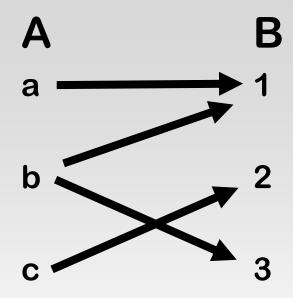
מתמטיקה בדידה Discrete Math

Lecture 10

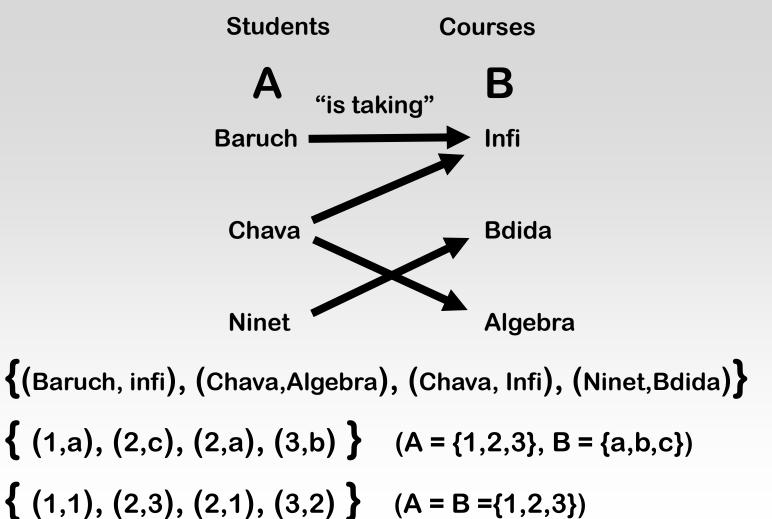
Last Week: Binary Relation



Describes <u>relations</u> between elements in A and elements in B.

<u>Unlike a function</u>: $x \in A$ can be related to <u>more than one</u> $y \in B$.

Binary Relation: Example



Binary Relations: Definition

Definition: A binary relation, R, consists of

- 1. a set, A, called the domain of R,
- 2. a set, B, called the codomain of R,
- 3. a subset $R \subseteq AxB$ called the graph of R

Terminology:

- 1. We say that R is a relation between A and B.
- 2. If A = B, we say that R is a relation on A.

Notation:

- 1. aRb means that $(a,b) \in R$.
- 2. are (alternatively, \neg (aRb)) means that (a,b) \notin R

Binary Relations: Characterization Definition: A binary relation, R, on a set A is

Reflexive: $\forall a \in A$, aRa.

Anti-Reflexive: $\forall a \in A, \neg (aRa)$.

Symmetric: $\forall a,b \in A, aRb \rightarrow bRa.$

<u>Asymmetric:</u> $\forall a,b \in A, aRb \rightarrow \neg (bRa).$

Anti-symmetric: $\forall a,b \in A$, $(aRb \land bRa) \rightarrow a = b$.

<u>Transitive:</u> \forall a,b,c ∈ A, (aRb ∧ bRc) \rightarrow aRc.

Asymmetric vs. Anti-Symmetric

Asymmetric aRb implies \neg (bRa) for all a,b \in A.

Anti-symmetric aRb, bRa implies a = b for all a,b \in A.

Anti-symmetric* aRb implies \neg (bRa) for all $q = b \in A$.

Claim: Anti-symmetric = Anti-symmetric*

Can think of Anti-symmetric* as "weak Asymmetric"

Equivalence Relation

<u>Definition</u>: A binary relation, R, on a set A is said to be an <u>equivalence relation</u> if it is

Reflexive aRa for all a ∈ A

Symmetric aRb implies bRa for all a,b ∈ A

Transitive [aRb and bRc] implies aRc for all a,b,c ∈ A

Notation: If a is equivalent to b, we write a ~ b.

Equivalence relation

יחס שקילות

Equivalence Relations: Examples

"Equality" (=) $-a \sim b$ if and only if a = b

"Same eye color" – a ~ b if and only if they have the same eye color.

"Same number of letters" – a ~ b are equivalent if and only if the number of letters in word a is the same as in b.

"Congruence mod 2" – a ~ b if and only if (a-b) is even.

Equivalence Class

<u>Definition</u>: Let R be an equivalence relation on A. The <u>equivalence class</u> of an element a ∈ A is defined as:

$$[a]_R := \{b \in A \mid aRb\}$$

that is, the set of all elements in A that a is equivalent to.

