
Models of Computation, 2010 1

The Lambda Calculus

A brief history of mathematical notation.
Our notation for numbers was introduced in the Western World in the Re-

naissance (around 1200) by people like Fibonacci. It is characterised by a

small fixed set of digits, whose value varies with their position in a number.

This place-value system was adopted from the Arabs who themselves credit

the Indians. We do not know when and where in India it was invented. A

notation for expressions and equations was not available until the 17th cen-

tury, when Francois Viète started to make systematic use of placeholders for

parameters and abbreviations for the arithmetic operations. Until then, a sim-

ple expression such as 3x2 had to be described by spelling out the actual

computations which are necessary to obtain 3x2 from a value for x. It took

another 250 years before Alonzo Church developed a notation for arbitrary

functions. His notation is called λ-calculus (“lambda calculus”). Church intro-

duced his formalism to give a functional foundation for mathematics but in the

end mathematicians preferred (axiomatic) set theory. The λ-calculus was re-

discovered as a versatile tool in computer science by people like McCarthy,

Strachey, Landin, and Scott in the 1960s.

[Apparently, someone called Mervyn Pragnell appeared from nowhere and

persuaded several fledgling computer scientists, among them Rod Burstall,

Peter Landin and Christopher Strachey, to take an interest in lambda calculus

by inviting him to his home, giving them a chapter each on Church’s work.

They came back the following week to discuss this work, and the rest is

history.]

Incidentally, the history of programming languages mirrors that of mathemat-

ical notation, albeit in a time-condensed fashion. In the early days (1936-

1950), computer engineers struggled with number representation and tried

many different schemes, before the modern standard of 2-complement for in-

tegers and floating point for reals was generally adopted. Viète’s notation for

expressions was the main innovation in FORTRAN, the world’s first high-level

programming language (Backus 1953), thus liberating the programmer from

writing out tedious sequences of assembly instructions. Not too long after

this, 1960, McCarthy came out with his list processing language Lisp. Mc-

Carthy knew of the λ-calculus, and his language closely resembles it. This

has led to the functional programming languages ML, Haskell and F♯.

Models of Computation, 2010 2

Slide 1 The Lambda Calculus

Slide 2

Notions of Computability

• Church (1936): λ-calculus

• Turing (1936): Turing machines.

Turing showed that the two very different approaches determine the

same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in the intuitive sense of

Lecture 1] can be realised as a Turing machine.

Models of Computation, 2010 3

The λ-calculus notation can appear archaic. It is just notation! In mathe-

matics, we write the function f(x) = x + x to mean the function, called

f , which gives back the answer x + x for every x. The term f(2), for a

specific value of x, gives back the specific result 4.

Slide 3

Haskell Function

add :: Int→ Int

add x = x+x

...

> add 2 apply add to 2

4 result

Models of Computation, 2010 4

Slide 4

Another Haskell Function

h :: Int → Int→ Int

h x y = g y

where g z = x + z

> h 2 3 apply h to 2 and 3

g 3 where g z = 2 + z apply g to 3

2 + 3 addition

5 result

In λ-notation, we have special notation which dispenses with the need to

give a name to a function (as in f or add) and easily scales up to more

complicated function definitions. We write λx. x + x, or λx. (x + x)
to be completely clear, for the function which takes in one argument x and

returns the result x + x. The Greek letter λ (‘lambda’) has a role similar

to the keyword ‘function’ in some programming languages. It alerts the

reader to the fact that the variable which follows is not part of the term but a

formal parameter of the function definition. The dot after the formal parameter

introduces the function body.

A function which has been written in λ-notation can itself be used in an ex-

pression. For example, the application of the function λx. x + x to the

argument 2 is written (λx. x + x) 2. Although it is not strictly necessary,

it will be convenient sometimes to introduce abbreviations for λ-terms. We

write them in the same way that we always do in mathematics, using the

equality symbol. So, we can abbreviate our function λx. x + x using a

capital letter, say F:

F
def
= λx. x + x

We can then write F2 instead of (λx. x + x)2.

