
Formal Verification

Yoav Rodeh

Jerusalem College of Engineering

1 Introduction

1.1 Testing vs. verification

Imagine you are building: A chip with 100K transistors, a flight controller with
many processes running in parallel. Every few days the systems crashes. What
to do?

Rare unexpected coincidences can happen. Like two processes running at the
same time. one does x = x + 1, one does x = x − 1. With right timing in the
end, x = 1 and not x = 0.

For checking correctness of a program:

1. Human testing.
2. human written automatic tests.
3. More clever - add randomness.
4. Most clever - prove correctness of your program.

This all happens because we really have unexpected bugs.

1.2 What do we want to show?

1. In a program for playing chess, we want to say that every move it makes is
legal. This is very complex so we break it down to small rules:
(a) Exactly one piece moves.
(b) If the piece that moves is a pawn then...
(c) if its a horse then ...
(d) The king is not threatened after the move (of course this is again more

complex)
(e) etc.

2. Circuit for calculating sqrt, we want to say that for every input x, the output
y satisfies y ∗ y = x.

3. In a printer serving many computers, we want that every request made will
eventually be served.

Last thing is more interesting than it seems, why? because we have a time
thing going on. This is very important for computers.

First thing we have to do, is find a logic that will talk about things that
change through time.

2 Linear Temporal Logic - LTL

We want to write formulas of systems that change through time. We have boolean
variables like every other logic, but they can change through time. For that we
consider infinite sequences of states. Let π be such a sequence : π(0), π(1),

Our formulas contain:

– variable names.

– boolean operators (∨,∧,¬, etc.)

– temporal operators G,F,U,X.

Each formula is evaluated over a specific point in time. so we write for example

π, 6 |= p ∧ q

if both p and q are true at the 6-th state of π.

What are the temporal operators (draw an example of a sequence and see
where the formulas are true).

1. π, i |= G(p) if p is true from time i on.

2. π, i |= F (p) if p is true at some point j ≥ i.
3. π, i |= X(p) if p is true at i+ 1.

4. π, i |= pUq if p is true if there is some j ≥ i, where q is true, and for all
i ≤ k < j, p is true.

We say that π |= φ, if π, 0 |= φ.

2.1 Example formulas

This was written for a variable p, but actually we can combine formulas: Show
this on some specific sequence.

1. G(Xp ∨ p) - first see where Xp ∨ p is true, and then check G.

2. F (p ∧Xp ∧XXp)
3. F (p ∨Xp), is actually F (p).

4. G(p) = ¬F (¬p).
5. GF (p) - p appears infinitely often.

6. FG(p) - p is true from some point on.

7. F (p) = trueUp

8. G(p) = ¬(trueU¬p) - so we actually only need U and X.

9. G(a ∧ b) = G(a) ∧G(b).

10. G(a ∨ b) 6= G(a) ∨G(b).

11. F (p) = p ∨XF (p)

2.2 Mutual Exclusion

Two processes, P1 and P2, each loops through:

1. non-critical
2. wait
3. critical

properties:

1. safety: G(¬(crit1 ∧ crit2))
2. liveness: GF (crit1) ∧GF (crit2)
3. but what if they dont want to? so weaker form: (GF (wait1)→ GF (crit1))∧
...

2.3 Traffic light

It has red green and yellow.

1. GF (green)
2. has to be yellow in the middle G(red→ ¬Xgreen)
3. order of colors can be stated in a similar way.
4. G(red → redU(yellow ∧ yellowUgreen)) - when you are red, you’ll be red

until you’re yellow, and then yellow until green.

2.4 elevator example

The goal of this exercise is to specify some properties of an elevator system.
Assume that there is an elevator door at each door of the building with an up
and a down button, and one button for each door in the elevator cabin.

1. ati : The elevator is at the i-th floor.
2. open : The elevator door is open.
3. openi: The door at the i-th floor is open
4. pressi: Someone is pressing the button for the i-th floor inside the elevator.
5. pressUpi: Someone is pressing the ”up” button on the i-th floor.
6. pressDowni: Someone is pressing the ”down” button on the i-th floor.

