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Structural Induction; State Machines

1 Recursive Data Types

Recursive data types play a central role in modern programming languages. From a Mathematical
point of view, recursive data types are what induction is about. Recursive data types are specified
by recursive definitions that say how to build something from its parts. These definitions have two
parts:

• Base case(s) that don’t depend on anything else.

• Constructor case(s) that depend on previous cases.

Example 1.1. Define a set, E, recursively as follows:

• Base case: 0 ∈ E,

• Constructor cases: if n ∈ E, then

1. n + 2 ∈ E, when n ≥ 0;

2. −n ∈ E, when n > 0.

Using this definition, we can see that 0 ∈ E by the Base case, so 0 + 2 = 2 ∈ E by Constructor
case 1., and so 2 + 2 = 4 ∈ E, 4 + 2 = 6 ∈ E, . . . , and in fact any nonnegative even number is in
E by successive application of case 1. Also, by case 2., −2,−4,−6, · · · ∈ E. So clearly all the even
integers are in E.

Is anything else in E? The definition doesn’t say so explicitly, but an implicit condition on a
recursive definition is that the only way things get into E is as a consequence of the Base and
Constructor cases. In other words, E will be exactly the set of even integers.

Another example is the set, M , of strings of matched right and left parentheses. These are the
strings that would be obtained if we took a sequence of fully parenthesized arithmetic (or Scheme)
expressions and erased all the characters except the parentheses. Here’s a recursive definition:

Example 1.2. Define the set, M , of strings of matched right and left parentheses recursively as
follows:

• Base case: λ ∈ M , where λ is the empty string,

• Constructor case: if s, t ∈ M , then ( s) t ∈ M .
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Here we’re writing ( s) t to indicate the string that starts with a left parenthesis, followed by the
sequence of parentheses (if any) in the string s, followed by a right parenthesis, and ending with
the sequence of parentheses in the string t.

Using this definition, we can see that λ ∈ S by the Base case, so

( λ) λ = () ∈ M

by the Constructor case, and so

( λ)() = ()() ,

(()) λ = (()) ,

(())()

are further strings in M by repeated applications of the Constructor case.

1.1 Tagged data
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Figure 1: Parse tree for −(a(x · x) + bx) + 1.

Arithmetic expressions like
−(a(x · x) + bx) + 1 (1)
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are another important example of a recursive data type. We could define them as parenthesized
strings with symbols for arithmetic operators, but a more useful representation uses the parse trees
of the expressions, rather than strings. Figure 1 shows a parse tree for expression (1).

Such a tree would be represented by pairs or triples that begin with a tag equal to the label of the
top node of the parse tree. We’ll call these tagged data items Aexp’s. They are defined recursively
as follows:

Example 1.3. The set, Aexp, of Arithmetic expressions over a set of variables, V , is defined recursively
as follows:

• Base cases:

1. If n ∈ Z, then 〈int , n〉 ∈ Aexp.
2. If v ∈ V , then 〈var , v〉 ∈ Aexp.

• Constructor cases: if e, e′ ∈ Aexp, then

1. 〈sum, e, e′〉 ∈ Aexp,
2. 〈prod , e, e′〉 ∈ Aexp, and
3. 〈minus , e〉 ∈ Aexp.

So the Aexp corresponding to the parse tree of Figure 1 is

〈 sum, 〈 minus , 〈 sum, 〈prod , 〈var , a〉 , 〈prod , 〈var , x〉 , 〈var , x〉〉〉 ,
〈prod , 〈var , b〉 , 〈var , x〉〉〉〉 ,

〈int , 1〉〉〉

2 Structural Induction on Recursive Data Types

Structural induction is a method for proving some property P of all the elements of a recursively-
defined data type. The proof consists of two steps:

• Prove P for the base cases of the definition.

• Prove P for the constructor cases of the definition, assuming that it is true for the component
data items.

A very simple application of structural induction proves that the set E in Example 1.1 is exactly
the set of even numbers. We already explained why all the even numbers are in E. So what’s left
is to show that:

Lemma. Every number in the set E in Example 1.1 is even.

Proof. The proof is by structural induction on n ∈ E. The induction hypothesis is

Q(n) ::= n is even.

Base case: Q(0) holds since 0 is even.

Constructor cases: assuming n ∈ E and Q(n) holds, prove that
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• Q(n + 2) holds. This is immediate, since adding 2 to an even number gives an even number.

• Q(−n) holds. This is also immediate, since n is even iff −n is even.

This completes the proof of the Constructor cases, and we conclude by structural induction at
Q(n) holds for all n ∈ E.

Another example of structural induction comes in proving that strings of matched parentheses
always have an equal number of left and right parentheses. To do this, define a predicate on
strings

P (s) ::= s has an equal number of left and right parentheses.

Proof. We’ll prove that P (s) holds for all s ∈ M by structural induction on the definition of s ∈ M ,
using P (s) as the induction hypothesis.

Base case: P (λ) holds because the empty string has zero left and zero right parentheses.

Constructor case: For r = ( s) t, we must show that P (r) holds, given that P (s) and P (t) holds.
So let ns, nt be, respectively, the number of left parentheses in s and t. So the number of left
parentheses in r is 1 + ns + nt.

Now from the respective hypotheses P (s) and P (t), we conclude that the number of right paren-
theses in s and t, respectively, is also ns and nt. So the number of right parentheses in r is 1+ns+nt,
which is the same as the number of left parentheses. This proves P (r). We conclude by structural
induction that P (s) holds for all s ∈ M .

In fact, ordinary induction can be understood as an instance of structural induction if we think of
the nonnegative integers as being represented as a tagged datum. To start, we might represent 0
as a length one sequence consisting of the tag zero :

Definition 2.1. The nonnegative integers can be defined recursively as follows:

• Base case 〈zero 〉 ∈ N.

• Constructor case if n ∈ N, then 〈successor , n〉 ∈ N.

2.1 Functions on Recursively-defined Data Types

Functions on recursively-defined data types can be defined recursively using the same cases as the
data type definition. Namely, to define a function, f , on a recursive data type, define the value of
f for the base cases of the data type definition, and then define the value of f in each constructor
case in terms of the values of f on the component data items.

For example, some basic functions on strings have simple recursive definitions based on a recur-
sive definition of strings as a tagged datum:

Definition 2.2. The set, A∗, of strings over a set, A, called the alphabet, is defined recursively as
follows:

• Base case: 〈emptystring 〉 ∈ A∗.
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• Constructor case: if s ∈ A∗ and a ∈ A, then 〈successor-string , s, a〉 ∈ A∗.

Here, of course, 〈emptystring 〉 is a tagged representation of the emptystring, λ, and

〈successor-string , s, a〉

is a tagged representation of the string, sa, equal to the string s, followed by the character, a.

Now we give a recursive definition of the length of a string.

Definition 2.3. The length, |s|, of a string, s, is defined recursively by the rules:

• |λ| ::= 0

• |sa| ::= 1 + |s|.

Definition 2.4. The concatenation, st, of strings s and t over an alphabet, A, is defined recursively
on t by the rules:

• sλ ::= s.

• s(ta) ::= (st)a for a ∈ A.

For the set, M , of strings of matched parentheses, we define:

Definition 2.5. The depth, d(s), of a string, s ∈ M , is defined recursively by the rules:

• d(λ) ::= 0.

• d(( s) t) ::= max {d(s) + 1, d(t)}

Warning: When a recursive definition of a data type allows the same element to be
constructed in more than one way, the definition is said to be ambiguous. A function defined
recursively from an ambiguous definition of a data type will not be well-defined unless the
values specified for the different ways of constructing the element agree.