Models of Computation, 2010 5

Now suppose the body of a function consists of another function: for example,

H
def
= λx.(λz. x + z)

We can apply this function to the value 2, written H2, to obtain another

function λz. 2 + z. However, we can also consider it as a function of two

arguments, where we get a number back if we supply H with two arguments:

the result of (H2)3 is the answer 5. Both views are legitimate and com-

pletely consistent with each other. If we want to stress the first interpretation

we can write the term with the brackets as above. If we want to see it as a

function of two arguments then we can leave out the brackets:

λx.λz. x + z

Sometimes, we even lazily elide the second lambda:

λxz. x + z

Likewise, in the application of H to arguments 2 and 3, we can use brackets

to stress that 2 is to be used first, (H2)3, or we can suggest simultaneaous

application by the notation H23. Whatever the intuition about H, the result

will be the same.

We have already mentioned that, in a good definition of algorithm, an algo-

rithm must be able to take an algorithm as input. With register machines

and Turing machines, this is achieved by coding programs as numbers. With

the lambda calculus, a function can directly have a function as input. For

example, consider the λ-term

(λz. z3)(λy. 2 + y)

The function λz. z3 take the function λy. 2 + y as input, and returns the

term (λy. 2 + y)3, which can then be evaluated to 5.

Models of Computation, 2010 6

Slide 5

λ-terms

F
def
= λx. x + x

F2 = (λx. x + x)2 →β 2 + 2

H
def
= λx.(λz. x + z)

H23 = (λxz. x + z)2 3 →β (λz. 2 + z)3 →β 2 + 3

Higher-order funtion:

(λz. z3)(λy. 2 + y) →β (λy. 2 + y)3 →β 2 + 3

For this course, we will work with the pure λ-calculus without constants (for

example, + is a constant): function formation and function application is all

there is. We will sometimes use λ-terms with constants as intuitive exam-

ples. When developing a programming language based on the λ-calculus,

we add many programming constructs including numbers and types, as you

will have seen in the Haskell course. The point is that the pure λ-calculus

(with or without constants) is as expressive as Turing machines, and so this

is all we need!

Models of Computation, 2010 7

Slide 6

Definition of λ-terms

The λ-terms are constructed, from a given, countable set of variables

x, y, z, . . . ∈ Var, by:

M ::= x | λx.M | M M

The term λx.M is called a λ-abstraction and MM an application .

With this definition, it is essential to use parenthesis to disambiguate.

This definition of λ-terms is ambiguous. The term λx. xy can be parsed as

λx. (xy) or (λx. x)y In fact, we will establish a convention that λx. xy
means λx. (xy) , and use brackets to force the other interpretation.

Models of Computation, 2010 8

Slide 7

Examples

λx. (xy)

(λx. x)y

λx. (λy. x)

λx. (λy. (λz. (xz)(yz)))

(λx. (xx))(λx. (xx))

λx. (x(λy. (yx)))

Slide 8

Notation

• λx1 x2 . . . xn.M means λx1.(λx2 . . . (λxn .M) . . .)

• M1 M2 . . . Mn means (. . . ((M1 M2)M3) . . .)Mn : that

is, application is left-associative

• Drop parentheses enclosing the body of a λ-abstraction.

Models of Computation, 2010 9

Slide 9

Examples, simplified

λx. xy

(λx. x)y

λxy. x

λxyz. (xz)(yz)

(λx. xx)(λx. xx)

λx. x(λy. yx)

Computing λ-terms

λ-terms on their own would be a bit boring if we did not know how to compute

with them as well. There is only one rule of computation, called β-reduction,

and it concerns the replacement of the formal parameter by an actual argu-

ment. It can only occur if a λ-abstraction has been applied to some other

term.

Models of Computation, 2010 10

Slide 10

Computing λ-terms

(λx. x + x)2 →β 2 + 2

(λxz. x + z)2 3 →β (λz. 2 + z)3 →β 2 + 3

(λz. z3)(λy. 2 + y) →β (λy. 2 + y)3 →β 2 + 3

We see that reduction is nothing other than the textual replacement of a for-

mal parameter in the body of a function by the actual parameter supplied.