Describe the following properties by LTL formulae:

1. The elevator is never at the first and second floor at the same time.
2. If a button is pushed on some floor, the elevator will serve that floor.
3. A floor door is only open if the elevator is at that floor.
4. Again and again the elevator returns to the i-th floor.
5. If no button is pushed and the elevator is at the i-th floor, it will wait at

that floor until a button is pushed.

2.5 More operators

1. Weak Until, marked pWq, means that p is true until q is true, or it just goes
on forever. So is actually equivalent to:

pWq = (pUq) ∨Gp)

2. Release, marked pRq or sometimes pV q, means that q is true until p releases
it. That is, when p becomes true, q still has to be true but right after it can
be whatever it wants. This is actually:

pRq = ¬(¬pU¬q)

To understand the last one, lets see what is the negation of pUq:

1. Either q never occurs.
2. Or, q occurs, but before its first occurrence p fails. That is, the trace will be

something like: (p,¬q), (p,¬q), (¬p,¬q)

To conclude:
¬(pUq) = G(¬q) ∨ (¬qU(¬q ∧ ¬p))

2.6 Exercises

Formalize in LTL:

1. If p occurs at least twice, then p occurs infinitely often.

F (p ∧X(F (p)→ GF (p)

2. p holds at all even states - this we cannot express:

p ∧G(p→ XX(p))

Does not hold.
3. p holds at all even states - and does not hold on all odd places:

p ∧X(¬p) ∧G(p↔ XX(p))

4. If p holds at a state si, then q must holds at at least one of the two states
just before si, that is si?1 and si?2.

G(¬q ∨X(¬q)→ XX(¬p)

And we should probably think of the initial state here and fix the formula.
5. p never holds at less than two consecutive states (that is, if p holds at a state
si, it also holds either at the state si+1 or at the state si−1.

G(¬p ∧X(p)→ XX(p)) ∧ (p→ X(p))

3 Modeling Systems

What is our system, how can we talk about it mathematically?
Assume all our variables are boolean and examine a simple 3 bit counter:

init(bit0) := 0;

init(bit1) := 0;

init(bit2) := 0;

next(bit0) := !bit0;

next(bit1) := bit1 xor bit0;

next(bit2) := bit2 xor (bit0 & bit1);

We can write all sorts of formulas:

G(bit0 & bit1 & bit2 -> X(!bit0 & !bit1 & !bit2))

GF(bit0 & bit1 & bit2)

GF(!bit0 & bit1 & !bit2)

Thinking of calculations, this model is not very interesting - if we draw its states,
its just a circle. There is one computation path only.

We add a variable that if its true, the counter jumps by 2 and not one.

init(bit0) := 0;

init(bit1) := 0;

init(bit2) := 0;

init(jump) := {0,1};

next(bit0) := jump ? bit0 : !bit0;

next(bit1) := jump ? !bit1 : bit1 xor bit0;

next(bit0) := bit2 xor ((jump & bit1) | (!jump & bit1 & bit2));

next(jump) := {0,1};

What is this variable jump? it can take whatever value it wants. Each state will
have 4 values. And we actually have two initial states. Notice that graph now.
Now we have many possible calculations. What formulas are possible now? the
previous ones are not.

Remark: If our counter was again simple, but with a variable saying - count
or don’t count. Now we can get stuck constantly in the same number. A standard
thing here is to add to the formulas the antecedent GF (count). It is called
fairness and we will discuss more of it.

3.1 Kripke Structure

Given a set of atomic propositions AP . A Kripke structure is a tuple 〈S, I,R, L〉,
where

– S is the set of states.

– I ⊆ S is the initial state.
– R ⊆ S×S is the transition relation. It is required that for every s ∈ S there

is some s′ ∈ S s.t. (s, s′) ∈ R.
– L : S → 2AP is the labeling function.