We were careful to choose unambiguous definitions of the sets M and E to ensure that functions
defined recursively on the definitions of these data types would always be well-defined. Recursive
definitions of tagged data types, where the tag uniquely determines the rule used to construct an
element, are guaranteed to be unambiguous.

As an example of the trouble ambiguous definitions can cause, let consider defining the set, E, of
even numbers as in Example 1.1, but without the conditions 1 and 2 that restrict application of the
rules. Namely,

Example 2.6. Define a set, E′, recursively as follows:

• Base case: 0 ∈ E′,

• Constructor cases: if n ∈ E, then
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1. n + 2 ∈ E′,

2. −n ∈ E′.

Now it’s easy to see that E′, like E, defines precisely the set of even integers. But the definition
of E′ is ambiguous. For example, 0 ∈ E′ by the base case, but also 0 = −0 ∈ E′ by applying
constructor case 2 to the base case. Does this matter? Yes it does. For suppose we defined

s(0) ::= 1,

s(n + 2) ::= 1 + s(n),
s(−n) ::= 1 + s(n).

So s(0) ::= 0 by the base case of this definition, and also s(0) = s(−0) ::= 1 + s(0) = 1 + 0 = 1 by
the second constructor case, which shows that these rules are inconsistent.

Notice that if we had used the same definition based on the unambiguous definition, namely

s(0) ::= 1,

s(n + 2) ::= 1 + s(n), for n ≥ 0
s(−n) ::= 1 + s(n) for n > 0,

we get a definition of a uniquely defined function s : E → Z+. Now s(n) is precisely the (unique)
number of steps required to construct n ∈ E according to the unambiguous definition of E.

2.2 Evaluation and Substitution

We’ll define some recursive functions on arithmetic expressions that suggest the role of recursive
definitions in programming. For simplicity, we’ll work with arithmetic expressions with only one
variable —call it x. Now given such an expression, e ∈ Aexp, and an integer value, n, for the
variable, x, we can evaluate e in the usual way to arrive at an integer value, eval(e, n). The eval
function has a familiar recursive definition:

Definition 2.7. The function eval : Aexp×Z → Z is defined recursively on expressions, e ∈ Aexp,
as follows. Let n be any integer.

1. eval(〈integer , k〉 , n) ::= k, (the value of the constant 〈integer , k〉 is the integer k, no
matter what value x has),

2. eval(〈variable , x〉 , n) ::= n, (the value of the variable, x, is given to be n),

3. eval(〈sum, e, e′〉 , n) = eval(e, n) + eval(e′, n),

4. eval(〈product , e, e′〉 , n) = eval(e, n) · eval(e′, n),

5. eval(〈minus , e〉 , n) = −eval(e, n).

For example, if e0 is the expression

〈sum, 〈variable , x〉 , 〈variable , x〉〉 .
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Then eval(e0, 1) can be calculated as follows:

eval(e0, 1) = eval(〈variable , x〉 , 1) + eval(〈variable , x〉 , 1) (by 3.)
= 1 + eval(〈variable , x〉 , 1) (by 2.)
= 1 + 1 = 2 (by 2.)

Using ordinary formula notation for readability, e0 would be written as x + x, so of course when
x is 1, the value of e0 is 1 + 1 = 2. Similarly, if f0 is

〈product , 〈integer , 3〉 , 〈variable , x〉〉

we would write f0 as 3x in ordinary notation. Now using the rules above, the value, eval(f0, 1),
of f when x = 1 can be calculated to be 3, as expected.

Another useful operation on arithmetic expressions is substituting one into another. Let subst(e, f)
be the result of substituting expression f for all occurrences of the variable x in e.

Definition 2.8. The function subst : Aexp×Aexp → Aexp is defined recursively on expressions e
and f as follows:

• subst(〈integer , k〉 , f) ::= 〈integer , k〉, (the constant, 〈integer , k〉, has no x’s in it to
substitute for),

• subst(〈variable , x〉 , f) ::= f ,

• subst(〈sum, e, e′〉 , f) = 〈sum, subst(e, f), subst(e′, f)〉,

• subst(〈product , e, e′〉 , f) = 〈product , subst(e, f), subst(e′, f)〉,

• subst(〈minus , e〉 , f) = 〈minus , subst(e, f)〉.

Now let g0 ::= subst(e0, f0), and let’s think about calculating the value of g0 when x = 1. There are
two approaches. First, we could simply construct the expression g0 using rules above for the subst
operation, and then calculate eval(g0, 1) using the rules for eval. In programming jargon, this
would be called evaluation using the Substitution Model. Note that we would write g0 as 3x + 3x
in ordinary notation, and that evaluating g0 when x = 1 would involve multiplying 3 · 1 twice to
arrive at the value 6 for eval(g0, 1).

The other approach is called using the Environment Model. Namely, we evaluate f0 when x = 1
as above, using one multiplication to get the value 3. Then we evaluate e0 when x has this value
of f0, namely, 3, to arrive at the same value 6 for eval(g0, 1), using one more addition and no
multiplications. So the Environment Model approach takes one fewer multiplication than the
Substitution Model.

But is it obvious that these two approaches always agree? Maybe. But let’s look at how to prove
this carefully using structural induction. More precisely, what we want to prove is

Theorem 2.9. For all expressions e, f ∈ Aexp and n ∈ Z,

eval(subst(e, f), n) = eval(e, eval(f, n)). (2)

Notice that the left hand side of this equality describes the Substitution Model approach, while
the right hand side describes the Environment Model.

Proof. The proof is by structural induction on e.1

1This is an example of why it’s useful to notify the reader what the induction variable is —in this case it isn’t n.
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Base cases:

• e = 〈integer , k〉. Then the lefthand side of equation (2) equals k by this base case in the
definition of subst, and the righthand side equals k by this base case of the definition of eval.

• e = 〈variable , x〉. Then the lefthand side of equation (2) equals eval(f, n) by this base case
in the definition of subst, and the righthand side also equals eval(f, n) by this base case in
the definition of eval.

Constructor cases:

• e = 〈sum, e1, e2〉. By the structural induction hypothesis (2), we may assume that for all
f ∈ Aexp and n ∈ N,

eval(subst(ei, f), n) = eval(ei, eval(f, n)) (3)

for i = 1, 2. We wish to prove that

eval(subst(〈sum, e1, e2〉 , f), n) = eval(〈sum, e1, e2〉 , eval(f, n)). (4)

But the lefthand side of (4) equals

eval(〈sum, subst(e1, f), subst(e2, f)〉 , n)

by definition of subst for a sum expression, which equals

eval(subst(e1, f), n) + eval(subst(e2, f), n)

by definition of eval for a sum expression. By induction hypothesis (3), this equals

eval(e1, eval(f, n)) + eval(e2, eval(f, n)),

which equals the righthand side of (4) by definition of eval for a sum expression. This
proves (4) in this case.

• e = 〈product , e1, e2〉 or e = 〈minus , e1〉. Similar.

2.3 Recursive Functions on Nonnegative Integers

Definition 2.1 of the nonnegative integers as a recursive tagged data type justifies the familiar
recursive definitions of functions on the nonnegative integers. Here are some examples.

The Factorial function. This function is often written “n!.” You will see a lot of it later in the term.
Here we’ll use the notation fac(n):

• fac(0) ::= 1.

• fac(n + 1) ::= (n + 1) · fac(n) for n ≥ 0.
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The Fibonacci numbers. These form interesting sequence of numbers that arise, for example, in
modeling growth processes of plants, cells, and animal populations. Letting fib(n) be the
nth Fibonacci number, fib can be defined recursively by:

fib(0) ::= 0,

fib(1) ::= 1,

fib(n) ::= fib(n− 1) + fib(n− 2) for n ≥ 2.

Here the recursive step starts at n = 2 with base cases for 0 and 1. This is needed since the
constructor case relies on two previous values.

