מתמטיקה בדידה Discrete Math

Lecture 6

Counting one Thing by Counting Another

If $f: A \rightarrow B$ is a <u>bijection</u> then |A| = |B|.

Example: Size of the Power Set

How many subsets of finite set A? That is, what is |P(A)|?

A: $\{a_1, a_2, a_3, a_4, a_5, \dots, a_n\}$

subset: $\{a_1, a_3, a_4, \dots, a_n\}$

string: 1 0 1 1 0 ... 1

This is a bijection

- 1. Every subset is mapped to an n-bit binary string.
- 2. Any n-bit binary string corresponds to a subset.

<u>Conclusion</u>: |P(A)| = |n-bit binary strings|

Example: Balls with Different Colors

How many ways to select 12 balls w/ 5 different colors?

A = all ways to select 12 balls w/ 5 different colors. B = all 16-bit numbers with exactly 4 ones.

Balls with Different Colors II

A = all ways to select 12 balls w/ 5 different colors. B = all 16-bit numbers with exactly 4 ones.

Bijection from A to B:

r red, g green, y yellow, b blue, w white

maps to

00	1001	00	1 00	100
			$ \rightarrow $	\frown
r	g	У	b	W

- 1. Sequence has always 16 bits and exactly 4 ones.
- 2. Every sequence corresponds to exactly one order of balls.

<u>Conclusion</u>: |A| = |B|

Counting a Thing by Counting Another

Counting rule relates |A| with |B|.

Once we figure out |B|, we will immediately know |A|.

<u>Question</u>: But how do we figure out |B|? <u>Answer</u>: Sequences are easier to count...

General strategy:

- 1. Get really good at counting sequences.
- 2. Use bijections to count everything else.

<u>Given a set T</u>:

- 1. Find bijection to set of sequences S.
- 2. Use counting skills to count |S|, which gives us |T|.

Rules for Counting

If sets A and B are <u>disjoint</u>, then

$|\mathbf{A} \cup \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}|$

כלל הסכום **The sum rule**

Sum Rule: Examples

Class has 11 women, 30 men so total enrollment is 11 + 30 = 41

26 Lower case letters, 26 upper case letters, and 10 digits, so total number of characters is

26 + 26 + 10 = 62

The Product Rule

If P_1, P_2, \dots, P_k are sets then

$$|\mathbf{P}_1 \times \mathbf{P}_2 \times \dots \times \mathbf{P}_k| = |\mathbf{P}_1| \cdot |\mathbf{P}_2| \cdot \cdot \cdot |\mathbf{P}_k|$$

Recall:

 $P_1 \ x \ P_2 \ x \ \dots \ x \ P_k \ := \{(p_1, p_2, \dots, p_k) \ | \ p_1 \in P_1, p_2 \in P_2, \dots, p_n \in P_k\}$

The product rule

כלל המכפלה

The Product Rule II

Unlike the sum rule, the product rule does not require the sets to be disjoint.

Example: If |A| = m and |B|=n, then $|A \times B| = mn$

$$A = \{a,b,c,d\}, B = \{a,2,3\}$$

A x B = {(a,a),(a,2),(a,3),
(b,a),(b,2),(b,3),
(c,a),(c,2),(c,3),
(d,a),(d,2),(d,3)}

The Product Rule III

Counting strings:

Number of length-4 strings from alphabet B := {0,1} is

 $|B \times B \times B \times B| = 2 \times 2 \times 2 \times 2 = 2^4$

In particular,

$$|\{0,1\}^k| = 2^k$$

In general: Number of length-k strings from alphabet of size n is

n^k

Example: Counting Passwords

- 1. Between 6 and 8 characters long.
- 2. Starts with a letter.
- 3. Case sensitive.*
- 4. Other characters: digits or letters.

Examples: a5Tj6Vu5, sE5TG4

*Case sensitive – uppercase and lowercase are different.