A path π in the Kripke structure is a sequence of states s0, s1, ... where s0 ∈ I,
and for each i, (si, si+1) ∈ R.

We will write K |= φ if φ is true on all paths of K.

3.2 modeling asynchronous behaviour

Semaphore of two processes. General idea:

1. Each process is a four state variable : {idle, entering, critical, exiting}.
2. There is a boolean semaphore. when a process moves from entering to
critical it turns it true.

3. A process cannot move to critical if the semaphore is true.
4. When a process leaves exiting it turns semaphore to false.
5. In idle and critical we can stay as long as we want. From entering and
exiting we move when we can.

idlestart entering critical exiting
sem =?F ; sem := T

sem =?T

sem := F

When modelling asynchronous system there is the assumption that at each
moment only one of them can move. We can therefore draw the Kripke structure
when we have such two or even more processes.

We can now specify LTL formulas and check them. What would be true on
such a model.

3.3 enhancements

We can have non-determinism in slightly more complex ways than just having
totally free variables.

init(x) := 1;

next(x) := x & {0,1};

We can also have variables that are just temporary - they don’t need to appear
in the state - just defines.

init(x) := 0;

init(y) := 0;

DEF d := x | y;

next(x) := d;

next(y) := (not d) \wedge {0,1}

There are slight problems here if d contains non-determinism itself:

DEF d := {0,1};

next(x) := d;

next(y) := d;

Will x and y get the same value? We would assume that yes but this has to be
checked.

3.4 Exercise

lets look at the SMV tutorial.

4 Checking LTL formulas

1. Easy to check simple G(p) - reachability analysis.
2. Also F (p) - just see that removing p-states, there is no cycle in the graph

reachable from an initial state.
3. How about GF (p)? same, but no cycle at all in the original reachable graph
4. X(p)? easy.
5. How about G(req → F (ack))? Same, but no cycle reachable from a req state.

That is remove all ack. now do reachability from surviving req. In this part
of the graph, check there are no cycles.

6. how about FG(p)? see that any state in a strongly connected components is
p.

7. How about GF (p) → GF (q)? We’re looking for a cycle with p but no q
(counter example). First remove all q. and then if there is any p inside an
SCC we’re bad.

8. pUq? remove all q’s. If there’s a cycle reachable from initial state we’re false.
If there is not !p reachable from initial state we are false.

9. GF (p)→ G(q). The negation is GF (p)∧F (¬q). Calculate SCC’s, Mark each
SCC with a p and each one with a ¬q. We want a path to a p one that goes
through a ¬q one. If one has both we’re done. go back from the p’s and if
we reach a ¬q we have a counter example.

10. GF (p) ∧ GF (q) We can just check both, but in a different way: For this
we need a trick. We want both to run infinitely. If they do then there is
also a sequence of ...p...q...p...q...p...q.... This we can check. Add a variable
x ∈ {0, 1, 2}:

next(x) := case

x = 0 & p : 1;

x = 1 & q : 2;

x = 2 : 0;

esac;

Now, all we want is: GF (x = 2) (why wont 0 or 1 work?)
11. GF (p) ∨GF (q) Just check GF (p ∨ q).
12. How about X? we can remember stuff and then check later. G(p → Xq)

remember p with a variable p′ and then just check G(p′ → q)

Real LTL model checking is more difficult, but this is a start.

5 Bounded Model Checking

Two links for the stuff we learn here:

1. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.6391&rep=

rep1&type=pdf

2. Another one with more details about all formulas is: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.60.9074&rep=rep1&type=pdf

We have too many states to really play with the graph as we did before. We
want a way to deal with these systems without actually building them.

5.1 The idea

We are given an LTL formula φ and a description of a structure - just the next
and init statements.