What is fib(4)? Well, fib(2) = fib(1) + fib(0) = 1, fib(3) = fib(2) + fib(1) = 2, so fib(4) = 3.
The sequence starts out 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .

Sum-notation. Let “S(n)” abbreviate the expression “
∑n

i=1 f(i).” We can recursively define the
meaning of S(n) with the rules

• S(0) ::= 0.

• S(n + 1) ::= f(n + 1) + S(n) for n ≥ 0.

2.3.1 Ill-formed Function Definitions

There are some blunders to watch out for when defining functions recursively. Below are some
function specifications that resemble good definitions of functions on the nonnegative integers,
but they aren’t.

f1(n) ::= 2 + f1(n− 1). (5)

This “definition” has no base case. If some function, f1, satisfied (5), so would a function obtained
by adding a constant, k, to the value of f1. So equation (5) does not uniquely define f1.

f2(n) ::=


0, if n is divisible by 2,
1, if n is divisible by 3,
2, otherwise.

(6)

This “definition” is inconsistent: it requires f2(6) = 0 and f2(6) = 1, so (6) doesn’t define anything.

f3(n) ::=

{
0, if n = 0,

f3(n + 1) otherwise.
(7)

Any function that is 0 at 0 and constant everywhere else satisfies (7), so it does not uniquely define
anything.
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2.3.2 Math versus Programming

Let

f4(n) ::=

{
0, if n = 0,
f4(n + 1) + 1, otherwise.

(8)

Using this recursive definition of f4 in a typical programming language, evaluation of f(1) would
begin with a recursive call of f(2), which would lead to a recursive call of f(3), . . . with recursive
calls continuing without end. That is, this “operational” approach would interpret (8) as defining
a partial function on N that was undefined everywhere but 0.

But interpreting (8) mathematically, we can solve for f(n + 1), getting

f4(n + 1) =

{
0, if n + 1 = 0,
f4(n)− 1, otherwise,

and substituting m− 1 for n, arrive at

f4(m) =

{
0, if m = 0,
f4(m− 1)− 1, otherwise.

(9)

Expressed in the form (9), it should be clear (and of course could be proved by induction) that
f4(m) is simply −m.

It’s possible that a programming language based on constraint satisfaction would arrive at the same
values for f4 as this Mathematical interpretation.

2.3.3 A Mysterious Function

Mathematicians have been wondering about this function specification for a while:

f5(n) ::=


1, if n ≤ 1,

f5(n/2) if n > 1 is even,

f5(3n + 1) if n > 1 is odd.

(10)

For example, f5(3) = 1 because

f5(3) ::= f5(10) ::= f5(5) ::= f5(16) ::= f5(8) ::= f5(4) ::= f5(2) ::= f5(1) ::= 1.

The constant function equal to 1 will satisfy (10), but it’s not known if another function does too.
The problem is that the third case specifies f5(n) in terms of f5 at arguments larger than n, and so
cannot be justified by induction on N. It’s known that any f5 satisfying (10) equals 1 for all n up to
over a billion.

Quick exercise: Why does the constant function 1 satisfy (10)?



Course Notes, Week 4: Structural Induction; State Machines 11

3 Games as a Recursive Data Type

Chess, Checkers, and Tic-Tac-Toe are examples of two-person terminating games of perfect information,
—2PTG’s for short. These are games in which two players alternate moves that depend only on the
visible board position or state of the game. “Perfect information” means that the players know the
complete state of the game at each move. (Most card games are not games of perfect information
because neither player can see the other’s hand.) “Terminating” means that play cannot go on
forever —it must end after a finite number of moves.2

We will define 2PTG’s in a straightforward way as a tagged recursive data type. To see how this
will work, let’s use the game of Tic-Tac-Toe as an example.

3.1 Tic-Tac-Toe

Tic-Tac-Toe is a very simple, familiar game played by two players alternately writing “X”’s and
“O”’s in the empty boxes of a 3 × 3 grid. Three copies of the same letter filling a row, column, or
diagonal of the grid is called a tic-tac-toe, and the first player who gets a tic-tac-toe wins the game.

So Tic-Tac-Toe is pretty simple to understand, but we’re going to go through a picky exercise of
defining Tic-Tac-Toe games as tagged data and carefully defining the allowed moves. So what’s
the use of this picky definition? Well, if all we were doing was explaining the game to a child,
it would be nuts to use this definition. But not if we had to write a Tic-Tac-Toe-playing computer
program. For the program to play right, we’d need this kind of picky precision.

So here’s the idea behind the definition: at any point in the game, the “board position” is the
pattern of X’s and O’s on the 3× 3 grid. From any such Tic-Tac-Toe pattern, there are a number of
next patterns that might result from a move. For example, from the initial empty grid, there are
nine possible next patterns, each with a single X in some grid cell and the other eight cells empty.
From any of these patterns, there are eight possible next patterns gotten by placing an O in an
empty cell. These move possibilities are given by the game tree for Tic-Tac-Toe outlined in Figure 2.

Definition 3.1. A Tic-Tac-Toe pattern is a 3× 3 grid each of whose 9 cells contains either the single
letter, X, the single letter, O, or is empty. Moreover, there must be either

• one more X than O’s, with at most two tic-tac-toes of X’s, and no tic-tac-toe of O’s or

• an equal number of X’s and O’s, with at most one tic-tac-toes of O’s, and no tic-tac-toe of X’s.

If P is a Tic-Tac-Toe pattern, then the following are Tic-Tac-Toe games:

Base Cases:

• if P has a tic-tac-toe of X’s:
〈P, 〈win 〉〉 ,

• if P has a tic-tac-toe of O’s:
〈P, 〈lose 〉〉 ,

2Since board positions can repeat in chess and checkers, termination is enforced by rules that prevent any position
from being repeated more than a fixed number of times. So the “state” of these games is the board position plus a record
of how many times positions have been reached.
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Figure 2: The Top of the Game Tree for Tic-Tac-Toe.
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• if all nine cells of P are filled and there are no tic-tac-toes:

〈P, 〈tie 〉〉 .

These three kinds of patterns are called the terminated patterns.

A pattern, Q, is a next pattern after pattern, P , providing P is not terminated, and

• if P has an equal number of X’s and O’s, and Q is the same as P except that a cell that was
empty in P has an X in Q, or

• if P has one more X than O’s, and Q is the same as P except that a cell that was empty in P
has an O in Q.

A Tic-Tac-Toe game with a tag that is a next pattern after P is called a next move from P . Let GP be
the set of next moves from P . Notice that GP = ∅ iff P is terminated.

Constructor case: If P is a non-terminated Tic-Tac-Toe pattern, then

〈P,GP 〉

is a Tic-Tac-Toe game.

For example, if

P =
O X O

X O X

X

Q1 =
O X O

X O X

X O

Q2 =
O X O

X O X

X O

R =
O X O

X O X

X O X

Then,
〈P, {〈Q1, 〈lose 〉〉 , 〈Q2, {〈R, 〈tie 〉〉}〉}〉 (11)

is the tagged recursive datum that corresponds to a Tic-Tac-Toe “end game” that starts with P .
This game is easier to understand by looking at its game tree in Figure 3. Notice that the game
tree —which so far we haven’t actually defined —is simply the parse tree of the tagged datum.

So the leaves at the bottom of the tree correspond to terminated games, and a path from the root
(top node) to a leaf describes a complete play of the game. (In English, “game” can be used in two
senses: first we can say that Chess is a game, and second we can play a game of Chess. The first
usage refers to the data type of Chess games, and the second usage refers to a “play.”)
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Figure 3: Game Tree for Tagged Datum (11), the Tic-Tac-Toe “End Game.”