Example: Counting Passwords II

L := {a,b,...,z,A,B,...,Z} D := {0,1,...,9}

P_k := length k passwords

<u>Question</u>: what is P₆? <u>Answer</u>: Think of password as sequence

sE5TG4 \leftrightarrow (s, E, 5, T, G, 4)

 $P_6 = L \times (L \cup D) \times (L \cup D)$ $= L \times (L \cup D)^5$

Example: Counting Passwords III

```
L := {a,b,...,z,A,B,...,Z}
D := {0,1,...,9}
```

P_k := length k passwords

 $P_k = L \times (L \cup D)^{k-1}$

```
|L \times (L \cup D)^{k-1}| = |L| \cdot |L \cup D|^{k-1}= |L| \cdot (|L| + |D|)^{k-1}= 52 \cdot 62^{k-1}
```

Example: Counting Passwords IV

The set of passwords:

 $\mathbf{P} = \mathbf{P}_6 \cup \mathbf{P}_7 \cup \mathbf{P}_8$

 $|\mathbf{P}| = |\mathbf{P}_6| + |\mathbf{P}_7| + |\mathbf{P}_8|$ = 52 \cdot 62^5 + 52 \cdot 62^6 + 52 \cdot 62^7 = 186125210680448 $\approx 19 \cdot 10^{14}$

String, Sequences and Functions

 $|B \times B \times ... \times B| = |B| \times |B| \times ... \times |B| = |B|^{k}$

k times k times k times **AKA**: **# sequences** with repeats.

<u>Corollary 1</u>: # length-k strings from alphabet B of size n is n^k <u>Corollary 2</u>: # length-k binary strings is |{0,1}^k| = 2^k <u>Note</u>:

- 1. Length-k string and length-k sequence is the same thing
- 2. Length-|A| string from alphabet B and $f: A \rightarrow B$ is the same thing.

Example: Counting Functions

Let A,B be finite sets, and suppose that |A| = k |B| = n

<u>**Q**</u>: How <u>many</u> (total) functions $f: \mathbf{A} \rightarrow \mathbf{B}$ are there?

Example: $A = \{a_1, a_2\}, B = \{1, 2, 3\}$

For every choice for $f(a_1)$, there are 3 choices for $f(a_2)$

(total) functions { a_1 , a_2 } \rightarrow {1,2,3} = 3 x 3 = 3²

Example: $A = \{a_1, a_2, a_3\}, B = \{1, 2, 3\}$

For every choice for $f(a_1)$ and $f(a_2)$, there are 3 choices for $f(a_3)$

(total) functions $\{a_1, a_2, a_3\} \rightarrow \{1, 2, 3\} = 3 \times 3 \times 3 = 3^3$

So What is the General Rule?

(total) functions $\{a_1, a_2\} \rightarrow \{1, 2, 3\} = 3 \times 3$ = $|B| \times |B|$ |A|=2 times

(total) functions $\{a_1, a_2, a_3\} \rightarrow \{1, 2, 3\} = 3 \times 3 \times 3$ = $|B| \times |B| \times |B|$ The Rule: $|B|^{|A|}$

<u>The idea</u>: Think of $f: A \rightarrow B$ as a sequence of length |A| with elements from the alphabet B.

Generalized Counting Rules

The Pigeonhole Principle If \exists injection $f: A \rightarrow B$ then $|A| \leq |B|$ Equivalently: if |A| > |B|, then \nexists injection $f: A \rightarrow B$

The Pigeonhole Principle

If |A| > |B|, then $eqtif injection f: \mathbf{A} ightarrow \mathbf{B}$

Than pigeonholes

The Pigeonhole Principle II

Then some hole must have \geq two pigeons!

<u>Tip</u>: when applying the pigeonhole principle, it is important to identify 3 things

- 1. The set A (the pigeons)
- 2. The set B (the pigeonholes)
- 3. The function f (rule of assigning pigeons to pigeonholes).

Example 1: Socks

A drawer in a dark room contains

- 1. red socks
- 2. green socks
- 3. blue socks.

<u>Question</u>: How many socks do you have to withdraw to be sure that you have a matching pair?

<u>Answer</u>: Let A := set of socks you withdraw B := {red,green,blue}

Then if |A| > |B| = 3 at least two elements of A will have same color.

90 numbers – A = $\{a_1, a_2, \dots, a_{90}\}$ **25 digits each -** $a_i \in \{0, ..., 9\}^{25}$

Q: Are there two subsets of the numbers that have the same sum?

Example 2: Subset Sum

<u>Q</u>: Are there two subsets that have the same sum? <u>Note</u>: the sum of any subset of numbers is $\leq 90 \cdot 10^{25}$

- 1. Let $X = P(\{a_1, a_2, \dots, a_{90}\})$
- 2. Let Y = $\{0, 1, ..., 90 \cdot 10^{25}\}$
- 3. Let $f: X \to Y$ map each subset of numbers to its sum (in Y).