Notation: Sometimes we write [a] instead of [a]_R

Equivalence Class: Examples

"Equality of sets" (=) $-A \sim B$ if and only if A = B (as sets)

Q: What is the equivalence class [{1,2,3}]?

A: All sets whose elements are 1,2,3.

Examples: $\{1,3,2\} \in [\{1,2,3\}], \{x \in \mathbb{N} \mid 0 < x \le 3\} \in [\{1,2,3\}]$

"Same eye color" – a ~ b if and only if they have the same eye color.

Q: Yossi has blue eyes. What is [Yossi]?

A: All people with blue eyes.

"Congruence mod 2" – $a \sim b$ if and only if (a-b) is even.

Q: What is [2]? What is [1]?

A: [2] = Evens, [1] = Odd numbers

Equivalence Class: Representatives

"Equality of sets" (=) – A ~ B if and only if A = B (as sets)

 $[\{1,2,3\}]$ = All sets whose elements are 1,2,3.

 $[\{1,3,2\}]$ = All sets whose elements are 1,2,3.

"Same eye color" – a ~ b if and only if they have the same eye color.

Yossi has blue eyes. [Yossi] = All people with blue eyes.

Ninet has blue eyes. [Ninet] = All people with blue eyes.

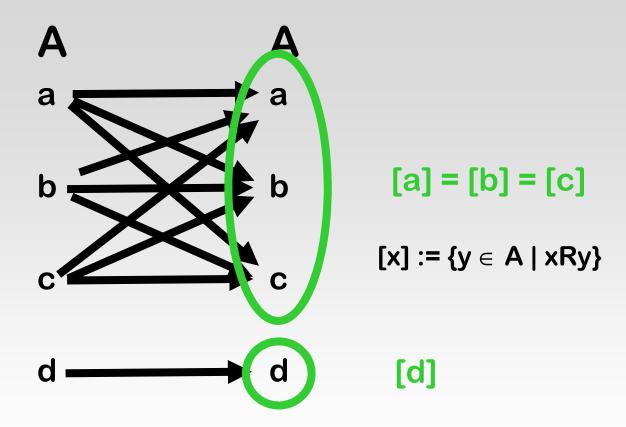
"Congruence mod 2" – $a \sim b$ if and only if (a-b) is even.

[2] = Evens, [1] = Odd numbers

[4] = Evens, [3] = Odd numbers

To describe an equivalence class $[a]_R$, it is sufficient to pick a <u>representative</u> in $[a]_R$

Equivalence Relations



For the Curious: The Rational Numbers

Elements in \mathbb{Q} are though of as numbers a/b for a,b $\in \mathbb{Z}$.

But a/b = 2a/2b = 3a/3b, and so on...

So which one should we pick?

Also, how is a/b defined?

Define a relation R on \mathbb{Z}^2 in the following way:

R :=
$$\{((a,b),(c,d)) \ 2 \ \mathbb{Z}^2 \times \mathbb{Z}^2 \ | \ ad=bc \}$$

That is, (a,b)R(c,d) if and only if ad = bc.

A <u>rational number</u> is simply a <u>representative</u> (a,b) of an equivalence class for the above relation R.

Exercise

We say that $a \in \mathbb{Z}$ is divisible by $b \in \mathbb{Z}$ if $\exists k \in \mathbb{Z}$ so that a = kb. Define relations S,T on \mathbb{Z} in the following way:

- iSj if and only if i j is divisible by 7.
- iTj if and only if i + j is divisible by 7.

Q1: is S an equivalence relation?

Q2: is T an equivalence relation?

Q3: is **S**∪**T** an equivalence relation?

Partition

<u>Definition</u>: A <u>partition</u> of a set A is a collection of subsets $A_1, A_2, ..., A_n \subseteq A$ so that:

- Pairwise disjoint: ∀i,j∈[n], i≠j → A_i∩A_j= Ø
- 2. Covering: $A_1 \cup A_2 \cup ... \cup A_n = A$

Partition
Pairwise disjoint
Covering

חלוקה זרות בזוגות כיסוי

Partition: Examples

Let A be the set of all people.

- 1. Let A_1 be the set of all people with blue eyes
- 2. Let A₂ be the set of all people with green eyes
- 3. Let A₃ be the set of all people with brown eyes and so on...

