-infinite tape

which starts at the left of the input string. It is also possible to define Turing

machines where the tape is infinite in only one direction, or that can leave the

tape head stationary as well as moving left or right. These variants all have

the same computational power.

Models of Computation, 2012 4

Slide 5

Turing Machine, formally

A Turing machine is specified by a quadruple M = (Q, Σ, s, δ) where

• Q is a finite set of machine states;

• Σ is a finite set of tape symbols, containing distinguished symbol ,

called blank;

• an initial state s ∈ Q;

• a partial transition function

δ ∈ (Q × Σ)⇀(Q × Σ ×{L, R})

The machine has finite internal memory. It can remember which state it is in,

nothing more. At each step of the computation, the machine reads the sym-

bol currently under the tape head. If the machine is currently in state q and

reading symbol a then δ(q, a) tells the machine what to do next. If δ(q, a)
is undefined, the machine simply halts. Otherwise, δ(q, a) = (q′, a′, d)
for some state q′ , symbol a′ and direction d. The machine overwrites the

current cell with the symbol a′ , moves along the tape in direction d (L for

left, R for right), and changes its state to q′ .
Now we need to describe formally what it means to compute with a Turing

machine. In an analogous fashion to register-machine configurations, we

define the notion of Turing-machine configurations.

Models of Computation, 2012 5

Slide 6

Turing Machine Configuration

A Turing Machine configuration (q, w, u) consists of

• the current state q ∈ Q;

• a finite, possibly-empty string w ∈ Σ
∗ of tape symbols to the left of tape

head;

• a finite, possibly empty string u ∈ Σ
∗ of tape symbols under and to the

right of tape head. ǫ denotes the empty string.

An initial configuration is (s, ǫ, u), for initial state s and string of tape

symbols u.

The configuration only describes the contents of tape cells that are

part of the input or have been visited by the Turing machine.

Everything else is blank.

Slide 7

first and last

Define the functions first : Σ
∗ → Σ × Σ

∗ and

last : Σ
∗ → Σ × Σ

∗ as follows

first(w) =

(a, v) if w = av

(, ǫ) if w = ǫ

last(w) =

(a, v) if w = va

(, ǫ) if w = ǫ

These functions split off the first and last symbols of a string, splitting

off if the string is empty.

Models of Computation, 2012 6

Slide 8

Turing Machine Computation

Given M = (Q, Σ, s, δ), define (q, w, u) →M (q′ , w′, u′) by

first(u) = (a, u′)

δ(q, a) = (q′, a′, L) last(w) = (b, w′)

(q, w, u) →M (q′, w′, ba′u′)

first(u) = (a, u′) δ(q, a) = (q′ , a′, R)

(q, w, u) →M (q′ , wa′, u′)

We say that a configuration (q, w, u) is a normal form if it has no

computation step. This is the case exactly when δ(q, a) is undefined

for first(u) = (a, u′).

Slide 9

Turing Machine Computation

A computation of a TM M is a (finite or infinite) sequence of

configurations c0, c1, c2, . . . where

• c0 = (s, ǫ, u) is an initial configuration

• ci →M ci+1 holds for each i = 0, 1,

The computation

• does not halt if the sequence is infinite

• halts if the sequence is finite and its last element (q, w, u) is a

normal form.

Models of Computation, 2012 7

Slide 10

Example Turing Machine

Consider the TM M = (Q, Σ, s, δ) where Q = {s, q, q′},

Σ = { , 0, 1} and the transition function

δ ∈ (Q × Σ)⇀(Q × Σ ×{L, R}) is given by:

δ 0 1

s (q, , R)

q (q′ , 0, L) (q, 1, R) (q, 1, R)

q′ (q′ , 1, L)

Slide 11

Example Computation

(s , ǫ , 1n0) →M (q , , 1n0)

→M (q , 1 , 1n−10)
...

→M (q , 1n , 0)

→M (q , 1n+1 , ε)

→M (q′ , 1n , 10)

→M (q′ , 1n−1 , 110)
...

→M (q′ , , 1n+10)

Models of Computation, 2012 8

A Turing machine can be implemented by a register machine, and vice versa.

We will sketch the implementation of the Turing machine as a register ma-

chine, but only hint at how to implement a register machine as a Turing ma-

chine.

Slide 12

Theorem. The computation of a Turing machine M can be

implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M ’s states, tape symbols, tape

contents and configurations.

Step 2: implement M ’s transition function (finite table) using RM

instructions on codes.

Step 3: implement a RM program to repeatedly carry out →M .