3.2 Infinite Tic-Tac-Toe Games

At any point in a Tic-Tac-Toe game, there are at most nine possible next moves, and no play can
continue for more than nine moves. But suppose we consider a five game tournament where the
tournament winner is the first player to win three of the five games. If no one wins three games,
then the tournament is a tie. More generally, we can define a 2n + 1 game tournament where the
winner must win at least n games.

This leads us to a game we can call Meta-Tic-Tac-Toe: the first player in Meta-Tic-Tac-Toe chooses
any nonegative integer n, and then the players play a 2n + 1 game tournament. Now there are
infinitely many possible first moves: the first player can choose n = 0, or n = 1, or n = 2, or
. . . . But still, it’s obvious that every possible play of the game is finite, since after the first player
chooses a value for n, the game can’t continue for more than nine times the number of games in
the tournament, that is, after 9(2n + 1) moves. So it’s not possible to keep moving forever —even
though the game tree is infinite.

This isn’t very hard to understand, but there is an important difference between any given tour-
nament of 2n + 1 games and Meta-Tic-Tac-Toe: even though every play of Meta-Tic-Tac-Toe must
come to an end, there is no longer any bound on how many moves it might be before the tourna-
ment ends —a play might end after 9 moves, or 9(2001) moves, or 9(1010 + 1) moves; it just can’t
continue forever.

Now that we understand Meta-Tic-Tac-Toe, we can consider a Meta-Meta-Tic-Tac-Toe —where the
first player can choose the number, m of Meta-Tic-Tac-Toe tournaments to play, and the second
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player then decides the size of each of the m Tic-Tac-Toe tournaments they will play next. Then,
of course, there’s Meta-Meta-Meta-Tic-Tac-Toe. . . .

3.3 Two Person Terminating Games

Familiar games like Tic-Tac-Toe, Checkers, and Chess can all end in ties, but for simplicity we’ll
only consider win/lose games —no “everybody wins”-type games at MIT. :-) . But everything
we show about win/lose games will extend easily to games with ties.

Like Tic-Tac-Toe, the idea behind the definition of 2PTG’s as a tagged recursive data type is that
making a move in a 2PTG leads to a new position that defines the start of a new game. For Tic-
Tac-Toe, the data tags were Tic-Tac-Toe patterns, but in general we use tags from an arbitrary set,
Tags. This leads to the following very simple —perhaps deceptively simple —general definition.

Definition 3.2. The set, 2PTG, of two-person terminating games of perfect information is defined re-
cursively as follows:

• Base cases:
〈t, win 〉 ∈ 2PTG, and
〈t, lose 〉 ∈ 2PTG,

where t ∈ Tags.

• Constructor case: if G is a nonempty set of 2PTG’s and t ∈ Tags, then

G ::= 〈t,G〉 ∈ 2PTG.

The games in G are called the possible next moves of G.

These games are called “terminating” because, even though a 2PTG may be a (very) infinite datum
like meta-Tic-Tac-Toe, every play of a 2PTG must terminate. This is something we can now prove,
after we give a precise definition of “play”:

Definition 3.3. A play of a 2PTG, G, is a (potentially infinite) sequence of 2PTG’s starting with G
and such that if G1 and G2 are consecutive 2PTG’s in the play, then G2 is a possible next move of
G1.

If a 2PTG has no infinite play, it is called a terminating game.

Theorem 3.4. Every 2PTG is terminating.

Proof. By induction on the definition of a 2PTG, G, with induction hypothesis

G is terminating.

Base case: If G = 〈t, win 〉 or G = 〈t, lose 〉 then the only possible play of G is the length one
sequence consisting of G. Hence G terminates.

Constructor case: If G = 〈t,H〉. Then any play of G is, by definition, a sequence starting with G
and followed by a play of some H ∈ H.
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Now suppose G had an infinite play. Then this play starts with G and continues with an infinite
play of some H0 ∈ H. Because H0 has an infinite play, it is, by definition, not terminating. But
by induction hypothesis, every H ∈ H is terminating, a contradiction. Hence G cannot have an
infinite play, that is, G terminates.

This completes the structural induction, proving that every 2PTG, G, is terminating.

3.4 Game Strategies

A key question about a game is whether a player has a winning strategy. A strategy for a player
in a game specifies which move the player should make at any point in the game when it is that
player’s turn. A winning strategy ensures that the player will win no matter what moves the other
player makes.

In Tic-Tac-Toe for example, most elementary school children figure out strategies for both players
that each ensure that the game ends with no tic-tac-toes, that is, it ends in a tie. Of course the first
player can win if his opponent plays childishly, but not if the second player follows the proper
strategy. In more complicated games like Checkers or Chess, it’s not immediately clear that anyone
has a winning strategy, even if we agreed to count ties as wins for the second player.

But structural induction makes it easy to prove that in any 2PTG, somebody has the winning strat-
egy!

Theorem 3.5. Fundamental Theorem for Two-Person Games: For every two-person terminating game
of perfect information, there is a winning strategy for one of the players.

Proof. The proof is by structural induction on the definition of a 2PTG, G. The induction hypoth-
esis, is: there is a winning strategy for game G.

Base cases:

1. G = 〈t, win 〉. Then the first player has the winning strategy: “make the winning move.”

2. G = 〈t, lose 〉. Then the second player has a winning strategy: “Let the first player make the
losing move.”

Constructor case: Suppose G = 〈t,H〉. By structural induction, we may assume that some player
has a winning strategy for each H ∈ H. There are two cases to consider:

• some H0 ∈ H has a winning strategy for its second player. Then the first player in G has
a winning strategy: make the move to H0 and then follow the second player’s winning
strategy in H0.

• every H ∈ G has a winning strategy for its first player. Then the second player in G has
a winning strategy: if the first player’s move in G is to H ∈ H, then follow the winning
strategy for the first player in H .
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So in any case, one of the players has a winning strategy for G, which completes the proof of the
constructor case.

It follows by structural induction that there is a winning strategy for every 2PTG, G.

Notice that although Theorem 3.5 guarantees a winning strategy, its proof gives no clue which
player has it. For the Subset Takeaway Game (Recitation Problem, Tuesday, Week 3), and most
other familiar 2PTG’s like Checkers, Chess, Go, . . . , no one knows which player has a winning
strategy.

3.5 Structural Induction versus Ordinary Induction

In Computer Science, structural induction is the natural, preferred approach to proving properties
of recursive data types. So you really should learn it.

Students will sometimes try to avoid structural induction in favor of ordinary induction by assign-
ing nonnegative integer sizes to data items and then using ordinary induction on size. This works
pretty generally, since each recursive datum can be assigned a size equal to the smallest number of
constructor steps needed to build it. In this way, ordinary induction remains a viable, though more
cumbersome, alternative approach to proofs about nearly all recursive data types that come up in
practice, including all the examples we considered before we got to infinite games.

But infinite games are different. Not only are such games infinite, but the number of construc-
tor steps to build them is infinite, so there’s no apparent integer measure of game size that al-
lows structural induction to be replaced by ordinary induction. In fact, it can’t be done: it’s a
metamathematical fact (that is, a mathematical fact about properties of Mathematics) that struc-
tural induction is more powerful than ordinary induction when it comes to reasoning about such
infinite data items.3

Of course all familiar games are finite, and it may not seem essential to understand infinite ones.
But there’s virtually no intellectual overhead in considering infinite games since the proofs by
structural induction are the same either way. The only problem with infinite games is that you
can’t replace structural induction with ordinary induction on any nonnegative integer valued
measure of size.

4 State machines

State machines are an abstract model of step-by-step processes, and accordingly, they come up in
many areas of Computer Science. You may already have seen them in a digital logic course, a
compiler course, or a probability course.