However, we need to do quite a bit of work to formalise what we mean by

this. Consider the function f(x) = x + x: the xs in the expression x + x
are considered free; in f(x) = x + x, the x in the argument to the function

f is a formal parameter that binds the xs in x + x; and the xs to the right of

the equality f(x) = x + x are considered bound by the formal parameter.

From your mathematical and programming experience, you will understand

these concepts intuitively, although you may not have named them before.

Analogous definitions can be given for the λ-terms.

Models of Computation, 2010 11

Slide 11

Free and bound variables

In λx.M, we call x the bound variable and M the body of the

λ-abstraction. An occurrence of x in a λ-term M is called

• a binding occurrence if x is in between λ and .

(e.g. (λx.y x) x)

• bound if in the body of a binding occurrence of x

(e.g. (λx.y x) x)

• free if neither binding nor bound

(e.g. (λx.y x)x).

Slide 12

Haskell Function: binding

h :: Int → Int→ Int

h x y = g y

where g z = x + z

x, y are bound everywhere under h.

z is bound only in the where clause

Models of Computation, 2010 12

Slide 13

Haskell Function: bound

h :: Int → Int→ Int

h x y = g y

where g z = x + z

x, y are bound everywhere under h.

z is bound only in the where clause

Slide 14

Haskell Function: free

h :: Int → Int→ Int

h x y = g y

where g z = x + z

x is free in g.

It is not free in h.

Models of Computation, 2010 13

Slide 15

Sets of Free Variables

The set of free variables, FV(M), is defined inductively by:

FV(x) = {x}

FV(λx.M) = FV(M) − {x}

FV(M N) = FV(M) ∪ FV(N)

If FV(M) = ∅, M is called a closed term or combinator .

Here are some examples of free and bound variables to check whether you

understand
FV(λx. xy) = {y}
FV((λx. xy)x) = {x, y}
FV(λxy. x) = { }
FV((λx. xx)(λx. xx)) = { }
FV(λx. x(λy. yx)) = { }

We do not care about the particular names of bound variables, just about

the distinctions between them. For example, we know that f(x) = x + x
and f(y) = y + y intuitively declare the same functions. Writing these

as λ-terms, we think of λx. x + x and λy. y + y as equal, calling such

λ-terms α-equivalent.

Models of Computation, 2010 14

Slide 16

α-equivalence

α-equivalence is the binary relation on λ-terms defined by the rules:

x =α x

M[z/x] =α N[z/y] z 6∈ FV(M) ∪ FV(N)

λx.M =α λy.N

M =α M′ N =α N′

M N =α M′ N′

Result =α is an equivalence relation (reflexive, symmetric and

transitive).

This definition depends on the definition of the λ-term N[M/x], which is

the substitution of λ-term M for variable x in λ-term N, and is defined on

the next slide. As well as being used to define α-equivalence, substitution is

essential for our definition of β-reduction: for example,

(λx. x + x)2 →β (x + x)[2/x] = 2 + 2.

Models of Computation, 2010 15

Slide 17

Substitution

The substitution of λ-term M for variable x in λ-term N, denoted

N[M/x], is defined by:

x[M/x] = M

y[M/x] = y, if y 6= x

(λx.N′)[M/x] = λx.N′

(λy.N′)[M/x] = λz.N′[z/y][M/x], x 6= y,

z 6∈ FV(M) ∪ (FV(N′) − {y}) ∪ {x}

(N1 N2)[M/x] = N1[M/x] N2 [M/x]

Slide 18

Examples of Substitution

1. (λy. x)[x/y] = λy.x

2. If x 6= y 6= z, then (λy.x)[y/x] = λz.y.

3. (λx. xy)[x/y] is λz. zx and λu. ux, for x 6= y and

z, u 6∈ {x, y}.

Models of Computation, 2010 16

Notice that the definition of substitution is a relation, not a function: for exam-

ple, (λx. xy)[x/y] is defined to be both λz. zx and λu. ux. It is a func-

tion if we work up to α-equivalence: for example, λz. zx =α λu.ux. There

is a very simple way to avoid confusion with substitution. Given N[M/x],
first rename all bound variables in N using α-equivalence, to be different

from x and the free variables in M and N, and obtain N′[M/x]. Now do

the substitution N′[M/x] which is straightforward as there are no variables

clashes. The fact that this works is due to the following results.