Note that $A_1, A_2, ..., A_n \subseteq A$. Also:

- 1. Pairwise disjoint*: $\forall i,j \in [n], i \neq j \rightarrow A_i \cap A_i = \emptyset$
- 2. Covering**: $A_1 \cup A_2 \cup ... \cup A_n = A$

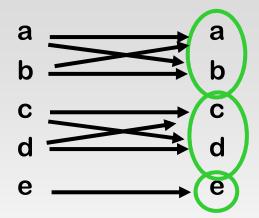
^{*} Assuming there are no people with more than one eye color.

^{**} Assuming we have used all eye colors.

Partition

<u>Definition</u>: A <u>partition</u> of a set A is a collection of subsets $A_1, A_2, ..., A_n \subseteq A$ so that:

- 1. Pairwise disjoint: $\forall i,j \in [n], i \neq j \rightarrow A_i \cap A_i = \emptyset$
- 2. Covering: $A_1 \cup A_2 \cup ... \cup A_n = A$



Partition and equivalence are the "same thing."

חלוקה ndiqn

זרות בזוגות Pairwise disjoint

Covering

Partition vs Equivalence

Proposition: Let A be a set. Then:

1. For any equivalence relation ~ on A, the collection:

$$\Omega = \{[a]_{\sim} | a \in A\}$$

forms a partition of A.

2. For any partition Ω of A, the relation:

$$R = \{(a,b) \in AxA \mid \exists S \in \Omega, a \in S \text{ AND } b \in S \}$$

is an equivalence relation on A.

Induced Partition

<u>Definition</u>: Let ~ be an equivalence relation on A. then the partition:

$$\Omega = \{[a]_{\sim} | a \in A\}$$

is called the partition that is induced by ~.

Example: The partition on \mathbb{Z} that is induced by the "Congruence mod 2" relation (a ~ b if and only if (a-b) is even) is:

$$A_1 = Evens,$$

 $A_2 = Odd numbers$

Example 1

$$A = \{1,2,3\} \times \{1,2,3\}$$

$$(x,y) \sim (x',y') \text{ if and only if } x+y = x'+y' \text{ (mod 3)}$$

$$(1,1)\sim(2,3)\sim(3,2)$$

$$(1,2)\sim(2,1)\sim(3,3)$$

$$(2,2)\sim(1,3)\sim(3,1)$$

$$A_1 = \{(1,1),(2,3),(3,2)\}$$

$$A_2 = \{(1,2),(2,1),(3,3)\}$$

$$A_3 = \{(2,2),(1,3),(3,1)\}$$

Example 2: Congruence mod 7

A = \mathbb{N} and x~y if and only if x-y = 7k for some k $\in \mathbb{Z}$ 1~8~15~22~... 2~9~16~23~... 3~10~17~24~...

 $A_1 = \{n \in \mathbb{N} : n = 1+7k \text{ for some } k \in \mathbb{N}\} = [1]$ $A_2 = \{n \in \mathbb{N} : n = 2+7k \text{ for some } k \in \mathbb{N}\} = [2]$ $A_3 = \{n \in \mathbb{N} : n = 3+7k \text{ for some } k \in \mathbb{N}\} = [3]$ and so on...

Note: $A_1 \cup A_2 \cup ... \cup A_7 = A$ $\forall i,j \in \{1,2,...,7\}, i \neq j \rightarrow A_i \cap A_j = \emptyset$

Partial Orders

Strict Partial Order

<u>Definition</u>: A binary relation, R, on a set A is said to be a <u>strict partial order</u> if it is

Asymmetric: $\forall a,b \in A$, aRb → \neg (bRa).

<u>Transitive:</u> \forall a,b,c ∈ A, (aRb ∧ bRc) \rightarrow aRc.

Teminology: A is said to be a <u>partially ordered set</u> (poset).

Notation: We use ≺to denote a strict partial order R.

 $a \prec b$ stands for aRb

The ordered pair (A, \prec) denotes a poset.

Strict partial order

Partially ordered set

יחס סדר חלקי ממש

קבוצה סדורה חלקית (קס"ח)

Strict Partial Order: Examples

The < relation on numbers: a < b iff a < b.

The \subset relation on subsets: $A \prec B$ iff $A \subset B$.

Both examples are:

Asymmetric: \forall a,b ∈ A, aRb → ¬(bRa).

<u>Transitive:</u> \forall a,b,c ∈ A, (aRb ∧ bRc) \rightarrow aRc.

Strict partial order Partially ordered set

יחס סדר חלקי ממש קבוצה סדורה חלקית (קס"ח**)**

Weak Partial Order

<u>Definition</u>: A binary relation, R, on a set A is said to be a <u>weak partial order</u> if it is

Reflexive: $\forall a \in A$, aRa.