Now,

$ X = 2^{90}$	$ \mathbf{Y} = 90 \cdot 10^{25} + 1$
≥ 1.237 x 10 ²⁷	\leq 0.901 x 10 ²⁷

By the pigeonhole principle, f maps at least two elements of X into the same element of Y!

<u>Remark</u>: Proof is "<u>nonconstructive</u>" – gives no indication which two sets have the same sum...

10 Card Draw

Generalized Pigeonhole Principle

cards with same suit

cards with same suit \geq 3

<u>Generalized pigeonhole principle</u>: If n pigeons and h holes, then some hole has at least

 $\left| \begin{array}{c} n \\ h \end{array} \right|$

3

pigeons.

<u>More formally</u>: If $|A| > k \cdot |B|$, then every function $f: A \to B$ maps at least k+1 different elements of A to the same element of B.

Generalized pigeonhole principle

עקרון שובך היונים המוכלל

Example: Hairs on Heads

<u>Claim</u>: There exist at least 3 people* in Tel Aviv that have <u>exactly</u> the same number of hairs on their heads.

- 1. Tel Aviv has about 500,000 non bald people
- 2. # hairs on a person's head is < 200,000

A := set of non bald people in Tel Aviv B := $\{1,2,...,200,000\}$ $f: A \rightarrow B$ maps a person to # hairs on her head.

|A| > 2 • |B|, so by the generalized pigeonhole principle, at least three people have the same number of hairs

*Not bald...

Advanced Comment: The "Birthday Paradox"

How many people in this class have the same birthday?

- 1. 41 students.
- 2. 365 days in the year.

Can we apply the pigeonhole principle?

The lesson: randomization is powerful!

Generalized Product Rule

<u>Question</u>: How many sequences of 5 students in class?

S := students in class |S| = 41

 $|sequences of 5 students| = 41^5$? NO!

<u>We want</u>: |sequences in S⁵ with no repeats|

No repeats

ללא חזרות

Generalized Product Rule II

|sequences in S⁵ with no repeats|

41 choices for 1st student
40 choices for 2nd student
39 choices for 3rd student
38 choices for 4th student
37 choices for 5th student

so 41 · 40 · 39 · 38 · 37

Generalized Product Rule III

<u>The generalized product rule</u>: Let S be a set of length-k sequences. If there are

- n_1 possible 1st entries,
- n₂ possible 2nd entries for each 1st entry,
- n₃ possible 3rd entries for each possible 1st and 2nd entries, etc.

then $|\mathbf{S}| = \mathbf{n}_1 \cdot \mathbf{n}_2 \cdot \mathbf{n}_3 \cdot \cdot \cdot \mathbf{n}_k$

Example: A Chess Problem

valid

invalid

<u>Q</u>: In how many ways can we arrange knight, bishop and pawn so that no two pieces share a row or a column?

Example: A Chess Problem II

Let p – pawn, k – knight, b - bishop First, notice that there is a bijection from configurations of the chessboard to sequences:

$$(r_{p}, c_{p}, r_{k}, c_{k}, r_{b}, c_{b})$$

where r_p , r_k , r_b are distinct rows and c_p , c_k , c_b are distinct columns.

Now, using the generalized product rule:

 $\begin{array}{l} r_{p} \text{ is one of 8 rows} \\ c_{p} \text{ is one of 8 columns} \\ r_{k} \text{ is one of 7 rows (any one but } r_{p}) \\ c_{k} \text{ is one of 7 columns (any one but } c_{p}) \\ r_{b} \text{ is one of 6 rows (any one but } r_{p} \text{ or } r_{k}) \\ c_{b} \text{ is one of 6 columns (any one but } c_{p} \text{ or } c_{k}) \end{array}$

So the total number of configurations is $(8 \cdot 7 \cdot 6)^2$

Example: Counting Injective Functions

How many (total) injective functions from A to B?

- |B| possible values for $f(a_1)$,
- |B| 1 possible values for $f(a_2)$, given $f(a_1)$
- |B| 2 possible values for $f(a_3)$, given $f(a_1)$ and $f(a_2)$ etc.