Slide 19

Results

1. M =α N implies FV(M) = FV(N).

2. FV(N[M/x])⊆(FV(N) − {x}) ∪ FV(M).

3. N1 =α N2 implies N1[M/x] =α N2[M/x].

4. M1 =α M2 implies N[M1/x] =α N[M2/x].

α-equivalence classes of λ-terms are more important than λ-terms them-

selves. Textbooks (and these lectures) suppress any notation for α-

equivalence classes and refer to an equivalence class via a representative

λ-term (look for phrases like “we identify terms up to α-equivalence” or “we

work up to α-equivalence”). This means that for most of the time you can just

work with λ-terms and not think about α-equivalence at all. For implementa-

tions and computer-assisted reasoning, there are various devices for picking

canonical representatives of α-equivalence classes (e.g. de Bruijn indexes,

graphical representations, . . .).

Models of Computation, 2010 17

Slide 20

β-reduction

β-reduction is a binary relation between λ-terms defined by:

(λx.M)N →β M[N/x]

M →β M′

λx.M →β λx.M′

M →β M′

M N →β M′ N

N →β N′

M N →β M N′

N =α M M →β M′ M′ =α N′

N →β N′

We omit the subscript β when the meaning is clear.

Here are some examples of β-reduction:

1. (λxy. x)y =α (λxz. x)y → λz. y

2. (λyz.z)u → λz. z

3. (λx. xy)(λx.x) → (λx. x)y → y

4. (λx. xy)((λyz. z)u) → ((λyz. z)u)y → (λz. z)y → y

5. (λx. xy)((λyz. z)u) → (λx. xy)(λz.z) → (λz.z)y → y
Notice that the λ-calculus is not deterministic: that is, (λx. xy)((λyz. z)u) →
((λyz. z)u)y and (λx. xy)((λyz. z)u) → (λx. xy)(λz.z). The

λ-calculus is confluent.

Models of Computation, 2010 18

Slide 21

Many Steps of β-reduction

Given a relation →β , we define a new relation →∗
β by:

M =α M′

M →∗
β M′

M →β M′′ M′′ →∗
β M′

M →∗
β M′

This relation →∗
β is called the reflexive transitive closure of →β .

Again, we omit the subscript β when the meaning is clear.

Slide 22

Confluence

Church-Rosser Theorem

→∗ is confluent : that is, if M →∗ M1 and M →∗ M2 then

there exists M′ such that M1 →∗ M′ and M2 →∗ M′ .

Definition

M1 and M2 are β-equivalent, written M1 =β M2, if and only if

there exists M such that M1 →∗ M and M2 →∗ M.

Models of Computation, 2010 19

The definition of β-equivalence provides a good notion of equality: it is re-

flexive (in fact, all α-equivalent terms are β-equivalent), symmetric and, by

the Church-Rosser theorem, transitive.

Slide 23

β-Normal Forms

Definition

A λ-term M is in β-normal form if it contains no β-redexes: that is,

no subterms of the form (λx.M1)M2.

M has β-normal form N if M →∗
β N and N is in β-normal form.

Uniqueness of β-normal forms For all M, N1, N2, if M →∗ N1

and M →∗ N2 and N1, N2 are in β-normal form, then

N1 =α N2.

To prove the uniqueness of β-normal forms, we know by the Church-Rosser

property that there exists N with N1 →∗ N and N2 →∗ N. Since N1 is

a β-normal form and N1 →∗ N, then it must be that N1 =α N (why?).

Hence, N1 =α N2.

Models of Computation, 2010 20

Slide 24

Non-termination

Some λ-terms have no β-normal form.

For example, Ω , (λx.x x)(λx.x x) satisfies

• Ω → (x x)[(λx.x x)/x] = Ω,

• Ω →∗ M implies Ω =α M.

So there is no β-normal form N such that Ω =β N.

A term can possess both a β-normal form and infinite chains of

reduction from it.

For example, (λx.y)Ω → y, but also (λx.y)Ω → (λx.y)Ω → · · · .

Slide 25

Normal-order Reduction

Normal-order reduction is a deterministic strategy for reducing

λ-terms: reduce the “left-most, outer-most” redex first.

