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Last Week: Strict Partial Order

Definition: A binary relation, R, on a set A is said to be
a if itis

Va,b € A, aRb — —(bRa).
Transitive: Va,b,c € A, (aRb A bRc) — aRc.

Examples:

. The < relation on numbers: aRb iff a<b.

. The C relation on subsets: ARB iff A C B.

Strict partial order wnn '?7n 170 on!
Partially ordered set (n"op) N'7n NAITO NXIAP



Weak Partial Order

Definition: A binary relation, R, on a set A is said to be
a if itis

Reflexive: Va € A, aRa.
Va,b € A, (aRb A a #b) — —(bRa).
Transitive: Va,b,c € A, (aRb A bRc) — aRc.

Examples:

. The < relation on numbers: arb iff a<b.

. The C relation on subsets: ARB iff A  B.
. The “divides” relation. mRn iff 3k so that n = km.

Weak partial order ‘77N 1T0 ont



Hasse Diagram
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Example: Partitions of {1,2,3,4}
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Total Order

Definition: A partial order R is said to be if

Va,be A, a#b — (aRb) or (bRa)

Every two different elements a,b € A are comparable.

Examples: The <, < relations on numbers.

Non-examples: The C, C relations on sets.

Comparable NNIIYN M2/NXRNIYNT? D'NY
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Example: < Relation on Z
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Non-Example: Subset Relation
o {X,¥,2}
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Minimum, Minimal

Definition: Let be a partial order on aset A. AnelementacA s
iff aRb for every other element b<c A

Definition: Let be a partial order on aset A. AnelementacAis
minimal iff —(bRa) for every other elementb < A.

Maximum and maximal are defined analogously.

Note:
1. In atotal order minimum and minimal are the same thing.

2. A partial order, however, may not have a minimum element and
many minimal elements.

Totally ordered set 20'N NITO NNy



Example: < Relation on N

Q: Is there a minimum?
A: Yes. Itis 0.
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Example: Divides Relation

Q: Is there a minimum?
A:Yes. ltis 1. /D\
1 ° /. \1 0




Example: Subset Relation on

P({x,y,z})\ &

Q1: Is there a minimum?
A1: No.

Q2: Are there minima? {X,y,Z}

A2: Yes. Each of {x} {y},{z} ¢
is minimal.

{X3Y} ( {X Z} ‘{Y3Z}

> X

{x}° o {y} {z}



Representing Partial Orders
by Set Containment

Every weak partial order can be represented by the
subset relation. Let

R{a} : = {x €A | xRa}
R{b}: = {x cA | xRb}

Then,
aRb if and only if R{a} < R{b}

Same applies for strict partial order and



Example: Divides Relation
e 30

Q1: What is R{10}?
/ \ A1: {1,2,5,10}
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Strict Subset Relation

¢ {1,2,3,5,10,15,30}

{1,3,5,15) ./ \

e {1,2,5,10}
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Subsets From Divides
® 30 - {1,2,3,5,10,15,30}

15 — {1,3,5,15}/ \
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10 — {1,2,5,10}
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\ Divides relation can

®
1 {1) be represen.ted by the
subset relation




An Application: Scheduling
Problems

1. Transitive Closure
2. Topological sorting

3. Chains/antichains



Constructing a Term Schedule

Prerequisite (DT niwnT) Course
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Prerequisite Relation

1 1921 — 2 192'X

1 DMK — 2 naaX

AYNNn TN X1I2n — 0'21N1 12N

DN 12N — D'MNNIATR
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Quick Question

Prerequisite (DT niwnT) Course
1 191N 2 '91'N
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Q: Is the prerequisite relation total?
A: Not total. 1 '92'x and 1 n122a%x are incomparable.



Direct vs. Indirect Prerequisites

Prerequisites:

AYNN TN XI2n — 0'2IN1 12N — D AYNn DIX—> N7Y9n 'vn

Indirect prerequisites:
| v

avnn 'TYJ XIQn % D1IN] 2N % DMAAYNN 'D']N% n'wsn 'UYJ
| | 9

cifa—bandb — c,thena — c.

(— is transitive closure of —)




Transitive Closure

Definition: The of a a binary relation R on a set
A is the intersection of all transitive relations that contain R.

Notation: the transitive closure if R is denoted R*.

R:= (] S

RcS

S 1s transitive

R* is well defined:
1. There always exists a transitive relation that contains R (AxA).
2. The intersection of two transitive relations is also transitive.

Transitive Closure NPTV DIN0



Transitive Closure

Alternative definition: The of a a binary relation
R on a set A is the smallest transitive relation R* on A that
contains R.

Examples:

1. R ="is parent of.” R* = “is ancestor of.”

2. R= “thereisabusfromxtoy.” R*="“itis possible to travel from
x to y by one or more buses.”

3. R=“is adirect prerequisite of y.” R*=“x is a prerequisite of
y.”

Claim: aR*b if and only if there exist a finite sequence of elements
a,,a,,...,a, so that
aRa,, a,Ra,,..., a, ,Ra,, a,Rb



First Year Subjects

1 '91'N 1 nNaa'7x AYNn ™ XIan

Subjects with no prerequisites:

d is a first year subject if <nothing> — d

dis minima/




Recall: Minima/not Minimum

Minimum means “smallest”

a prerequisite for every subject

no minimum in this example.



