
Computation Exercises 8: Lambda Calculus Part 2

1. (Recap Question.)

(a) Perform the following substitution: (λx.xa)[x/a]

(b) Reduce the following term to its normal form: (λa.(λx.xa))(λb.bx)

2. (SKI Combinators.)
Let S , λxyz.(xz)(yz) and K , λxy.x. Reduce SKK to normal form. (Hint: This can
be messy if you are not careful. Keep the abbreviations S and K around as long as you
can and replace them with their corresponding λ-terms only if you need to. This makes
it much easier)

[Aside:] The more eagle-eyed among you may notice that S and K form two thirds of
the SKI combinator calculus mentioned in Question 13 of Exercise Sheet 3. The third
combinator is of course I , λx.x

3. (Fixed Points.)
Let Z , λzx.x(zzx) and let Y , ZZ. By performing a few β-reductions, show that for
any term M , we have YM =β M(YM).

4. (Let.)

Languages like Haskell and ML have a construct let x = M in N , which reduces to
N [M/x]. How can such a construct be expressed in the λ-calculus?

5. (Pairs.)

Given two λ-terms, v1, v2, the pair of the two terms can be expressed in the λ-calculus
as λp. p v1 v2 (where p does not occur free in v1 or v2). Define the following functions as
λ-terms:

(a) pair, which takes two λ-terms and constructs the pair of them;

(b) fst, which returns the first value in a pair;

(c) snd, which returns the second value in a pair.

6. (Datatypes.)

You should be familiar with Haskell datatypes, which are defined using the data keyword.
For example, the following is a way of representing the natural numbers as a Haskell
datatype:

data Nat = Succ Nat | Zero

This datatype defines two constructors: succ, with one argument, which is recursive (it
has type Nat, which is the type being defined), and zero with no arguments. Other
datatypes, such as Pair have constructors with non-recursive arguments:

data Pair a b = Pair a b

1



(Note that while the type variables a and b could be instantiated to Pair types, they do
not have to be, so they are not recursive.)

We have seen Church’s encoding of natural numbers in the λ-calculus. This can also
be applied to encode other simple recursive datatypes. Suppose that we have a datatype
with n constructors. If the ith constructor takes j recursive arguments and k non-recursive
arguments, then it is represented as the λ-term:

λr1 . . . rj a1 . . . ak. (λc1 . . . cn. ci (r1 c1 . . . cn) . . . (rj c1 . . . cn) a1 . . . ak)

Thus, for encoding the natural numbers we have

Succ , λr. (λc1 c2. c1 (r c1 c2)) Zero , λc1 c2. c2

(a) Notice that Zero =α 0. Show that these constructors really correspond to the Church
numerals from the lectures by establishing that Succ n� n+ 1 for all numbers n.

(b) i. Give the constructors for the datatype Bool, given in Haskell by

data Bool = True | False

ii. The Haskell construct if b then M else N can be represented simply as
b M N , where b is the Church encoding of a Boolean. Use this to define functions
not, or and and that operate on Boolean values with the expected results.

(c) i. Give the constructors for the datatype Either, given in Haskell by

data Either a b = Left a | Right b

(Note that the arguments of the constructors are non-recursive.)

ii. Define a lambda term f corresponding to the following Haskell function:

f (Left n) = n

f (Right m) = Succ m

2


