מתמטיקה בדידה Discrete Math

Lecture 5

Last week: Functions

 $f:\mathbf{A}\to\mathbf{B}$

<u>Definition</u>: A function, f, from set A to set B associates an element $f(a) \in B$ with an element $a \in A$.

We require that for every $\mathbf{a}\in \mathbf{A}$ there exists a single $\mathbf{b}\in \mathbf{B}$ so that $f(\mathbf{a})$ = \mathbf{b}

That is: $\forall a \in A$, $\forall b,b' \in B$,

 $(f(a) = b) \land (f(a) = b') \rightarrow b = b'$

Last week: Summary

We say a function $f: \mathbf{A}
ightarrow \mathbf{B}$ is

 $\underline{\textbf{Total}} \text{ if every } \textbf{a} \in \textbf{A} \text{ is assigned to some } \textbf{b} \in \textbf{B} \text{ (and } \underline{\textbf{partial}} \text{ otherwise)}.$

 $\underline{Surjective} \text{ if every } b \in B \text{ is mapped to } at \textit{ least once.}$

 $\underline{\textbf{Injective}} \text{ if every } b \in \textbf{B} \text{ is mapped to } \textit{at most once.}$

Bijective iff it is all of the above:

- 1. Total
- 2. Onto (על)
- 1-1 (חד חד ערכית)

Formally

<u>Definition</u>: The <u>domain of definition</u> of $f: A \to B$ is the set $A' \subseteq A$ defined as $A' := \{a \in A \mid \exists b \in B: [b=f(a)]\}.$

 $\underline{\text{Definition}}: \textbf{A} \text{ function } f \text{:} \textbf{A} \rightarrow \textbf{B} \text{ is said to be } \underline{\text{partial}} \text{ if } \textbf{A}' \subset \textbf{A}.$

<u>Definition</u>: A function $f \colon \mathbf{A} \to \mathbf{B}$ is said to be total if $\mathbf{A'} = \mathbf{A}$.

 $\begin{array}{l} \underline{ Definition} : A \mbox{ for a finition} : A \mbox{ for a finition} : A \mbox{ for a finition} : A \mbox{ such that } b=f(a) \ (\forall b \in B, \exists a \in A : [b=f(a)]). \\ \\ \underline{ Definition} : A \mbox{ function} \ f: A \rightarrow B \mbox{ is } \underline{1-1} \mbox{ iff for all } x, y \in A, \ \ f(x) = f(y) \mbox{ implies } x = y \ (\forall x, y \in A : [f(x) = f(y) \rightarrow x = y]). \end{array}$

The Mapping Rule

Lemma:

- If $f: A \to B$ is <u>onto</u>, then $|A| \ge |B|$.
- If $f: A \to B$ is total and <u>1-1</u>, then $|A| \le |B|$.
- If $f: A \rightarrow B$ is a <u>bijection</u>, then |A| = |B|.

- 1. The domain A, 2. the codomain B,
- 3. the graph of f

{(a,b) | f(a)=b}

To tell if a function is

- 1. total we also need to know the domain
- 2. <u>surjective</u> we also need to know the codomain
- 3. 1-1 we need to know the graph

Formal Definition of a Function

<u>Definition</u>: A <u>function</u> f from a set A to a set B is a set

 $f \mathop{\subseteq} \mathbf{A} \mathbf{x} \, \mathbf{B}$

so that $\forall a \in A, \, \forall b, b' \in B,$ $\text{if (a,b)} \in f \, \text{AND (a,b')} \in f \, \text{then b=b'}$

(For every $a \in A$, there exists a *unique* $b \in B$ so that $(a,b) \in f$.)