Anti-symmetric*: $\forall a,b \in A$, (aRb ∧ a ≠ b) $\rightarrow \neg$ (bRa).

<u>Transitive:</u> \forall a,b,c ∈ A, (aRb ∧ bRc) \rightarrow aRc.

Notation: We use \leq to denote a weak partial order R. $a \prec b$ stands for aRb

Weak partial order

Weak Partial Order: Examples

The \leq relation on numbers: $a \leq b$ iff $a \leq b$.

The \subseteq relation on subsets: $A \subseteq B$ iff $A \subseteq B$.

The "divides" relation. $m \leq n$ iff $\exists k$ so that n = km.

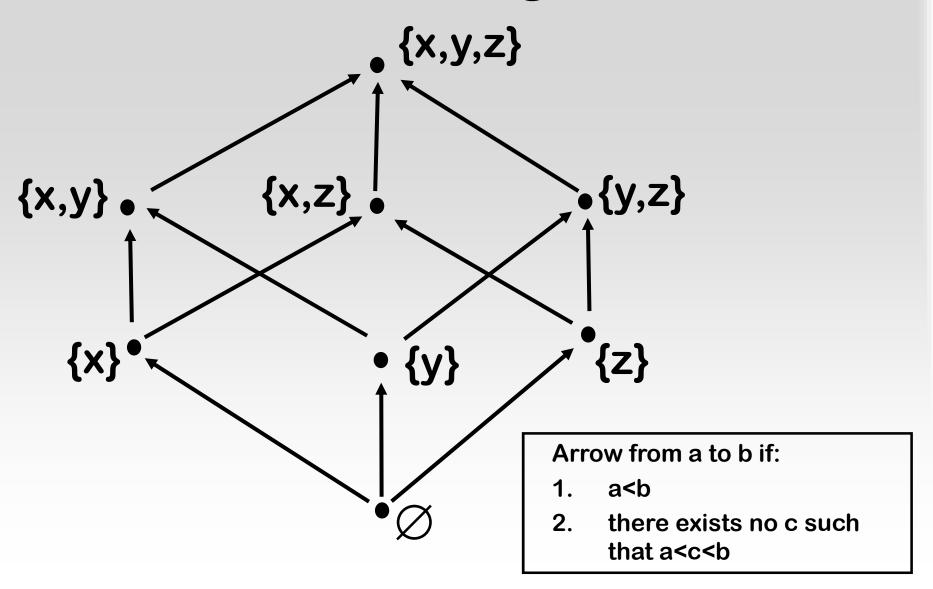
All examples are:

Reflexive: $\forall a \in A$, aRa.

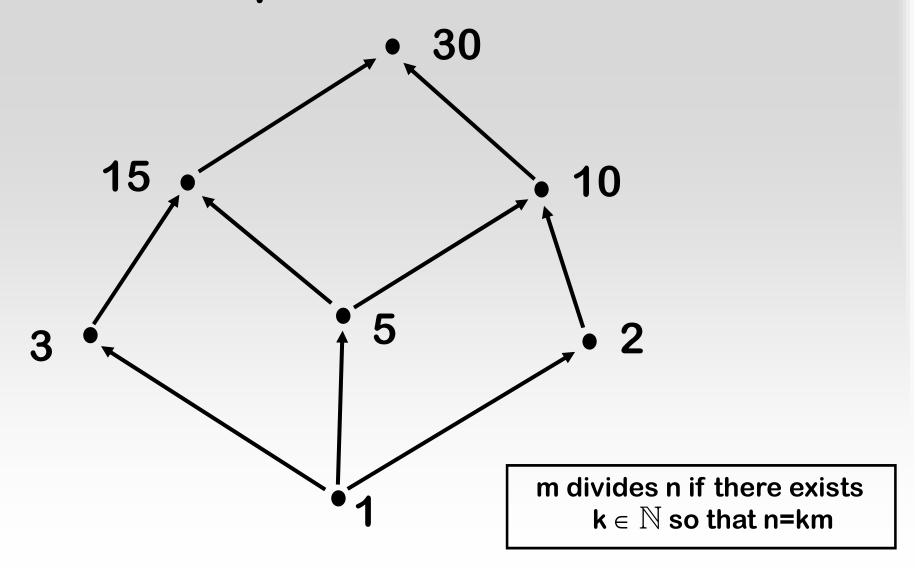
Anti-symmetric*: $\forall a,b \in A$, (aRb ∧ a ≠ b) $\rightarrow \neg$ (bRa).