3There is a generalization of induction on nonnegative integers to induction on things called ordinals. Induction
ordinals is as powerful as structural induction, but the theory of ordinals is not a topic that belongs in an introduction
to discrete Math.

http://courses.csail.mit.edu/6.042/fall07/rec3t.pdf
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4.1 Basic definitions

A state machine is really nothing more than a binary relation on a set, except that the elements of
the set are called “states” and a pair (p, q) in the graph of the relation is called a “transition.” The
transition from state p to state q will be written p → q. A state machine also comes equipped with
a designated start state.

State machines used in digital logic and compilers usually have only a finite number of states,
but machines that model continuing computations typically have an infinite number of states. In
many applications, the states, and/or the transitions have labels indicating input or output values,
costs, capacities, or probabilities, but for our purposes, unlabelled states and transitions are all we
need.4

Example 4.1. A bounded counter, which counts from 0 to 99 and overflows at 100. The transitions
are pictured in Figure 4, with start state zero.

0 1 2 99 overflow

start
state

Figure 4: State transitions for the 99-bounded counter.

This machine isn’t much use once it overflows, since it has no way to get out of its overflow state.

Example 4.2. An unbounded counter is similar, but has an infinite state set. This is harder to draw
:-)

Example 4.3. In the movie Die Hard 3: With a Vengeance, the characters played by Samuel L. Jackson
and Bruce Willis have to disarm a bomb planted by the diabolical Simon Gruber:

4We do name states, as in Figure 4, so we can talk about them, but the names aren’t part of the state machine.
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Simon: On the fountain, there should be 2 jugs, do you see them? A 5-gallon and a
3-gallon. Fill one of the jugs with exactly 4 gallons of water and place it on the scale
and the timer will stop. You must be precise; one ounce more or less will result in
detonation. If you’re still alive in 5 minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?

Samuel: No.

Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gallons of water.

Samuel: Obviously.

Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to the top,
right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us exactly 3
gallons in the 5-gallon jug, right?

Samuel: Right, then what?

Bruce: All right. We take the 3-gallon jug and fill it a third of the way...

Samuel: No! He said, “Be precise.” Exactly 4 gallons.

Bruce: Sh - -. Every cop within 50 miles is running his a - - off and I’m out here
playing kids games in the park.

Samuel: Hey, you want to focus on the problem at hand?

Fortunately, they find a solution in the nick of time. We’ll let the reader work out how.

The Die Hard series is getting tired, so we propose a final Die Hard Once and For All. Here Simon’s
brother returns to avenge him, and he poses the same challenge, but with the 5 gallon jug replaced
by a 9 gallon one.

We can model jug-filling scenarios with a state machine. In the scenario with a 3 and a 5 gallon
water jug, the states will be pairs, (b, l) of real numbers such that 0 ≤ b ≤ 5, 0 ≤ l ≤ 3. We let b
and l be arbitrary real numbers. (We can prove that the values of b and l will only be nonnegative
integers, but we won’t assume this.) The start state is (0, 0), since both jugs start empty.

Since the amount of water in the jug must be known exactly, we will only consider moves in which
a jug gets completely filled or completely emptied. There are several kinds of transitions:

1. Fill the little jug: (b, l) → (b, 3) for l < 3.

2. Fill the big jug: (b, l) → (5, l) for b < 5.

3. Empty the little jug: (b, l) → (b, 0) for l > 0.

4. Empty the big jug: (b, l) → (0, l) for b > 0.
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5. Pour from the little jug into the big jug: for l > 0,

(b, l) →

{
(b + l, 0) if b + l ≤ 5,
(5, l − (5− b)) otherwise.

6. Pour from big jug into little jug: for b > 0,

(b, l) →

{
(0, b + l) if b + l ≤ 3,
(b− (3− l), 3) otherwise.

Note that in contrast to the 99-counter state machine, there is more than one possible transition
out of states in the Die Hard machine.

Quickie exercise: Which states of the Die Hard 3 machine have direct transitions to exactly two
states?

4.2 Reachability and Invariants

The Die Hard 3 machine models every possible way of pouring water among the jugs according
to the rules. Die Hard properties that we want to verify can now be expressed and proved using
the state machine model. For example, Bruce’s character will disarm the bomb if he can get to
some state of the form (4, l).

A (possibly infinite) sequence of transitions through successive states beginning at the start state
corresponds to a possible system behavior; such a sequence is called an execution of the state
machine. A state is called reachable if it appears in some execution. The bomb in Die Hard 3 gets
disarmed successfully because the state (4,3) is reachable.

A useful approach in analyzing state machine is to identify invariant properties of states.

Definition 4.4. An invariant for a state machine is a predicate, P , on states, such that whenever
P (q) is true of a state, q, and q → r for some state, r, then P (r) holds.

Now we can reformulate Induction in a convenient form for state machines:

The Invariant Principle

If a predicate is an invariant of a state machine, and the predicate
holds for the start state, then it holds for all reachable states.

4.2.1 Die Hard Once and For All

Now back to Die Hard Once and For All. This time there is a 9 gallon jug instead of the 5 gallon
jug. We can model this with a state machine whose states and transitions are specified the same
way as for the Die Hard 3 machine, with all occurrences of “5” replaced by “9.”
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Now reaching any state of the form (4, l) is impossible. We prove this using the Invariant Princi-
ple. Namely, we define the invariant predicate, P (b, l), to be that b and l are nonnegative integer
mulitples of 3. So P obviously holds for the state state (0, 0).

To prove that P is an invariant, we assume P (b, l) holds for some state (b, l) and show that if
(b, l) → (b′, l′), then P (b′, l′). The proof divides into cases, according to which transition rule
is used. For example, suppose the transition followed from the “fill the little jug” rule. This
means (b, l) → (b, 3). But P (b, l) implies that b is an integer multiple of 3, and of course 3 is
an integer multiple of 3, so P still holds for the new state (b, 3). Another example is when the
transition rule used is “pour from big jug into little jug” for the subcase that b + l > 3. Then state
is (b, l) → (b− (3− l), 3). But since b and l are integer multiples of 3, so is b− (3− l). So in this case
too, P holds after the transition.

We won’t bother to crank out the remaining cases, which can all be checked just as easily. Now by
the Invariant Principle, we conclude that every reachable state satisifies P . But since no state of
the form (4, l) satisifies P , we have proved rigorously that Bruce dies once and for all!

4.2.2 A Robot on a Grid

There is a robot. It walks around on a grid, and at every step it moves diagonally in a way that
changes its position by one unit up or down and one unit left or right. The robot starts at position
(0, 0). Can the robot reach position (1, 0)?

To get some intuition, we can simulate some robot moves. For example, starting at (0,0) the robot
could move northeast to (1,1), then southeast to (2,0), then southwest to (1,-1), then southwest
again to (0,-2).

Let’s model the problem as a state machine and then prove a suitable invariant. A state will be a
pair of integers corresponding to the coordinates of the robot’s position. State (i, j) has transitions
to four different states: (i± 1, j ± 1).

The problem is now to choose an appropriate invariant predicate, P , that is true for the start state
(0, 0) and false for (1, 0). The Invariant Theorem then will imply that the robot can never reach
(1, 0). A direct attempt at an invariant is to let P (q) be the predicate that q 6= (1, 0).

Unfortunately, this is not going to work. Consider the state (2, 1). Clearly P (2, 1) holds because
(2, 1) 6= (1, 0). And of course P (1, 0) does not hold. But (2, 1) → (1, 0), so this choice of P will not
yield an invariant.

We need a stronger predicate. Looking at our example execution you might be able to guess
a proper one, namely, that the sum of the coordinates is even! If we can prove that this is an
invariant, then we have proven that the robot never reaches (1, 0) because the sum 1 + 0 of its
coordinates is not an even number, but the sum 0+0 of the coordinates of the start state is an even
number.

