
Computation Answers 8: Lambda Calculus Part 2

1. (Recap Question.)

(a) The result of performing (λx.xa)[x/a] should be something like λb.bx.

This is a “capture avoiding substitution”. Recall slide 17 in your lecture notes. The
only rules on that slide that can possibly apply are:

(λx.N ′)[M/x] = λx.N ′

(λy.N ′)[M/x] = λz.N ′[z/y][M/x]
where x 6= y, z 6∈ FV (M) ∪ (FV (N ′)− {y}) ∪ {x}

We can’t use the first of these rules because it requires that we be substituting the
variable that is bound by the lambda term. We have distinct x and a. We must
therefore use the second rule.

The second rule requires that we choose some z such that z 6∈ FV (M) ∪ (FV (N ′)−
{y})∪{x} – which in this specific case is the same as z 6∈ FV (x)∪(FV (xa)−{x})∪{a}.
If we choose b as the name for this new variable then we get

(λx.xa)[x/a] = λb.(xa)[b/x][x/a]
= λb.(ba)[x/a]
= λb.bx

We could just as easily choose c, y or z. The two variable names we’re absolutely
not allowed to pick are x and a. Because of this restriction, no matter what variable
name we pick, the results are all guaranteed to be α-equivalent to each other. If this
seems opaque, consider what would happen if we lifted the restriction, and picked
one of the two illegal values for z.

(b) This should reduce to something α-equivalent to λc.c(λb.bx)

The first and only beta reduction step requires

(λa.(λx.xa))(λb.bx) −→β (λx.xa)[(λb.bx)/a]

We are now faced with a substitution problem similar to part (a). x is free in (λb.bx)
but bound in (λx.xa). Before we can replace a with λb.bx, we must rename the x in
(λx.xa) to something that is not free in (λb.bx). If we choose c as our new variable
name, then we get:

(λx.xa)[(λb.bx)/a] = λc.(xa)[c/x][(λb.bx)/a]
= λc.(ca)[(λb.bx)/a]
= λc.c(λb.bx)

If this is confusing, think about what would happen if we didn’t rename x before
performing the substitution. Would the β reduction preserve your intuitive under-
standing of the meaning of the function?

1



2. (SKI Combinators.)

SKK
= (λxyz. (xz)(yz))KK
→ (λyz. (Kz)(yz))K
→ λz. (Kz)(Kz)
= λz. ((λxy. x)z)(Kz)
→ λz. (λy. z)(Kz)
→ λz. z

Notice that we have shown that SKK is β-equivalent to I. Given our definitions of S and
K, we could define I , SKK (or indeed I , SKS – can you see why?)

In fact, SKI and application are all we need to define any computable function. This is
called the SKI combinator calculus, and it is Turing-complete.

3. (Fixed Points.)

YM = ZZM = (λzx.x(zzx))ZM
→ (λx.x(ZZx))M
→M(ZZM) = M(YM)

What we have created is a “fixed-point” combinator. This means that YM will reduce to
a value y such that y = My. We can say that “YM is a fixed-point of M”.

This is useful for modelling recursion in the lambda calculus. For example, consider a
function F (in a language like haskell) for calculating a factorial:

Fn , if (n = 0) then 1 else n ∗ (F (n− 1))

We can represent numbers in the lambda calculus using Church encoding, and there are
similar encodings for conditionals, multiplication, subtraction and equality testing. The
problem with representing F in the lambda calculus is that it seems to need to refer to
itself in its definition. We can circumvent this problem using the fixed point combinator,
by defining a function G which performs a single step in the factorial calculation:

G , λfn. if (n = 0) then 1 else n ∗ (f(n− 1))

The function G takes as its first argument a function f . G performs the first step in
calculating the factorial function, and then defers to f for the rest of the calculation.
Therefore, if f is the factorial function, then Gf will also be a factorial function. In other
words, the factorial function is a fixed point of G. We can show this using β-reduction:

(Y G)n � (G(Y G))n As above
= ((λfn. if (n = 0) then 1 else n ∗ (f(n− 1)))(Y G))n
→ (λn. if (n = 0) then 1 else n ∗ ((Y G)(n− 1)))n
→ if (n = 0) then 1 else n ∗ ((Y G)(n− 1))

If we abbreviate (Y G) to F , then we have the recursive factorial function we were at-
tempting to define.

2



[Aside: There are infinitely many fixed point combinators. The one we have defined is
a variant of the Y combinator. If any of you are fans of Paul Graham’s Seed-funding
company http://ycombinator.com/, this is where he got the name from.]

4.
(let x = M in N) , (λx.N)M

While it might be tempting to define it as simply N [M/x], this involves computing on
N , which makes the definition non-parametric. The above definition simply embeds the
terms.

5. (a)
pair , λv1 v2. (λp. p v1 v2)

(b) Given the pair λp. p v1 v2, we have

(λp. p v1 v2)(λw1 w2. w1)→ (λw1 w2. w1) v1 v2

→ (λw2. v1) v2

→ v1

(up to alpha conversion) so we want fst to be a function that applies its argument
(the pair) to the term (λw1 w2. w1):

fst , λq. q(λw1 w2. w1)

(c)
snd , λq. q(λw1 w2. w2)

6. (a) Recall that n , λf x. f(. . . (f︸ ︷︷ ︸
n

x) . . . ).

Succ n = (λr. (λc1 c2. c1 (r c1 c2)))(λf x. f(. . . (f︸ ︷︷ ︸
n

x) . . . ))

→ λc1 c2. c1 ((λf x. f(. . . (f︸ ︷︷ ︸
n

x) . . . ))c1c2)

→ λc1 c2. c1 ((λx. c1(. . . (c1︸ ︷︷ ︸
n

x) . . . ))c2)

→ λc1 c2. c1 (c1(. . . (c1︸ ︷︷ ︸
n

c2) . . . ))

=α λf x. f(. . . (f︸ ︷︷ ︸
n+1

x) . . . )

= n+ 1

(b) i.
True , λc1 c2. c1 False , λc1 c2. c2

ii. For not, we want λb. if b then False else True, which encodes as

not , λb. b(λc1 c2. c2)(λc1 c2. c1)

3



For or, we want λb1 b2. if b1 then True else b2, which encodes as

or , λb1 b2. b1 (λc1 c2. c1) b2

For and, we want λb1 b2. if b1 then b2 else False, which encodes as

and , λb1 b2. b1 b2 (λc1 c2. c2)

(c) i.
Left , λa. λc1 c2. c1 a Right , λa. λc1 c2. c2 a

ii. Notice that Left n = λc1 c2. c1 n and Right n = λc1 c2. c2 n, so what we want
is a function which applies the identity function to n in the former case, and the
Succ function in the latter case:

f , λx. x(λy. y)(λr. (λc1 c2. c1 (r c1 c2)))

4