Constructing a Term Schedule

—> 2 '91'N
— 2 NMATN
— D"2IN1 1an
DN 12N — D'MNNIATR
D1IN1 22N ,AYNNn TN XIAn — D'Avnn DX

NI1DN 'OW, DX ,0IN] AN — n7Y95n 'un

Identify minima/ elements




Constructing a Term Schedule ||

1 01X 1 nNaa'7x AYNn ™ XIan

Start schedule with minimal elements



Constructing a Term Schedule ||

/ — 2 '91'X
/ — 2 NNAA7N
/ — D"IN] 1an

DN 22N —> D'NMNNIATR
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Remove minima/ elements




Constructing a Term Schedule |V
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Identify new minima/ elements




Constructing a Term Schedule V

2 '91'N 2 NN N"IN1 1an
1 91N 1 nNaa'7x AYNNn ™ XIan

Schedule them next, and so on...



No Loops

Will not work if there are “loops.”

For example: if n7yon 'vn—> n'awnn D, then

AYNN TN XI2n — 0'2IN] 12N — DAYNn DIX—> N7Y9n 'vn

1 |

. a— bimplies (b — a).

Asymmetry guarantees that there are no loops.



Another Example: Getting Dressed

Left shoe Right shoe Belt Jacket
Left sock nght sock Pants Sweater
Q: Is there a minimum?
A: No.
Underwear Shirt
Q: What are the minimal

elements?
: Left sock, right sock, underwear, shirt

>



Hasse Diagram

Left shoe Right shoe Belt Jacket
Left sock nght sock Pants Sweater

min(P) ={a € A | ais minimal}

] . ] Underwear Shirt
1. Write all a min(P) in a row

2. Look at A\min(P)



Hasse Diagram ||

1. Write all amin(P’) in a row
2. Look at P’=A\ min(P’)




Hasse Diagram lli

Left shoe Right shoe Belt =  Jacket
Pants Sweater
Left sock Right sock Underwear Shirt

Connect related elements that do not
have an element “between” them.



Topological Sorting

Consider a partial order of tasks to be perfomed. For example:
1. Term schedule.
2. Getting dressed.

We would like to have a order in which to perform the
tasks, one at a time.

Can do this by finding a total order that is consistent with the
partial order. This is what we call a topological sort.

Definition: A topological sort of a partial order R onasetAisa
total ordering, S, on A such that

aRb implies aSb

Topological sort 2171910 [I'



Topological Sort: Example

Left shoe Right shoe Belt Jacket
Pants Sweater
Left sock Right sock Underwear Shirt

shirt S sweater S u-wear S Isock S rsock S pants S Ishoe S rshoe S belt S jacket



Constructing a Topological Sort

Theorem: Every partial order on a finite set has a topological sort.
Remark: True also for infinite sets (but we focus on finite ones).

Proof: We already saw how to construct a topological sort:
1. Pick a minimal element

2. Pick a minimal element among the remaining ones.
3. Andsoon...

Need to make sure that:
1. There is always a minimal element to pick from.
2. What we are constructing is a total order:
a. Asymmetric
b. Transitive
c. Anytwo elements are comparable



Constructing a Topological Sort Il

There is always a minimal element:
1. Sounds sort of obvious for finite sets.
2. Butdoesn’t always hold for infinite — for example (Z,<).

Lemma 1: Every partial order on a nonempty finite set has a
minimal element.

Lemma 2: Construction generates a total order.

Proofs: on the board.



Parallel Task Scheduling

Topological sorting - tasks are executed sequentially.

What if we can execute more than one task at a time?

For example, suppose we have a parallel machine.

Want to minimize the total time to complete the tasks.

Sequentially N'NITO
In parallel 7'ana



Parallel Task Scheduling |l




Can we do any better?

Left shoe Right shoe

Left sock Right sock



Chain

Definition: A chain in a partial order is a set of elements
such that any two elements in the set are comparable

Terminology: A largest chain is also known as a critical path.

min parallel time > max chain size
Can also show that

min parallel time < max chain size

Corollary: min parallel time = max chain size.

Chain NvIv



The ldea

Jacket
Left shoe Right shoe Belt /
Pants Sweater
Left sock Right sock Underwear Shirt

Partition into successive blocks of elements



Antichain

Definition: An antichain in a partial order is a set of
elements such that any two elements in the set
are /ncomparable

Corresponds to a “block.”

If the largest chain is of size t, then the domain can be
partitioned into t antichains.

Dilworth’s Lemma: For all t > 0, every poset with n elements must
have either:

1. A chain of size > t, OR
2. An antichain of size > nlt.

Antichain NIYIY-10INX



Dilworth’s Lemma: Example

Dilworth’s Lemma: For all t > 0, every poset with n elements must

have either:
1. A chain of size > t, OR
2. An antichain of size > nl/t.

In the “getting dressed” poset, setn=10
1. Fort=3, thereis a chain of size 4.

2. Fort=4, thereis no chain of size 5,
but there is an antichain of size 4 > 10/4.