Theorem 4.5. The sum of the robot’s coordinates is always even.

Proof. The proof uses the Invariant Principle.

Let P (i, j) be the predicate that i + j is even.

First, we must show that the predicate holds for the start state (0, 0). Clearly, P (0, 0) is true because
0 + 0 is even.
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Next, we must show that P is an invariant. That is, we must show that for each transition (i, j) →
(i′, j′), if i+j is even, then i′+j′ is even. But i′ = i±1 and j′ = j±1 by definition of the transitions.
Therefore, i′ + j′ is equal to i + j or i + j ± 2, all of which are even.

Corollary 4.6. The robot cannot reach (1, 0).

Problem 1. A robot moves on the two-dimensional integer grid. It starts out at (0, 0), and is
allowed to move in any of these four ways:

1. (+2,-1) Right 2, down 1

2. (-2,+1) Left 2, up 1

3. (+1,+3)

4. (-1,-3)

Prove that this robot can never reach (1,1).

Robert W. Floyd

The Invariant Principle was formulated by Robert Floyd at Carnegie Tech in 1967a.
Floyd was already famous for work on formal grammars which transformed the field of
programming language parsing; that was how he got to be a professor even though he
never got a Ph.D. (He was admitted to a PhD program as a teenage prodigy, but flunked
out and never went back.)

In that same year, Albert R. Meyer was appointed Assistant Professor in the Carnegie
Tech Computer Science Department where he first met Floyd. Floyd and Meyer were the
only theoreticians in the department, and they were both delighted to talk about their
shared interests. After just a few conversations, Floyd’s new junior colleague decided that
Floyd was the smartest person he had ever met.

Naturally, one of the first things Floyd wanted to tell Meyer about was his new, as
yet unpublished, Invariant Principle. Floyd explained the result to Meyer, and Meyer
wondered (privately) how someone as brilliant as Floyd could be excited by such a trivial
observation. Floyd had to show Meyer a bunch of examples before Meyer understood
Floyd’s excitement —not at the truth of the utterly obvious Invariant Principle, but rather
at the insight that such a simple theorem could be so widely and easily applied in verifying
programs.

Floyd left for Stanford the following year. He won the Turing award —the
“Nobel prize” of Computer Science— in the late 1970’s, in recognition both of
his work on grammars and on the foundations of program verification. He re-
mained at Stanford from 1968 until his death in September, 2001. A eulogy de-
scribing Floyd’s life and work by his closest colleague, Don Knuth, can be found at
http://www.acm.org/pubs/membernet/stories/floyd.pdf .

aThe following year, Carnegie Tech was renamed Carnegie-Mellon Univ.

http://www.acm.org/pubs/membernet/stories/floyd.pdf
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4.3 Sequential algorithm examples

4.3.1 Proving Correctness

Robert Floyd, who pioneered modern approaches program verification, distinguished two aspects
of state machine or process correctness:

1. The property that the final results, if any, of the process satisfy system requirements. This is
called partial correctness.

You might suppose that if a result was only partially correct, then it might also be partially
incorrect, but that’s not what he meant. The word “partial” comes from viewing a process
that might not terminate as computing a partial function. So partial correctness means that
when there is a result, it is correct, but the process might not always produce a result, perhaps
because it gets stuck in a loop.

2. The property that the process always finishes, or is guaranteed to produce some legitimate
final output. This is called termination.

Partial correctness can commonly be proved using the Invariant Principle. Termination can com-
monly be proved using the Well Ordering Principle. We’ll illustrate Floyd’s ideas by verifying the
Euclidean Greatest Common Divisor (GCD) Algorithm.

4.3.2 The Euclidean Algorithm

The Euclidean algorithm is a three-thousand-year-old procedure to compute the greatest common
divisor, gcd(a, b) of integers a and b. We can represent this algorithm as a state machine. A state
will be a pair of integers (x, y) which we can think of as integer registers in a register program.
The state transitions are defined by the rule

(x, y) → (y, remainder(x, y))

for y 6= 0. The algorithm terminates when no further transition is possible, namely when y = 0.
The final answer is in x.

We want to prove:

1. starting from the state with x = a and y = b > 0, if we ever finish, then we have the right
answer. That is, at termination, x = gcd(a, b). This is a partial correctness claim.

2. we do actually finish. This is a process termination claim.

Partial Correctness of GCD First let’s prove that if GCD gives an answer, it is a correct answer.
Specifically, let d ::= gcd(a, b). We want to prove that if the procedure finishes in a state (x, y), then
x = d.
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Proof. Define the state predicate

P (x, y) ::= [gcd(x, y) = d and (x > 0 or y > 0)].

P holds for the start state (a, b), by definition of d and the requirement that b is positive. Also, the
invariance of P follows immediately from

Lemma 4.7. For all m,n ∈ N such that n 6= 0,

gcd(m,n) = gcd(n, remainder(m,n)). (12)

Lemma 4.7 is easy to prove, and we’ll leave it to the reader (a proof will appear in later Notes on
elementary Number Theory). So by the Invariant Principle, P holds for all reachable states.

Since the only rule for termination is that y = 0, it follows that if (x, y) is a terminal state, then
y = 0. If this terminal state is reachable, then the invariant holds for (x, y). This implies that
gcd(x, 0) = d and that x > 0. We conclude that x = gcd(x, 0) = d.

Termination of GCD Now we turn to the second property, that the procedure must terminate.
To prove this, notice that y gets strictly smaller after any one transition. That’s because the value
of y after the transition is the remainder of x divided by y, and this remainder is smaller than y
by definition. But the value of y is always a natural number, so by the Well Ordering Principle, it
reaches a minimum value among all its values at reachable states. But there can’t be a transition
from a state where y has its minimum value, because the transition would decrease y still further.
So the reachable state where y has its minimum value is a state at which no further step is possible,
that is, at which the procedure terminates.

Note that this argument does not prove that the minimum value of y is zero, only that the mini-
mum value occurs at termination. But we already noted that the only rule for termination is that
y = 0, so it follows that the minimum value of y must indeed be zero.

4.3.3 The Extended Euclidean Algorithm

An important fact about the gcd(a, b) is that it equals an integer linear combination of a and b, that
is,

gcd(a, b) = sa + tb (13)

for some s, t ∈ Z. We’ll see some nice proofs of (13) in later Notes, but there is also an extension of
the Euclidean Algorithm that efficiently, if obscurely, produces the desired s and t. In particular,
given nonnegative integers x,y, with y > 0, we claim the following procedure5 halts with integers
s, t in registers S and T satisfying (13).

Inputs: a, b ∈ N, b > 0.

Registers: X,Y,S,T,U,V,Q .

Extended Euclidean Algorithm:

5This procedure is adapted from Aho, Hopcroft, and Ullman’s text on algorithms.
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X := a; Y := b; S := 0; T := 1; U := 1; V := 0;
loop:
if Y divides X, then halt
else

Q := quotient(X,Y);
;;the following assignments in braces are SIMULTANEOUS

{X := Y,
Y := remainder(X,Y);
U := S,
V := T,
S := U - Q * S,
T := V - Q * T};

goto loop;

Note that X,Y behave exactly as in the Euclidean GCD algorithm in Section 4.3.2, except that
this extended procedure stops one step sooner, ensuring that gcd(x, y) is in Y at the end. So for all
inputs x, y, this procedure terminates for the same reason as the Euclidean algorithm: the contents,
y, of register Y is a nonnegative integer-valued variable that strictly decreases each time around
the loop.

