מתמטיקה בדידה Discrete Math

Lecture 11

Last Week: Strict Partial Order

<u>Definition</u>: A binary relation, R, on a set A is said to be a <u>strict partial order</u> if it is

Asymmetric: \forall a,b ∈ A, aRb → ¬(bRa).

<u>Transitive:</u> \forall a,b,c ∈ A, (aRb \land bRc) \rightarrow aRc.

Examples:

- The < relation on numbers: aRb iff a < b.
- The \subset relation on subsets: ARB iff A \subset B.

Strict partial order Partially ordered set

יחס סדר חלקי ממש קבוצה סדורה חלקית (קס"ח**)**

Weak Partial Order

<u>Definition</u>: A binary relation, R, on a set A is said to be a <u>weak partial order</u> if it is

Reflexive: $\forall a \in A$, aRa.

Anti-symmetric*: $\forall a,b \in A$, $(aRb \land a \neq b) \rightarrow \neg (bRa)$.

<u>Transitive:</u> \forall a,b,c ∈ A, (aRb \land bRc) \rightarrow aRc.

Examples:

- The \leq relation on numbers: aRb iff a \leq b.
- The ⊆ relation on subsets: ARB iff A ⊆ B.
- The "divides" relation. mRn iff ∃k so that n = km.

Hasse Diagram

Example: Partitions of {1,2,3,4}

Total Order

Definition: A partial order R is said to be total if

$$\forall a,b \in A, a \neq b \rightarrow (aRb) \text{ or (bRa)}$$

Every two different elements $a,b \in A$ are <u>comparable</u>.

Examples: The \leq , < relations on numbers.

Non-examples: The \subset , \subseteq relations on sets.

ניתנים להשוואה/ברי השוואה

יחס סדר מלא

Example: < Relation on \mathbb{Z}

Non-Example: Subset Relation

Minimum, Minimal

<u>Definition</u>: Let be a partial order on a set A. An element $a \in A$ is <u>minimum</u> iff aRb for every other element $b \in A$

<u>Definition</u>: Let be a partial order on a set A. An element $a \in A$ is <u>minimal</u> iff \neg (bRa) for every other element $b \in A$.

Maximum and maximal are defined analogously.

Note:

- 1. In a total order minimum and minimal are the same thing.
- 2. A partial order, however, may not have a minimum element and many minimal elements.

Example: < Relation on ℕ

Q: Is there a minimum?

<u>A</u>: Yes. It is 0.

Example: Divides Relation

Example: Subset Relation on $P(\{x,y,z\})\setminus \emptyset$

Q1: Is there a minimum?

<u>A1</u>: No.

Representing Partial Orders by Set Containment

Every weak partial order can be represented by the subset relation. Let

$$R\{a\} := \{x \in A \mid xRa\}$$

$$R\{b\} := \{x \in A \mid xRb\}$$

Then,

aRb if and only if $R\{a\} \subseteq R\{b\}$

Same applies for strict partial order and ⊂

Example: Divides Relation

Strict Subset Relation

Subsets From Divides

An Application: Scheduling Problems

1. Transitive Closure

2. Topological sorting

3. Chains/antichains

Constructing a Term Schedule

Prerequisite (דרישות קדם)	Course
אינפי 1	2 אינפי
אלגברה 1	אלגברה 2
מבוא מד' מחשב	מבני נתונים
מבני נתונים	אלגוריתמים
מבוא מד' מחשב, מבני נתונים	ארכ' מחשבים
'מבני נתונים, ארכ	מע' הפעלה

Prerequisite Relation

1 אינפיo 2

אלגברה 2 \rightarrow אלגברה 1

מבני נתונים ightarrow מבוא מד' מחשב

אלגוריתמים ightarrow מבני נתונים

ארכ' מחשבים ightarrow מבוא מד' מחשב, מבני נתונים

'מע' הפעלה \rightarrow מבני נתונים, ארכ

Quick Question

Prerequisite (דרישות קדם)	Course
אינפי 1	2 אינפי
אלגברה 1	אלגברה 2
מבוא מד' מחשב	מבני נתונים
מבני נתונים	אלגוריתמים
מבוא מד' מחשב, מבני נתונים	ארכ' מחשבים
מבני נתונים, ארכ',שפ' תכנות	מע' הפעלה

Q: Is the prerequisite relation total?

<u>A</u>: Not total. אינפי and אלגברה are incomparable.

Direct vs. Indirect Prerequisites

Direct Prerequisites:

מע' הפעלה \leftrightarrow ארכ' מחשבים \leftrightarrow מבני נתונים \leftrightarrow מבוא מד' מחשב

Indirect prerequisites:

מע' הפעלה \leftarrow ארכ' מחשבים \rightarrow מבני נתונים \rightarrow מבוא מד' מחשב \uparrow

Transitivity: if $a \rightarrow b$ and $b \rightarrow c$, then $a \rightarrow c$.

 $(\rightarrow$ is <u>transitive closure</u> of \rightarrow)

Transitive Closure

<u>Definition</u>: The <u>transitive closure</u> of a a binary relation R on a set A is the intersection of all transitive relations that contain R.

Notation: the transitive closure if R is denoted R*.

$$R^* = \bigcap_{R \subseteq S} S$$

$$S \text{ is transitive}$$

R* is well defined:

- 1. There always exists a transitive relation that contains R (AxA).
- 2. The intersection of two transitive relations is also transitive.

Transitive Closure

Alternative definition: The <u>transitive closure</u> of a a binary relation R on a set A is the smallest transitive relation R* on A that contains R.