By generalized product rule: # injective functions $f: A \to B$ is $|B| \cdot (|B|-1) \cdot (|B|-2) \cdots (|B|-|A|+1)$

Permutations

<u>Definition</u>: A <u>permutation</u> of a set S is a sequence that contains every element of S exactly once.

For example, the permutations of the set {a,b,c} are

(a,b,c) (a,c,b) (b,a,c) (b,c,a) (c,a,b) (c,b,a)

Permutation n factorial

תמורה **n**

Permutations as bijections

<u>Typically</u>: permutations on the set $S = \{1, 2, ..., n\}$ <u>Notation</u>: [n] := $\{1, 2, ..., n\}$

A permutation on [n] is a bijection π : [n] \rightarrow [n]

Counting Permutations

A permutation is a bijection $f: S \rightarrow S$.

<u>We saw before</u>: # injective functions $f: A \rightarrow B$ is

$$|B| \cdot (|B| - 1) \cdot (|B| - 2) \cdots (|B| - |A| + 1)$$

<u>So</u>: # permutations on an n-element set

(convention: 0! = 1).

How Large is n!

Very large:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

This is known as **Stirling's approximation**.

#permutations vs. #functions

A permutation is a <u>bijection</u> π : [n] \rightarrow [n].

<u>Q</u>: How many bijections π : [n] \rightarrow [n] are there? <u>A</u>: n!

 $\underline{\mathbf{Q}}:$ How many functions $f\colon$ [n] \rightarrow [n] are there? $\underline{\mathbf{A}}:$ n^

By <u>Stirling's approximation</u>:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \frac{\sqrt{2\pi n}}{e^n} n^n$$

n! << nⁿ, but is still <u>very large</u>!

Quick Question

<u>Q</u>: How many functions $f: A \rightarrow B$ are **<u>not</u>** injective?

X – Set of all functions $f: A \to B(|X| = |B|^{|A|})$ Y – Set of all injective functions $f: A \to B$ $|Y| = |B| \cdot (|B|-1) \cdots (|B|-|A|+1)$ Z – Set of all non-injective functions $f: A \to B$

By sum rule: |X| = |Y| + |Z|

So |Z| = |X| - |Y|= $|B|^{|A|} - |B| \cdot (|B|-1) \cdots (|B|-|A|+1)$

Strings with no Repeats

Let B be an alphabet of size n.

<u>By generalized product rule</u>: # length-k strings w/ <u>no</u> <u>repeats</u> with elements from B is

$$|B| \cdot (|B| - 1) \cdot (|B| - 2) \cdots (|B| - k + 1)$$

In other words:

$$n \cdot (n-1) \cdots (n-k+1) = \frac{n \cdot (n-1) \cdots 2 \cdot 1}{(n-k) \cdot (n-k-1) \cdots 2 \cdot 1}$$
$$= \frac{n!}{(n-k)!}$$

Summary so far

possibilities to choose k elements from a set of size n

	No repeats	With repeats
Order is important (sequence)	$\frac{n!}{(n-k)!}$	n ^k
Order not important (subset)	Next week	Next week

The Division Rule

<u>Definition</u>: $f: A \rightarrow B$ is said to be <u>k-to-1</u> if it maps exactly k elements from A to every element in B.

is a 2-to-1 function. Similarly a function mapping each finger to its owner is 10-to-1.

<u>The division rule</u>: If $f: A \rightarrow B$ is <u>k-to-1</u> then $|A| = k \cdot |B|$.

Example: Another Chess Problem

valid

invalid

<u>Q</u>: In how many ways can we place two identical pawns so that they do not share a row or a column?

Example: Another Chess Problem II

Let A be the set of all sequences (r_1, c_1, r_2, c_2) where r_1 and r_2 are distinct rows, and c_1, c_2 are distinct columns.

Let B be the set of all valid pawn configurations.

Let $f: A \to B$ t be a function that maps the sequence (r_1, c_1, r_2, c_2) to a configuration with one pawn in row r_1 column c_1 and the other pawn in row r_2 column c_2

<u>Note</u>: The sequences (1,1,8,8) and (8,8,1,1) map to the <u>same</u> <u>configuration</u>!

<u>More generally</u>: the function f maps exactly two sequences to every configuration. That is, f is 2-to1.

<u>Conclusion</u>: By the division rule, $|A| = 2 \cdot |B|$. So,

|B| = |A|/2= $(8 \cdot 7)^2/2$