<u>Transitive:</u> \forall a,b,c ∈ A, (aRb ∧ bRc) \rightarrow aRc.

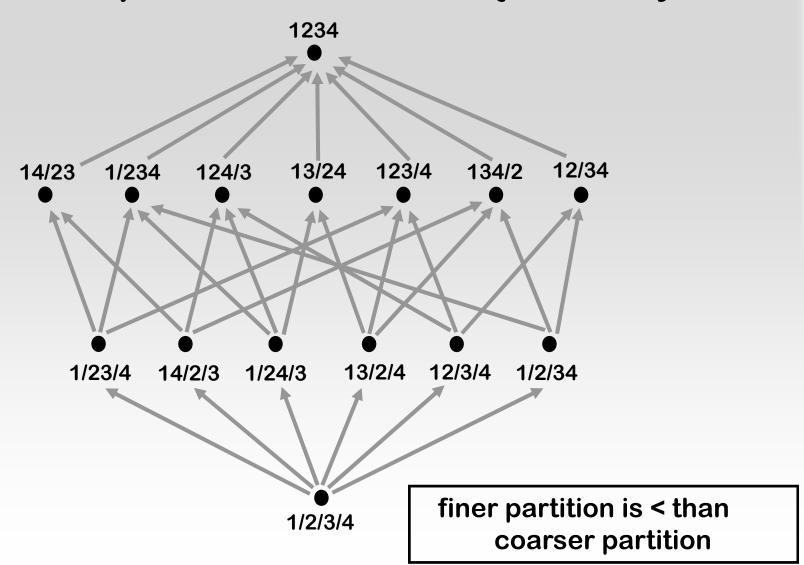
Hasse Diagram



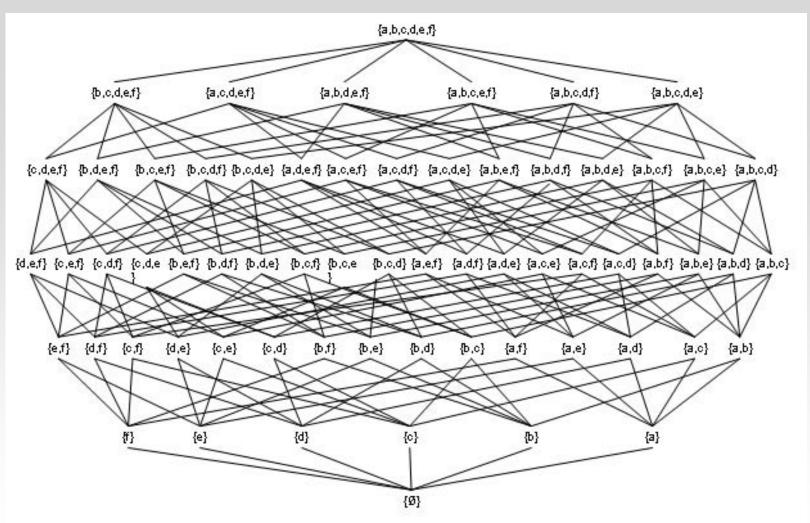
Example: Divides Relation



Example: Partitions of {1,2,3,4}



Example: all Subsets of {a,b,c,d,e,f}



Taken from Wikipedia (where is the bug?)

Total Order

Definition: A partial order R is said to be total if

 $\forall a,b \in A, a \neq b \rightarrow (aRb) \text{ or } (bRa)$

Every two different elements $a,b \in A$ are <u>comparable</u>.

Examples: The \leq , < relations on numbers.

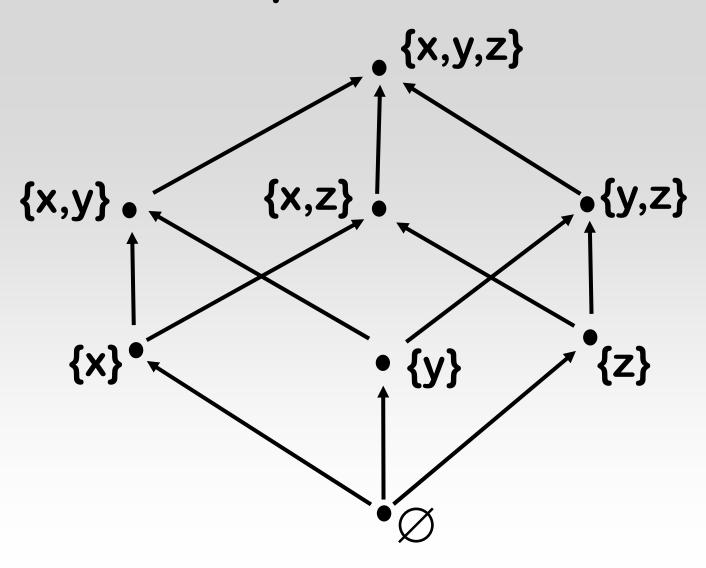
Non-examples: The \subset , \subseteq relations on sets.