Examples:

- 1. R ="is parent of." $R^* =$ "is ancestor of."
- 2. R = "there is a bus from x to y." R* = "it is possible to travel from x to y by one or more buses."
- 3. $R = "x is a direct prerequisite of y." <math>R^* = "x is a prerequisite of y."$

Claim: aR*b if and only if there exist a finite sequence of elements $a_1, a_2, ..., a_k$ so that

$$aRa_1, a_1Ra_2, ..., a_{k-1}Ra_k, a_kRb$$

First Year Subjects

אינפי 1

אלגברה 1

מבוא מד' מחשב

Subjects with no prerequisites:

d is a first year subject if < *nothing* $> \rightarrow d$ d is minimal

Recall: Minimal not Minimum

Minimum means "smallest"

a prerequisite for every subject

no minimum in this example.

Constructing a Term Schedule

```
1 אינפי 1 אינפי 1 אינפי 1 אלגברה 1 אלגברה 1 מבני נתונים 1 מבני נתונים 1 מבני נתונים אלגוריתמים 1 מבני נתונים ארכ' מחשבים 1 מבני נתונים 1 מבני נתונים 1 מבני נתונים ארכ' 1 מבני נתונים 1 מבני נתונים 1 מבני נתונים, ארכ',שפ' תכנות 1
```

Identify minimal elements

Constructing a Term Schedule II

אינפי 1

אלגברה 1

מבוא מד' מחשב

Start schedule with minimal elements

Constructing a Term Schedule III

אינפי 2 ightarrow אינפי 1 אלגברה ightarrow אלגברה ightarrow מבני נתונים ightarrow מבני נתונים אלגוריתמים ightarrow מבני נתונים ארכ' מחשבים ightarrow מבני נתונים, ארכ',שפ' תכנות מע' הפעלה ightarrow מבני נתונים, ארכ',שפ' תכנות

Remove minimal elements

Constructing a Term Schedule IV

ightarrow 2 אינפי

 \rightarrow 2 אלגברה

 \rightarrow מבני נתונים

אלגוריתמים ightarrow מבני נתונים

ארכ' מחשבים ightarrow מבני נתונים

מע' הפעלה \rightarrow מבני נתונים, ארכ',שפ' תכנות

Identify new minimal elements

Constructing a Term Schedule V

Schedule them next, and so on...

No Loops

Will not work if there are "loops."

For example: if ארכ' מחשבים ightarrowמע' הפעלה, then

מע' הפעלה
$$\leftarrow$$
ארכ' מחשבים \rightarrow מבני נתונים \rightarrow מבוא מד' מחשב \uparrow

Asymmetry: $a \rightarrow b$ implies $\neg(b \rightarrow a)$.

Asymmetry guarantees that there are no loops.

Another Example: Getting Dressed

Hasse Diagram

Hasse Diagram II

2. Look at P''=A\ min(P')

Left sock Right sock Underwear Shirt

Hasse Diagram III

Connect related elements that do not have an element "between" them.

Topological Sorting

Consider a partial order of tasks to be performed. For example:

- Term schedule.
- 2. Getting dressed.

We would like to have a <u>specific</u> order in which to perform the tasks, one at a time.

Can do this by finding a <u>total</u> order that is consistent with the partial order. This is what we call a <u>topological sort</u>.

<u>Definition</u>: A <u>topological sort</u> of a partial order R on a set A is a total ordering, S, on A such that

aRb implies aSb

Topological Sort: Example

shirt S sweater S u-wear S Isock S rsock S pants S Ishoe S rshoe S belt S jacket

Constructing a Topological Sort

Theorem: Every partial order on a finite set has a topological sort.

Remark: True also for infinite sets (but we focus on finite ones).

Proof: We already saw how to construct a topological sort:

- 1. Pick a minimal element
- 2. Pick a minimal element among the remaining ones.
- 3. And so on...

Need to make sure that:

- 1. There is always a minimal element to pick from.
- 2. What we are constructing is a total order:
 - a. Asymmetric
 - b. Transitive
 - c. Any two elements are comparable

Constructing a Topological Sort II

There is always a minimal element:

- Sounds sort of obvious for finite sets.
- 2. But doesn't always hold for infinite for example (Z,<).

Lemma 1: Every partial order on a nonempty finite set has a minimal element.

Lemma 2: Construction generates a total order.

Proofs: on the board.

Parallel Task Scheduling

Topological sorting - tasks are executed sequentially.

What if we can execute more than one task at a time?

For example, suppose we have a <u>parallel</u> machine.

Want to minimize the total time to complete the tasks.

Sequentially In parallel

סדרתית במקביל

Chain

<u>Definition</u>: A <u>chain</u> in a partial order is a set of elements such that any two elements in the set are comparable

Terminology: A largest chain is also known as a critical path.

min parallel time ≥ max chain size

Can also show that

min parallel time ≤ max chain size

Corollary: min parallel time = max chain size.

שרשרת Chain

Partition into *successive* blocks of <u>incomparable</u> elements

Antichain

<u>Definition</u>: An <u>antichain</u> in a partial order is a set of elements such that any two elements in the set are *in*comparable

Corresponds to a "block."

If the largest chain is of size t, then the domain can be partitioned into t antichains.

<u>Dilworth's Lemma</u>: For all t > 0, every poset with n elements must have either:

- 1. A chain of size > t, OR
- 2. An antichain of size $\geq n/t$.

Dilworth's Lemma: Example

<u>Dilworth's Lemma</u>: For all t > 0, every poset with n elements must have either:

- 1. A chain of size > t, OR
- 2. An antichain of size $\geq n/t$.

In the "getting dressed" poset, set n = 10

- 1. For t = 3, there is a chain of size 4.
- 2. For t = 4, there is no chain of size 5, but there is an antichain of size $4 \ge 10/4$.