Lets start writing boolean formulas and see what they mean... what satisfying
assignments they have. Keep working here with an example.

init(x) = 0

init(y) = 0

init(z) = 0

init(e) = {0,1}

next(x) = e ? x : !z

next(y) = e ? y : x

next(z) = e ? z : y

next(e) = {0,1}

5.2 Init and Trans

What is this formula:

(x = 0) ∧ (y = 0) ∧ (z = 0) ∧ (e = 0 ∨ e = 1)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.6391&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.6391&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.9074&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.9074&rep=rep1&type=pdf

Its easily derived from the init statements, and an assignment satisfies if it
describes an initial state.

Notice how we describe a set of states here without actually writing the list
down.

Now make new variables x′, y′, z′, e′ and look at the following formula:

(x′ = e?x : ¬z) ∧ (y′ = e?y : x) ∧ (z′ = e?z : y) ∧ (e′ = 0 ∨ e′ = 1)

An assignment requires 8 values. Which assignments make this true?
Call the first formula Init(x, y, z, e), or for short Init(V). Call the second

one Trans(x, y, z, e, x′, y′, z′, e′) or for short Trans(V, V ′)

5.3 Many possible formulas

Now how about these formulas, what assignments satisfy them?

1. (x = 0) ∧ Trans(V, V ′)
2. Trans(V, V ′) ∧ (x′ = 1)
3. Init(V) ∧ Trans(V, V ′)
4. Init(V) ∧ Trans(V, V ′) ∧ Trans(V ′, V ′′)
5. Init(V0) ∧ Trans(V0, V1) ∧ ... ∧ Trans(Vk−1, Vk) Mark this one by [M]k.

Assignments that satisfy it mark paths of length k in the model.
6. [M]3 ∧ x3 = 1
7. [M]3 ∧ (x0 = x3) ∧ (y0 = y3) ∧ (z0 = z3) ∧ (e0 = e3) For short, mark the

second part V3 = V0.
8.

(x′ = y′) ∧
i=7∨
i=3

([M]i ∧ (Vi = V ′))

This one is tricky - note we added extra variables : V ′, just for our own use.

The important point here is the size of the formulas. It is small relative to
the size of the Kripke structure.

5.4 Checking simple LTL formulas

Lets say we want to check G(p). A counter example would be ¬G(p) = F (¬p),
which is a path that has ¬p somewhere. If we have some sort of upper bound k
on the length of such a path, we can write the formula:

[M]k ∧
k∨
i=0

¬pi

This formula is satisfiable iff there is a counter example of length at most k.
The formula itself is of size O(n · k), where n is the size of the description of
the model. Usually k is pretty small, and n is much smaller than the size of the
Kripke structure.

This formula we send to a SAT-solver. That can take a long time, but today
they are many times pretty good. We will hopefully discuss them later in the
course.

Note we can never really prove a formula, but by increasing k we can be more
and more convinced it is true.

Now how about checking F (p), its negation is G(¬p). We want a path that is
always ¬p. For this we need an infinite path. a path with a loop. So our formula
will therefore be based on this one:

[M]k ∧
k−1∨
l=0

(Vk = Vl)

An assignment to it describes a path with a loop. To it we add:

∧
k−1∧
i=0

¬pi

Satisfying all this mean we have an infinite path with all ¬p as we wanted.

5.5 ad hoc LTL formula checking

We can try this trick for many formulas. First we negate and then write a formula
that will be satisfiable if there is a path satisfying the negation.

1. checking FG(p). The negation is GF (¬p). The formula is :

[M]k ∧
k−1∨
l=0

(
(Vk = Vl) ∧

k−1∨
i=l

¬pi

)
2. Checking GF (p). The negation is FG(¬p). The formula is :

[M]k ∧
k−1∨
l=0

(
(Vk = Vl) ∧

k−1∧
i=l

¬pi

)
3. Find a path satisfying pUq. no need to negate.

[M]k ∧
k∧
i=0

qi ∧ i−1∧
j=0

pi


4. Checking pUq. The negation is G(¬q) ∨ (¬qU¬p ∧ ¬q). We can check these

separately. We just saw two formulas for this.
5. Find counter example for G(p → F (q)). Negation: ¬G(¬p ∨ F (q)) = F (p ∧
G(¬q)) We are looking for some p that has after it infinitely many ¬q’s.