 $(\underline{\text{Recall}}: A \mathrel{\mathsf{x}} B = \{(a,b) \mid a \in A, b \in B\})$

Functions: Composition

Definition: The composition of functions

$$g: \mathbf{A}
ightarrow \mathbf{B}$$
 and $f: \mathbf{B}
ightarrow \mathbf{C}$

is a new function $f \circ g$: A ightarrow C defined as:

$$(f \circ g)(\mathbf{x}) = f(g(\mathbf{x}))$$

Can be thought of as:
$$\mathbf{a} \stackrel{f}{\mapsto} \mathbf{b} \stackrel{f}{\mapsto} \mathbf{c}$$

Note:

1. Defined only if $\text{Image}(g) \subseteq \text{Domain of definition}(f)$

2. Very often, $f \circ g$ is defined, but $g \circ f$ is not

הרכבה Composition

Function Composition: Properties

Let $f: \mathbf{C}
ightarrow \mathbf{D}, \ g: \mathbf{B}
ightarrow \mathbf{C}, \ h: \mathbf{A}
ightarrow \mathbf{B}$

<u>Associativity</u>: $f \circ (g \circ h) = (f \circ g) \circ h$ (so we can write $f \circ g \circ h$)

 $\underline{\textbf{Commutativity}}: \underline{\textbf{Not}} \text{ always true that } f \circ g \texttt{=} g \circ f$

Some Special Cases

Function Composition: Properties

 $\begin{array}{l} \underline{\mathsf{Proposition:}} \text{ There exist two functions } f: \mathbf{B} \to \mathbf{C}, \ g: \mathbf{A} \to \mathbf{B} \text{ such} \\ \text{ that } f \circ g \neq g \circ f. \\ \underline{\mathsf{Proof:}} \text{ Take } g: \mathbb{N} \to \mathbb{N} \text{ defined as } g(\mathbf{x}) = \mathbf{x} + 1 \text{ and } f: \mathbb{N} \to \mathbb{N} \text{ defined as} \\ f(\mathbf{x}) = \mathbf{x}^2. \text{ Then } f \circ g(1) = 4 \text{ is not equal to } g \circ f(1) = 2. \\ \underline{\mathsf{QED}} \\ \underline{\mathsf{Proposition:}} \text{ For every three functions } f: \mathbf{C} \to \mathbf{D}, \ g: \mathbf{B} \to \mathbf{C}, \text{ and} \\ h: \mathbf{A} \to \mathbf{B}, \text{ it holds that } f \circ (g \circ h) = (f \circ g) \circ h. \\ \underline{\mathsf{Proof:}} \text{ On the board.} \end{array}$

<u>Exercise</u>: Let $f: \mathbf{A} \to \mathbf{B}$ and $g: \mathbf{B} \to \mathbf{C}$ and suppose that $g \circ f$ is onto. Then, g is also onto.

Proof: On the board.

Inverse Function: Example

 $f:\mathbb{N} o$ Evens

 $g{:}\,{\rm Evens}\to \mathbb{N}$

 $g(\mathbf{x}) = \mathbf{x}/2$ $f \circ g = i_{\text{Evens}}$ $g \circ f = i_{\mathbb{N}}$

f(x) = 2x

Note: An inverse function does not always exist.

 $f: \mathbb{R} o \mathbb{R}$ $f(\mathbf{x}) = \mathbf{x}^2$

Does not have an inverse.

Left Inverse and Right Inverse

Let $f: \mathbf{A} \to \mathbf{B}$ be a function

- A <u>left inverse</u> for f is a function $g: \mathbf{B} \to \mathbf{A}$ such that
 - $g \circ f = i_A$
 - That is, if f(x) = y then g(y) = x.
- A <u>right inverse</u> for f is a function $h\colon {\rm B}\to {\rm A}$ such that $f\circ h=i_{\rm B}$ That is, if $h({\rm y})={\rm x}$ then $f({\rm x})={\rm y}.$

Left inverse Right inverse הופכי שמאלי הופכי ימני

Left Inverse and Right Inverse 2

<u>Claim 1</u>: A function $f: A \rightarrow B$ has a left inverse <u>iff</u> it is 1-1.

<u>Claim 2</u>: A function $f: A \rightarrow B$ has a right inverse <u>iff</u> it is onto.

Proofs: On the board.

 $\underline{\text{To show that a function is 1-1}}$ show that it has a left inverse.

To show that a function is onto: show that it has a right inverse.

Bijection and Inverse

<u>Theorem:</u> A function $f: A \to B$ is a <u>bijection</u> if and only if there exists a function $g: B \to A$ such that

 $f \circ g = i_{\mathsf{B}}$ $g \circ f = i_{\mathsf{A}}$

moreover, if such a function exists, it is unique.