Models of Computation, 2012 9

Slide 13

Step 1

• Identify states and tape symbols with numbers:

Q = {0, 1, . . . , n} Σ = {0, 1, . . . , m}

where s = 0 and = 0

• Code configurations c = (q, w, u) with three numbers:

• q, the state number

• p[ai , . . . , a1]q where w = a1 · · · ai

• p[b1, . . . , bj]q where u = b1 · · · bj .

[The reversal of w makes it easier to use our RM programs for list

manipulation.]

• Identify directions with numbers: L = 0, R = 1

Slide 14

Step 2

Turn the finite table of (argument,result)-pairs specifying δ into a RM

gadget
(I, A, D) ::= δ(I, A)

defined

undefined

which has the behaviour:

If q, a and d are the initial values of registers I, A and D

• updates the registers to I = q′, A = a′ , D = d′ and

takes the defined exit if δ(q, a) = (q′ , a′, d′)

• leaves the registers intact and takes the undefined exit if

δ(q, a) is undefined

Models of Computation, 2012 10

Slide 15

Step 3

The next slide gives a RM which implements the computation of TM

M. It uses registers

I = current state

W = code of tape symbols left of tape head (reading right-to-left)

U = code of tape symbols at and right of tape head (reading left-to-right)

Starting with U containing the code of the input string (and all other

registers zeroed), the RM program halts if and only if M halts; and in

that case I, W and U hold the code of the final configuration.

Slide 16 pop U to A

START

(I, A, D) ::= δ(I, A)

push A to U HALT

D−push A to W push A to U

pop W to A

done

empty

undefined

defined

done

empty

Models of Computation, 2012 11

We’ve seen that a Turing machine’s computation can be implemented by a

register machine. The converse holds: the computation of a register ma-

chine can be implemented by a Turing machine. To make sense of this, we

first have to fix a tape representation of RM configurations, and hence of

numbers, lists of numbers. . . . We will not give the full implementation. We

will demonstrate how to encode lists of numbers, and use this enoding to

describe Turing computable functions.

Slide 17

Tape encoding of lists of numbers

Definition. A tape over Σ = { , 0, 1} codes a list of numbers if

precisely two cells contain 0 and the only cells containing 1 occur

between these.

Such tapes look like:

· · ·
︸︷︷︸

all ′s

0 1 · · · 1
︸ ︷︷ ︸

n1

1 · · · 1
︸ ︷︷ ︸

n2 · · ·

· · · 1 · · · 1
︸ ︷︷ ︸

nk

0 · · ·
︸ ︷︷ ︸

all ′s

which corresponds to the list [n1, n2, . . . , nk].

Models of Computation, 2012 12

Slide 18

Turing computable function

Definition. f ∈ N
n
⇀N is Turing computable if and only if there

is a Turing machine M with the following property:

Starting M from its initial state with tape head on the leftmost

0 of a tape coding [0, x1, . . . , xn], M halts if and only if

f(x1, . . . , xn)↓, and in that case the final tape codes a list

(of length ≥ 1) whose first element is y where

f(x1, . . . , xn) = y.

Slide 19

Theorem. A partial function is Turing computable if and only if it is

register machine computable.

Proof (sketch). We’ve seen how to implement any TM by a RM. Hence

f TM computable implies f RM computable.

For the converse, one has to implement the computation of a RM in terms of a

TM operating on a tape coding RM configurations. To do this, one has to

show how to carry out the action of each type of RM instruction on the tape. It

should be reasonably clear that this is possible in principle, even if the details

are omitted (because they are tedious).

Models of Computation, 2012 13

Slide 20

Notions of computability

• Church (1936): λ-calculus

• Turing (1936): Turing machines .

Turing showed that the two very different approaches determine the

same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense of

Lecture 1] can be realized as a Turing machine.

Slide 21

Notions of computability

Church-Turing Thesis. Every algorithm [as in Lecture 1] can be

realized as a Turing machine. Further evidence:

• Gödel and Kleene (1936): partial recursive functions

• Church (1936): λ-calculus

• Post (1943) and Markov (1951): canonical systems for generating

the theorems of a formal system

• Lambek (1961) and Minsky (1961): register machines

• Variations on all of the above (e.g. multiple tapes,

non-determinism, parallel execution. . .)
All have turned out to determine the same collection of computable

functions.

Models of Computation, 2012 14

The work on Turing machines provided one path to the invention of com-

puters, and plays a significant role in complexity theory , the classification

of computational problems according to their inherent difficulty and relating

these classes to each other. The work on partial recursive functions has

led to a branch of mathematics called recursion theory . The work on the

λ-calculus has led to a branch of computer science called functional pro-
gramming .

