מתמטיקה בדידה Discrete Math

Lecture 10

Binary Relations: Characterization <u>Definition</u>: A binary relation, R, on a set A is

 $\label{eq:reflexive: a for a constraint} \begin{array}{l} \hline Reflexive: \forall a \in A, \ aRa. \\ \hline Anti-Reflexive: \forall a \in A, \ \neg(aRa). \end{array}$

 $\label{eq:symmetric: } \begin{array}{l} & \forall a, b \in A, \ aRb \to bRa. \\ & \underline{Asymmetric:} \ \forall a, b \in A, \ aRb \to \neg (bRa). \\ & \underline{Anti-symmetric:} \ \forall a, b \in A, \ (aRb \land bRa) \to a = b. \end{array}$

<u>Transitive:</u> $\forall a,b,c \in A$, (aRb \land bRc) \rightarrow aRc.

Asymmetric vs. Anti-Symmetric

<u>Asymmetric</u> aRb implies \neg (bRa) for all $a, b \in A$.

<u>Anti-symmetric</u> aRb, bRa implies a = b for all $a, b \in A$.

<u>Anti-symmetric</u>^{*} aRb implies \neg (bRa) for all $q = b \in A$.

Claim: Anti-symmetric = Anti-symmetric*

Can think of <u>Anti-symmetric</u>* as <u>"weak Asymmetric"</u>

יחס שקילות

Equivalence relation

Equivalence Relations: Examples

"Equality" (=) – a ~ b if and only if a = b

"Same eye color" – a ~ b if and only if they have the same eye color.

"Same number of letters" – a ~ b are equivalent if and only if the number of letters in word a is the same as in b.

"Congruence mod 2" – a ~ b if and only if (a-b) is even.

Equivalence Class

<u>Definition</u>: Let R be an equivalence relation on A. The <u>equivalence class</u> of an element $a \in A$ is defined as:

 $\textbf{[a]}_{R}\textbf{:=} \{b \in A \mid aRb\}$

that is, the set of all elements in A that a is equivalent to.

Notation: Sometimes we write [a] instead of $[a]_R$

Equivalence class

מחלקת שקילות

Equivalence Class: Examples

 $\label{eq:ality} \begin{array}{l} \text{``Equality of sets''} (=) - A \sim B \text{ if and only if } A = B \text{ (as sets)} \\ \underline{\Omega} \text{: What is the equivalence class [{1,2,3}]?} \\ \underline{A} \text{: All sets whose elements are 1,2,3.} \\ \underline{Examples} \text{: } \{1,3,2\} \in [\{1,2,3\}], \quad \{x \in \mathbb{N} \mid 0 < x \leq 3\} \in [\{1,2,3\}] \end{array}$

"Same eye color" – a ~ b if and only if they have the same eye color. \underline{Q} : Yossi has blue eyes. What is [Yossi]? \underline{A} : All people with blue eyes.

"Congruence mod 2" - a ~ b if and only if (a-b) is even. <u>Q</u>: What is [2]? What is [1]? <u>A</u>: [2] = Evens, [1] = Odd numbers

For the Curious: The Rational Numbers

Elements in \mathbb{Q} are though of as numbers a/b for a,b $\in \mathbb{Z}$.

But a/b = 2a/2b = 3a/3b, and so on... So which one should we pick? Also, how is a/b defined?

Define a relation R on \mathbb{Z}^2 in the following way:

 $R := \{((a,b),(c,d)) \ge \mathbb{Z}^2 x \mathbb{Z}^2 \mid ad=bc \}$

That is, (a,b)R(c,d) if and only if ad = bc.

A <u>rational number</u> is simply a <u>representative</u> (a,b) of an equivalence class for the above relation R.

Exercise

We say that $a \in \mathbb{Z}$ is divisible by $b \in \mathbb{Z}$ if $\exists k \in \mathbb{Z}$ so that a = kb. Define relations S,T on \mathbb{Z} in the following way:

- iSj if and only if i j is divisible by 7.
- iTj if and only if i + j is divisible by 7.

Q1: is S an equivalence relation?

Q2: is T an equivalence relation?

Q3: is SUT an equivalence relation?

* Assuming there are no people with more than one eye color. ** Assuming we have used all eye colors.

Partition vs Equivalence

Proposition: Let A be a set. Then:

Ω = {[a]_~ | a ∈A}

forms a partition of A.

2. For any partition Ω of A, the relation:

 $\textbf{R} = \{(\textbf{a},\textbf{b}) \in \textbf{AxA} \mid \exists \textbf{S} \in \Omega, \, \textbf{a} \in \textbf{S} \text{ and } \textbf{b} \in \textbf{S} \}$

is an equivalence relation on A.

