Computation Answers 7: Lambda Calculus Part 1

1. (Free and bound variables.)

(a) i. The binding occurrences of variables in this A-term are:

A@O® v (A@ zy) 2)(z (AO®. = 2 y))

ii. The bound occurrences of variables in this A-term are:

Azy. @Az . @) 2)(xAzz. @Oy))

iili. The free occurrences of variables in this A-term are:

()\:Uy.y()\:v.$y)@)(@()\za:.xz@))
(b) i. For (Az. zy)(zAy. yx)(Ayz. zy):

FV ={y,x}
ii. For (A\z. z(A\y. yzz)y)(Azz. (N y. zzy)x):
FV =A{z,y}

2. (a-Equivalence.)

(a) The A-terms which are a-equivalent to (Azy. y(Az.xy)z) are iii and vii

(b) If we can name our variables anything we want, then there are an infinite number of
A-terms which are a-equivalent to (Ay.(Az.zy)zzy). Here are three of them:

i. (Ay.(A\b. by)zxy)
iil. (Ay.(Ac. cy)zay)
iii. (A\y.(Ad.dy)zzy)
Of course, we can also pick more interestingly a-equivalent terms:
i. (Aa.(Ax.za)zza)
ii. (Aa.(A\y.ya)zza)
iii. (Ad.(Az. zd)zzd)

(c) For each of the A-terms I gave for part b, the F'V set is {z, z}. Different a-equivalent
A-terms always have the same F'V set. This is the point of a-equivalence. If I give you
some code to use in your project, then you don’t care what I call my local variables
— there’s no way that will affect the rest of your program. You care very much what

global variables my code uses, since that will change the behaviour of your overall
program.

3. (Expression substitution.)
The results of the substitutions are as follows:

(a) (29)=/2] = 2y
(b) (zy)[Az. zx/x] = (A\z. z2)Yy

(©) (. zy)[z/y] = Av. (wy)lx/z][z/y] = Aw. vz
(d) (A\x. zy)lz/z] = \x. zy



(e) (A\z. zy)lz/y] = Az. zx (g) (A\z. zy)[Ax. zy/y] = Az. z(Az. zy)
(f) (\z. zz)[A\x. zx/x] = Az, 22 (h) (Az. zy)[x(A\x. xy)/y] = Az. z(x(Az. zy))

4. (p-reduction.)
(a) i

A\r.z)y =y

ii.

(A\x. Ay. zy)y — Az.yz

Notice that in order to apply the function (Az. \y. zy) to the argument y, we must
perform the substitution (\y.zy)[y/x]. If you look at the rules for substitution
on slide 17 in your lecture notes, it is the fourth rule we must use. In order to
perform this substitution we must avoid accidentally “capturing” the variable
name y inside the function. We must therefore rename the argument of the
function to some name that is not being used - here we choose the name z.
So the substitution (Ay.zy)[y/x] is equivalent to the substitution (Az.zz)[y/z],
which gives us (Az.yz)
iii.

(Ax. \y. 2y)z — Ay. zy
iv.

Ae.x)y =y

z((Az.x)y) — zy

Az.z((Ax. z)y) = Ax.zy

(b) Let M = (A\z.zx)((Az. z)(A\z. zx))
Let N = ((Az.z)(Az. zx))(Ax. z2)

(c) Both M and N can reduce in a single step to (Az.zz)(Az.zx). It is also possible to
reduce M as follows:

(Az. zz)((Az. ) (Az. 22))
= (A\z.z)(Az. z2)) (Az. ) (A2 22))
= (Az.zz)( Az z)(A\z. x2x)) = M

This means that it is possible to evaluate M for an infinite number of steps, without
ever producing an A-term that can be reduced to from N. However, for any A-term
O such that M — O, it is always the case that O — (Az. zz)(Az. zx).

(A\z. zzz)(Az. xxT)

— (A\z. zzx)(Az. zoz)(Ax. xxx)

— (Az. zzx)(Az. zzx)(Ax. zex)(Ax. zox)

— (Az. zxx)(Ax. zex) Az, zex)(Ax. zzx)(\x. zoz)

This function is self-replicating. With every S-reduction, it gets larger, and will never
reduce to a normal form.

5. (f-normal-forms.)



x) is already in normal form.

. x)()\ y) has normal form Ay. y.
(
(

. z)(Az. xz) has normal form (Az. zz).

. zz)(Az. zz) has no normal form.

. zz)(Az. x) has normal form (Az. ).