• left-most: reduce M before N in M N when M is not a

λ-abstraction;

• outer-most: reduce (λx.M)N rather than either of M or N.

(This is call-by-name evaluation).

Result Normal-order reduction of M always reaches the β-normal

form of M if it possesses one.

Models of Computation, 2010 21

To study more about evaluation strategies for the λ-calculus, read Call-by

name, Call-by-value and the λ-calculus by Gordon Plotkin in the Journal of

Theoretical Computer Science (just search Google). Plotkin invented the call-

by-name and call-by-value reduction strategies to bridge the gap between

the λ-calculus and Landin’s SECD machine. The SECD machine is a highly

influential abstract machine intended as a target for functional programming

language compilers. The letters stand for Stack, Environment, Code, Dump,

the internal registers of the machine. It is used to define the operational

semantics of Landin’s programming language ISWIM, based on call-by-value

evaluation. The programming language ML uses call-by-value evaluation and

Haskell uses call-by-need, a memoized1 version of call-by-name.

The λ-calculus is as expressive as register machines and Turing machines.

In this course, we cannot cover the full details, but we can see how to repre-

sent arithmetic in the λ-calculus. Here, we give the original encoding of num-

bers due to Church. Church numerals are functions which take two parame-

ters: a successor function f and a variable x corresponding to 0. Numeric

functions are represented by corresponding functions on Church numerals.

These functions can be implemented in most functional programming lan-

guages (subject to type constraints) by direct translation of λ-terms

Slide 26

Church’s numerals

0
def
= λ f x.x

1
def
= λ f x. f x

2
def
= λ f x. f (f x)
...

n
def
= λ f x. f (· · · (f

︸ ︷︷ ︸

n times

x) · · ·)

Notation: M0N
def
= N; M1N

def
= M N; Mn+1N

def
= M(Mn N)

We can write n as λ f x. f nx and we have n M N =β Mn N .

1Memoization is an optimization technique used primarily to speed up computer programs by

having function calls avoid repeating the calculation of results for previously processed inputs.

Models of Computation, 2010 22

Slide 27

λ-definable functions

Definition. f ∈ N
n⇀N is λ-definable if there is a closed λ-term

F that represents it: for all (x1, . . . , xn) ∈ N
n and y ∈ N

• if f(x1, . . . , xn) = y, then F x1 · · · xn =β y

• if f(x1, . . . , xn)↑, then F x1 · · · xn has no β-normal form.

Slide 28

Addition is λ-definable

Addition is represented by P
def
= λx1 x2.λ f x. x1 f (x2 f x):

P m n →∗ λ f x. m f (n f x)

→∗ λ f x. m f (f nx)

→∗ λ f x. f m(f nx)

def
= λ f x. f m+nx

def
= m + n

Models of Computation, 2010 23

The other standard arithmetic functions are λ-definable. For example: the
function projn

i ∈ N
n
�N is represented by λx1 . . . xn.xi ; the func-

tion zeron ∈ N
n
�N is represented by λx1 . . . xn.0; and the function

succ ∈ N�N is represented by Succ
def
= λx1 f x. f(x1 f x) since

Succ n →∗ λ f x. f (n f x)

→∗ λ f x. f (f n x)

def
= λ f x. f n+1 x

def
= n + 1

The definition of computable functions given by register machines or Turing

machines is equivalent to the definition of λ-definable functions. Unfortu-

nately, I have only been able to hint at how to provide the connection by

showing how to represent numbers in the λ-calculus. I cannot give you the

full story. It requires one more part of the jigsaw: partial recursive functions.

Slide 29

Computable functions = λ-definable functions

Theorem. A partial function is computable if and only if it is

λ-definable.

We know that a function is Register Machine computable if and only if

it is Turing computable. I have not told you about partial recursive

functions which correspond to Turing-computable functions. However:

Result 1 Every partial recursive function is λ-definable.

Result 2 λ-definable functions are RM computable.

To show Fact 2: (1) code λ-terms as numbers (ensuring that operations for

constructing/deconstructing terms are given by RM computable functions on

codes); and (2) write a RM interpreter for (normal order) β-reduction.