Definition: Let ~ be an equivalence relation on A. then the partition:

 $\Omega = \{ [a]_{\sim} \, | \, a \in A \}$ is called the partition that is induced by ~.

Example: The partition on \mathbb{Z} that is induced by the "Congruence mod 2" relation (a ~ b if and only if (a-b) is even) is:

 $A_1 = Evens$, $A_2 = Odd$ numbers

oud namber

Induced partition

חלוקה מושרית

Example 1

A = $\{1,2,3\} \times \{1,2,3\}$

 $(x,y) \sim (x',y')$ if and only if $x+y = x'+y' \pmod{3}$

(1,1)~(2,3)~(3,2) (1,2)~(2,1)~(3,3) (2,2)~(1,3)~(3,1)

 $\begin{array}{l} \mathsf{A}_1 = \{(1,1),(2,3),(3,2)\} \\ \mathsf{A}_2 = \{(1,2),(2,1),(3,3)\} \\ \mathsf{A}_3 = \{(2,2),(1,3),(3,1)\} \end{array}$

Example 2: Congruence mod 7

A = ℕ and x~y if and only if x-y = 7k for some k ∈ ℤ 1~8~15~22~... 2~9~16~23~... 3~10~17~24~...

 $\begin{aligned} &\mathsf{A}_1 = \{n \in \mathbb{N} : n = 1{+}7k \text{ for some } k \in \mathbb{N}\} = [1] \\ &\mathsf{A}_2 = \{n \in \mathbb{N} : n = 2{+}7k \text{ for some } k \in \mathbb{N}\} = [2] \\ &\mathsf{A}_3 = \{n \in \mathbb{N} : n = 3{+}7k \text{ for some } k \in \mathbb{N}\} = [3] \\ &\text{and so on...} \end{aligned}$

<u>Note</u>: $A_1 \cup A_2 \cup ... \cup A_7 = A$ $\forall i, j \in \{1, 2, ..., 7\}, i \neq j \rightarrow A_i \cap A_j = \emptyset$

Partial Orders

Strict Partial Order

<u>Definition</u>: A binary relation, R, on a set A is said to be a <u>strict partial order</u> if it is

 $\label{eq:asymmetric: basic of the state o$

Teminology: A is said to be a partially ordered set (poset).

 $\label{eq:linear} \begin{array}{l} \underline{Notation} : \mbox{We use \precto denote a strict partial order R.} \\ a \prec b \mbox{ stands for aRb} \\ \hline \mbox{The ordered pair (A, \prec) denotes a poset.} \end{array}$

Strict partial order Partially ordered set יחס סדר חלקי ממש קבוצה סדורה חלקית (קס"ח**)**

Strict Partial Order: Examples

The < relation on numbers: a \prec b iff a < b.

The \subset relation on subsets: A \prec B iff A \subset B.

Both examples are:

Strict partial order Partially ordered set יחס סדר חלקי ממש קבוצה סדורה חלקית (קס"ח**)**

Weak partial order

יחס סדר חלקי

Weak Partial Order: Examples

The \leq relation on numbers: $a \preceq b$ iff $a \leq b$.

The \subseteq relation on subsets: A \preceq B iff A \subseteq B.

The "divides" relation. $m \leq n$ iff $\exists k$ so that n = km.

All examples are:

<u>Reflexive:</u> $\forall a \in A, aRa.$

 $\underline{Anti-symmetric}^*: \forall a, b \in A, (aRb \land a \neq b) \rightarrow \neg(bRa).$

 $\underline{\text{Transitive:}} \ \forall a,b,c \in A, (aRb \land bRc) \rightarrow aRc.$

Total Order

Definition: A partial order R is said to be total if

 $\forall \textbf{a}, \textbf{b} {\in} \textbf{A}, \textbf{a} \neq \textbf{b} {\rightarrow} \textbf{(aRb) or (bRa)}$

Every two different elements a,b $\in A$ are comparable.

<u>Examples</u>: The \leq , < relations on numbers.

<u>Non-examples</u>: The \subset , \subseteq relations on sets.

Comparable ניתנים להשוואה/ברי השוואה Total order איחס סדר מלא

Example: < Relation on \mathbb{Z}
:
1
1
• o
●_1 1
-2

Exercise

Let A = {2,3,4,6,12}. Let S = {(x, y) $\in A \times A$: x divides y}.

Q1: Find a total order relation on A that contains S.

 $\underline{Q2}$: Find a partial order relation on A, which is contained in S and has exactly three minimal elements.