We claim that invariant properties that can be used to prove partial correctness are:

gcd(X, Y ) = gcd(a, b), (14)
Sa + Tb = Y, and (15)
Ua + V b = X. (16)

To verify these invariants, note that invariant (14) is the same one we observed for the Euclidean al-
gorithm. To check the other two invariants, let x, y, s, t, u, v be the contents of registers X,Y,S,T,U,V
at the start of the loop and assume that all the invariants hold for these values. We must prove
that (15) and (16) hold (we already know (14) does) for the new contents x′, y′, s′, t′, u′, v′ of these
registers at the next time the loop is started.

Now according to the procedure, u′ = s, v′ = t, x′ = y, so invariant (16) holds for u′, v′, x′ because
of invariant (15) for s, t, y. Also, s′ = u− qs, t′ = v − qt, y′ = x− qy where q = quotient(x, y), so

s′a + t′b = (u− qs)a + (v − qt)b = ua + vb− q(sa + tb) = x− qy = y′,

and therefore invariant (15) holds for s′, t′, y′.

Also, it’s easy to check that all three invariants are true just before the first time around the loop.
Namely, at the start X = a, Y = b, S = 0, T = 1 so Sa + Tb = 0a + 1b = b = Y so (b) holds; also
U = 1, V = 0 and Ua + V b = 1a + 0b = a = X so (16) holds. So by the Invariant Principle, they
are true at termination. But at termination, the contents, Y , of register Y divides the contents, X ,
of register X, so invariants (14) and (15) imply

gcd(a, b) = gcd(X, Y ) = Y = Sa + Tb.

So we have the gcd in register Y and the desired coefficients in S, T.

Now we don’t claim that this verification offers much insight. In fact, if you’re not wondering
how somebody came up with this concise program and invariant, you:
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• are blessed with an inspired intellect allowing you to see how this program and its invariant
were devised,

• have lost interest in the topic, or

• haven’t read this far.

If none of the above apply to you, we can offer some reassurance: you’re not expected to un-
derstand this program. It was presented here simply as another example of application of the
invariant method (plus, we’ll need a procedure like this when we take up number theory based
cryptography in a couple of weeks). This program also illustrates that, given the right invariant,
you can verify a program you don’t understand. An invariant is really just an induction hypoth-
esis, and as with induction, finding the right hypothesis is usually the hard part. Once the right
hypothesis or invariant is found, checking that it works is usually routine.

4.4 Derived Variables

The preceding termination proofs involved finding a natural-number-valued measure to assign
to states. We might call this measure the “size” of the state. We then showed that the size of a
state decreased with every state transition. By the Well Ordering Principle, the size can’t decrease
indefinitely, so when a minimum size state is reached, there can’t be any transitions possible: the
process has terminated.

More generally, the technique of assigning values to states —not necessarily nonnegative integers
and not necessarily decreasing under transitions— is often useful in the analysis of algorithms.
Potential functions play a similar role in physics. In the context of computational processes, such
value assignments for states are called derived variables.

For example, for the Die Hard machines we could have introduced a derived variable, f : states →
R, for the amount of water in both buckets, by setting f((a, b)) ::= a + b. Similarly, in the robot
problem, the position of the robot along the x-axis would be given by the derived variable x-coord,
where x-coord((i, j)) ::= i.

We can formulate our general termination method as follows:

Definition 4.8. A derived variable f : states → R is strictly decreasing iff

q → q′ implies f(q′) < f(q).

Theorem 4.9. If f is a strictly decreasing derived variable of a state machine that takes only nonnegative
integer values, then the length of any execution starting at state q is at most f(q).

Of course we could prove Theorem 4.9 by induction on the value of f(q). But think about what it
says: “If you start counting down at some natural number f(q), then you can’t count down more
than f(q) times.” Put this way, it’s obvious.

Corollary 4.10. If there exists a strictly decreasing natural-number-valued derived variable for some state
machine, then every execution of that machine terminates.
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We now define some other useful flavors of derived variables taking values over partial ordered
sets. We’ll use the notational convention that when ≺ denotes a strict partial order on some set,
then � is the corresponding weak partial order

a � a′ ::= a ≺ a′ ∨ a = a′.

Definition 4.11. Let ≺ be a strict partial order on a set, A. A derived variable f : Q → A is strictly
decreasing with respect to ≺ iff

q → q′ implies f(q′) ≺ f(q).

It is weakly decreasing iff
q → q′ implies f(q′) � f(q).

Strictly increasing and weakly increasing derived variables are defined similarly.6

The existence of a natural-number-valued weakly decreasing derived variable does not guarantee
that every execution terminates. That’s because an infinite execution could proceed through states
in which a weakly decreasing variable remained constant.

5 Well-Founded Orderings and Termination

5.1 Another Robot

Suppose we had a robot positioned at a point in the plane with natural number coordinates, that is,
at an integer lattice-point in the Northeast quadrant of the plane. At every second the robot must
move a unit distance South or West until it can no longer move without leaving the quadrant. It
may also jump any integer distance East, but at every point in its travels, the number of jumps
East is not allowed to be more than twice the number of previous moves South.

For example, suppose the robot starts at the position (9,8). It can now move South to (9,7) or West
to (8,8); it can’t jump East because there haven’t been any previous South moves.

The robot’s moves might continue along the following trajectory: South to (9,7), East to (23,7),
South to (23,6), East to (399,6), West to (398,6), East to (511,6), West to (510,6), and East to (105, 6).
At this point it has moved South twice and East four times, so it can’t jump East again until it
makes another move South.

Claim 5.1. The robot will always get stuck at the origin.

If we think of the robot as a nondeterministic state machine, then Claim 5.1 is a termination as-
sertion. The Claim may seem obvious, but it really has a different character than the termination
results for the algorithms we’ve considered so far. That’s because, even knowing that the starting
position was (9,8), for example, there is no way to bound the total number of moves the robot can
make before it gets stuck. So we will not be able to prove termination using the natural-number-
valued decreasing variable method of Theorem 4.9. The robot can delay getting stuck at the origin
for as many seconds as it wants; nevertheless, it can’t avoid getting stuck eventually.

6Weakly increasing variables are often also called nondecreasing. We will avoid this terminology to prevent confusion
between nondecreasing variables and variables with the much weaker property of not being a decreasing variable.
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Does Claim 5.1 still seem obvious? Before reading further, it’s worth thinking how you might
prove it.

We will prove that the robot always gets stuck at the origin by generalizing the decreasing variable
method, but with decreasing values that are more general than nonnegative integers. Namely, the
traveling robot can be modeled with a state machine with states of the form ((x, y), s, e) where

• (x, y) ∈ N2 is the robot’s position,

• s is the number of moves South the robot took to get to this position, and

• e ≤ 2s is the number of moves East the robot took to get to this position.

Now we define a derived variable value : States → N3:

value(((x, y), s, e)) ::= (y, 2s− e, x),

and we order the values of states with the lexicographic order, �lex, on N3:

(k, l,m) �lex (k′, l′,m′) ::= k < k′ or (k = k′ and l < l′) or (k = k′ and l = l′ and m ≤ m′) (17)

Let’s check that values are lexicographically decreasing. Suppose the robot is in state ((x, y), s, e).

• If the robot moves West it enters state ((x− 1, y), s, e), and

value(((x− 1, y), s, e)) = (y, 2s− e, x− 1) ≺lex (y, 2s− e, x) = value(((x, y), s, e)),

as required.

• If the robot jumps East it enters a state ((z, y), s, e + 1) for some z > x. Now

value(((z, y), s, e + 1)) = (y, 2s− (e + 1), z) = (y, 2s− e− 1, z),

but since 2s− e− 1 < 2s− e, the rule (17) implies that

value(((z, y), s, e + 1)) = (y, 2s− e− 1, z) ≺lex (y, 2s− e, x) = value(((x, y), s, e)),

as required.