 $\underline{ Definition} : \text{If } f: \mathbf{A} \to \mathbf{B} \text{ is a bijection, then the unique function from} \\ \text{above is called the inverse function of } f. \text{ It is denoted by } f^{-1}.$

To show that a function is a bijection: show that it has an inverse

	000400405005500004440000		5700057004000470047400000	0047004000040005044040004	
	020480135385502964448038	31/10048321/350139411301/	5763257331083479647409398	8247331000042995311646021	
	489445991866915676240992	3208234421597368647019265	5800949123548989122628663	8496243997123475922766310	
	1082662032430379651370981	3437254656355157864869113	6042900801199280218026001	8518399140676002660747477	
	1178480894769706178994993	3574883393058653923711365	6116171789137737896701405	8543691283470191452333763	
	1253127351683239693851327	3644909946040480189969149	6144868973001582369723512	8675309258374137092461352	
	1301505129234077811069011	3790044132737084094417246	6247314593851169234746152	8694321112363996867296665	
	1311567111143866433882194	3870332127437971355322815	6814428944266874963488274	8772321203608477245851154	
	1470029452721203587686214	4080505804577801451363100	6870852945543886849147881	8791422161722582546341091	
	1578271047286257499433886	4167283461025702348124920	6914955508120950093732397	9062628024592126283973285	
	1638243921852176243192354	4235996831123777788211249	6949632451365987152423541	9137845566925526349897794	
	1763580219131985963102365	4670939445749439042111220	7128211143613619828415650	9153762966803189291934419	
	1826227795601842231029694	4815379351865384279613427	7173920083651862307925394	9270880194077636406984249	
	1843971862675102037201420	4837052948212922604442190	7215654874211755676220587	9324301480722103490379204	
	2396951193722134526177237	5106389423855018550671530	7256932847164391040233050	9436090832146695147140581	
	2781394568268599801096354	5142368192004769218069910	7332822657075235431620317	9475308159734538249013238	
	2796605196713610405408019	5181234096130144084041856	7426441829541573444964139	9492376623917486974923202	
	2931016394761975263190347	5198267398125617994391348	7632198126531809327186321	9511972558779880288252979	
	2933458058294405155197296	5317592940316231219758372	7712154432211912882310511	9602413424619187112552264	
	3075514410490975920315348	5384358126771794128356947	7858918664240262356610010	9631217114906129219461111	
	3111474985252793452860017	5439211712248901995423441	7898156786763212963178679	9908189853102753335981319	
	3145621587936120118438701	5610379826092838192760458	8147591017037573337848616	9913237476341764299813987	
	3148901255628881103198549	5632317555465228677676044	8149436716871371161932035		
	3157693105325111284321993	5692168374637019617423712	8176063831682536571306791		
90 numbers $\Lambda = \{2, 2, 3, 3\}$					
	30 humbers – A – $\{a_1, a_2, \dots, a_{90}\}$				
	25 digits each - a _i ∈ {0,,9}² ⁵				
	Q: Are there two subsets of the numbers that have the same sum?				
	For example, is sum of numbers in 1 st column equal to sum of				
	i or example, is sum of numbers in i column equal to sum of				

For example, is sum of num numbers in 2nd column?

The Subset Sum Problem

<u>Q</u>: Are there two subsets that have the same sum?

That is, are there $\boldsymbol{S}_1, \boldsymbol{S}_2 \subseteq \{1, \dots, 90\}$ so that

$$\sum_{i \in S_1} a_i = \sum_{i \in S_2} a_i$$

Why is the problem interesting?

1. Optimization - packing boxes in shipping containers.

2. Cryptography - decoding secret messages.

3. and much more...

Finding two such subsets seems to be very hard.* Counting helps us <u>decide</u> if there *is* such a pair.

*Note: # subsets of A = 290

Why Count?

Very useful in computer science:

- 1. How much time/storage is required to solve a problem.
- 2. Counting is the basis for probability theory.
- 3. Useful proof techniques (e.g., pigeonhole principle).

Examples:

- 1. How many comparisons are needed to sort n numbers?
- 2. How many multiplications to compute dⁿ?
- 3. How many configurations to Rubik's cube?
- 4. How many different chess positions after n moves?
- 5. How many ways to select 12 balls w/ 5 different colors?
- 6. How many 16-bit numbers with exactly 4 ones?