ניתנים להשוואה/ברי השוואה

Total order יחס סדר מלא

Example: < Relation on \mathbb{Z}

Non-Example: Subset Relation



Minimum, Minimal

<u>Definition</u>: Let be a partial order on a set A. An element $a \in A$ is <u>minimum</u> iff aRb for every other element $b \in A$

<u>Definition</u>: Let be a partial order on a set A. An element $a \in A$ is <u>minimal</u> iff :(bRa) for every other element $b \in A$.

Note:

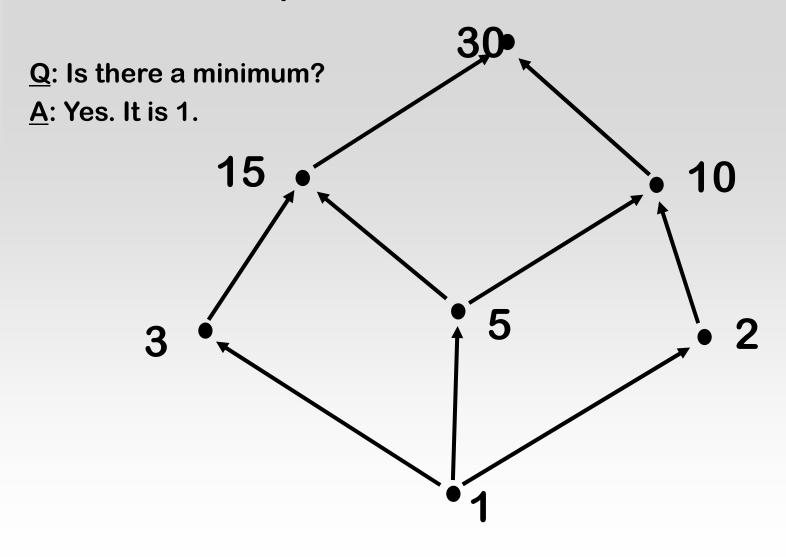
- 1. In a total order minimum and minimal are the same thing.
- 2. A partial order, however, may not have a minimum element and many minimal elements.
- 3. If a poset satisfies that every nonempty $B \subseteq A$ has a minimum, then is called a <u>totally ordered set</u>.

Example: < Relation on ℕ

Q: Is there a minimum?

<u>A</u>: Yes. It is 0.

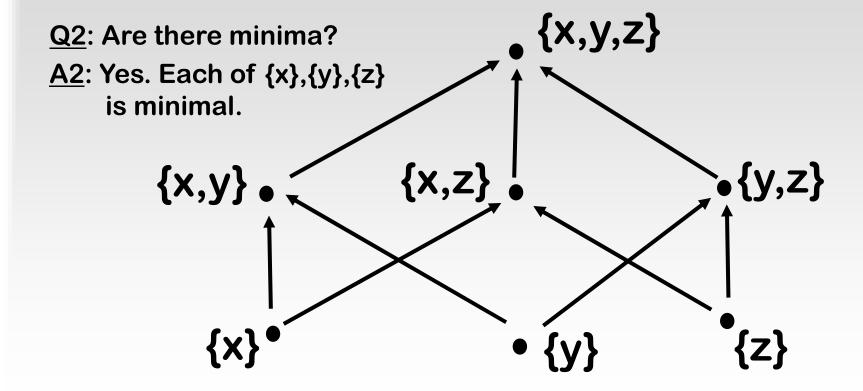
Example: Divides Relation



Example: Subset Relation on $P(\{x,y,z\})\setminus \emptyset$

Q1: Is there a minimum?

<u>A1</u>: No.



Exercise

Let
$$A = \{2,3,4,6,12\}$$
.
Let $S = \{(x, y) \in A \times A : x \text{ divides } y\}$.

Q1: Find a total order relation on A that contains S.

Q2: Find a partial order relation on A, which is contained in S and has exactly three minimal elements.