• If the robot moves South it enters state ((x, y − 1), s + 1, e), and

value(((x, y − 1), s + 1, e)) = (y − 1, 2(s + 1)− e, x) ≺lex (y, 2s− e, x) = value(((x, y), s, e)),

as required.

So indeed state-value is a decreasing variable under lexicographic order. We’ll show in the next
section that it is impossible for a lexicographically-ordered value to be decreased an infinite num-
ber of times. That’s just what we need to finish verifying Claim 5.1.
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5.2 Well-founded Partial Orders

Definition 5.2. Let � be a partial order and S be a subset of its domain. An element m ∈ S is
minimal in S iff no other element in S is � m. A partial order � is well-founded iff every nonempty
subset of its domain has a minimal element.

So saying that the nonnegative integers are well-founded under ≤ is equivalent to the Well Order-
ing Principle, but well-foundedness makes sense much more generally than for just nonnegative
integers.

So all finite partial orders are well-founded, since we saw in Week 3 Notes that every partial order
in a finite set has a minimal element. (Of course, we can’t expect to find a minimum element, since
even in a finite partial order, there often isn’t any minimum.)

There is another helpful way to characterize well-founded partial orders:

Lemma 5.3. A partial order is well-founded iff it has no infinite decreasing chain.

Saying that the partial order� has no infinite decreasing chain means there is no infinite sequence
p1, p2, . . . , pn . . . of elements in P such that

p1 � p2 � · · · � pn . . . .

Here we’re using the notation “p � q” to mean [q � p and q 6= p]. That’s so we can read the
decreasing chain left to right, as usual in English.

Proof. (left to right) (By contradiction) If there was such an infinite decreasing sequence, then the
set of elements in the sequence itself would be a nonempty subset without a minimal element.

(right to left) (By contradiction) Suppose � was not well-founded. So there is some subset S ⊆
domain (�) P , such that S has at least one element, s1, but S has no minimal element. In particular,
since s1 is not minimal, there must be another element s2 ∈ S such that s1 � s2. Similarly, since s2

is not minimal, there must be still another element s3 ∈ S such that s2 � s3. Continuing in this
way, we can construct an infinite decreasing chain s1 � s2 � s3 · · · in S.

An immediate corollary of Lemma 5.3 is

Corollary 5.4. Every finite partial order is well-founded.

Problem 2. Let D be the usual dictionary order on finite sequences of letters of the alphabet. Show
that neither D nor D−1 is well-founded.

An easy way to construct well-founded partial orders is by taking products of well-founded partial
orders. For example, the nonnegative integers are well-founded under ≤, so the product partial
order (≤ × ≤) on pairs of nonnegative integers is going to be well-founded.

To prove this, we first generalize coordinatewise and lexicographic partial order to pairs of ele-
ments from any partial orders, not just nonnegative integers.

http://courses.csail.mit.edu/6.042/fall07/ln3.pdf#rule.minel
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Definition 5.5. Let �1 and �2 be partial orders with domains A1 and A2.

The coordinatewise partial order, �c, is defined to be the product relation, (�1 × �2), defined in
Week 3 Notes.

The lexicographic partial order, �lex, for �1 and �2 is defined by the conditions:

domain (�lex) ::= A1 ×A2

(a1, a2) �lex (b1, b2) iff a1 ≺1 b1 or (a1 = b1 and a2 �2 b2).

Note that calling these relations “partial orders” is accurate: we know from Week 3 Notes that
products preserve partial orderings,so�c is indeed a partial order. It’s similarly easy to verify that
�lex is also a partial order.

But not only are these relations really partial orders, but they will also be well-founded providing
�1 and �2 are well-founded. Namely,

Theorem 5.6. Let �1 and �2 be well-founded partial orders. Then

1. �lex is well-founded,

2. �c is well-founded,

3. if �1 and �2 are both total orders, then so is �lex.

The idea of the proof of part 1. is easy: consider any nonempty subset, S, of A1 × A2. To find a
minimal element of S, first find a minimal element, m1 ∈ A1, among the elements that appear
as first coordinates of pairs in S, then find the minimal element m2 ∈ A2 among the second
coordinates pairs in S whose first coordinate is m1. It’s not hard to see that the element (m1,m2) ∈
S must be a minimal element of S.

Watch out! When we, or any other author, says “It’s not hard to see,” a savvy reader should
quickly check if it really is easy, and if it doesn’t seem to be, they should suspect that the author is
being lazy or possibly wrong.

In this case, we’re not being lazy —we’re just proposing to omit an uninformative proof and almost
automatic series of simple proof steps. But to build your faith in us —we hope you’ll be ready to
buy a used car from us at the end of the term —and to show we’re not lazy, we present this step
by step proof below. We hope that not many readers will need to take the time to plow through it.

Proof. (of part 1.)

Suppose S is a nonempty subset of A1 ×A2. We must show that S has a �lex-minimal element.

We begin by noting that

S1 ::= {a1 ∈ A1 | (a1, a2) ∈ S for some a2 ∈ A2}

is a nonempty subset of A1, and so has a �1-minimal element, m1. This means the set

S12 ::= {a2 ∈ A2 | (m1, a2) ∈ S}

is a nonempty subset of A2 and so has a �2-minimal element, m2. We claim that (m1,m2) is a
minimal element of S under �lex.

http://coursea.csail.mit.edu/6.042/fall07/ln3.pdf#def.productrel
http://coursea.csail.mit.edu/6.042/fall07/handouts/ln3.pdf#def.productrel
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To check this, note first that (m1,m2) ∈ S by definition. So to show it is minimal, we need only
show that if

(a1, a2) ∈ S, and (18)
(a1, a2) �lex (m1,m2) (19)

then

(a1, a2) = (m1,m2). (20)

But

a1 ∈ S1 by (18) and def. of S1, (21)
a1 �1 m1 by (19) and def. of �lex, (22)
a1 =1 m1 by (21), (22), and minimality of m1 in S1, (23)
a2 ∈ S12 by (18), (23) and def. of S12, (24)
a2 �2 m2 by (19), (23), and def. of �lex, (25)
a2 = m2 by (24), (25), and minimality of m1 in S12. (26)

Now (20) follows from (23) and (26), completing the proof of part 1.

Now notice that this argument above also holds if we replace �lex by �c, allowing us to conclude
that (m1,m2) is also a minimal element of S under �c. This proves part 2.

Part 3. follows straightforwardly from the definitions, and we leave its proof to the reader. This
completes the proof of Theorem 5.6.

Of course, the values of states for the robot in the previous section were triples not pairs, but we
can easily define the lexicographic partial order on n-tuples for any n ≥ 1. Namely,

Definition 5.7. Suppose �1, . . . ,�n are partial orders with domains A1, . . . , An, and define the
partial order, �lex, with domain, A1 × · · · ×An, recursively in n:

〈a1〉 �lex 〈b1〉 iff a1 �1 b1

〈a1, . . . , an, an+1〉 �lex 〈b1, . . . , bn, bn+1〉 iff a1 �1 b1 ∧ 〈a2, . . . , an+1〉 �lex 〈b2, . . . , bn+1〉

Theorem 5.6 now generalizes straightforwardly to n-tuples. In particular, we conclude that since
≤ is a well-founded total order on N, lexicographic order is a well-founded total order on Nn for
all n ≥ 1.

Now notice that the lexicographic order on N3 defined in the previous section (by the condi-
tion (17)) is exactly the same as �lex on N3 according to Definition 5.7.

But we already proved that the value of the robot’s state decreases at every step. And we have
just proved that the order on these values is well-founded. So Lemma 5.3 implies that the values
cannot keep decreasing forever. That means the robot cannot keep moving forever: it must always
terminate.
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