[M]k ∧
k−1∨
l=0

(
(Vk = Vl) ∧

k−1∨
i=0

(
pi ∧

l∧
t=i

¬qt

)
∧
k−1∧
i=l

¬qi

)
Note that this formula is already O(k3).

6 General LTL - Bounded model checking

6.1 Prelude for the general thing

For this we need a little trick. Just for the trick, here is an example. Lets say we
want to find a path satisfying F (p ∧ q). We can do as usual and write:

[M]k ∧
k∨
i=0

pi ∧ qi

That’s fine, but if this p∧q appears many times in the formula we want to create
shorthand for it and make the formula smaller. We would like a new variable
satisfying x = p ∧ q. That is actually easy to achieve:

[M]k ∧
k∧
i=0

(xi = pi ∧ qi) ∧
k∨
i=0

xi

Now an assignment satisfying this formula will necessarily give x the correct
values. if x is wrong the formula is false.

We have now actually added a line in our table:

time 0 1 2 3 4 5 6
p + − − + + + +
q − + − − − + −
x − − − − − + −

Extending this idea, we want x to be actually X(p).

[M]k ∧
k−1∨
l=0

(
(Vk = Vl) ∧

k−1∧
i=0

(xi = pi+1) ∧ (xk = xl)

)

And if we want to find an example for the formula G(p ∨X(p)):

[M]k ∧
k−1∨
l=0

(
(Vk = Vl) ∧

k−1∧
i=0

(xi = pi+1) ∧ (xk = xl)

)
∧
k−1∧
i=0

(pi ∨ xi)

6.2 Checking all LTL formulas

1. Given an LTL formula, we first negate it. Now we write a formula that will
be satisfiable iff there is a path satisfying the negation. Run with an example
such as F (pUX(p→ G(q))

2. Our formula will always start with:

[M]k ∧
k−1∨
l=0

((Vk = Vl) ∧ ...)

3. For each temporal operator we create a new variable.
4. We now create a formula binding the new variable to actually hold the value

of its sub-formula.
(a) for G(q), variable is a. we write(

al =
∧k−1
i=l qi

)
∧

(a0 = q0 ∧ a1) ∧
(a1 = q1 ∧ a2) ∧...
(al−1 = ql−1 ∧ al) ∧
(al+1 = al) ∧ ... ∧ (ak = al)

(b) for X(p→ G(q)), variable is b. we write

(b0 = p1 → a1) ∧
(b1 = p2 → a2) ∧
...
(bk−1 = pk → ak) ∧
(bk = bl)

(c) for pUX(q → G(q)), variable is c. we write

(c0 = b0 ∨ (p0 ∧ c1)) ∧
(c1 = b1 ∨ (p1 ∧ c2)) ∧
...
(ck−1 = bk−1 ∨ (pk−1 ∧ ck)) ∧
(ck = cl)∧
(¬bl ∧ ¬bl+1 ∧ ... ∧ ¬bk−1 → ¬cl)

(d) And for F , the variable is d.(
dl =

∨k−1
i=l ci

)
∧

(d0 = c0 ∨ d1) ∧
(d1 = c1 ∨ d2) ∧...
(dl−1 = cl−1 ∨ dl) ∧
(dl+1 = dl) ∧ ... ∧ (dk = dl)

5. Now we write the final formula:

[M]k ∧
k−1∨
l=0

((Vk = Vl) ∧ [a] ∧ [b] ∧ [c] ∧ [d]) ∧ d0

6.3 We are missing a SAT solver

SAT solvers have improved greatly over the past years. Still, in worse case they
are exponential in the number of variables. What is a trivial SAT solver? just
check all assignments.

The complexity we get is related to the size of the formula and not the size
of the graph. That is an important improvement.

7 Induction in bounded model checking

So far we were not able to prove any LTL formula correct. Lets try and do so
by using induction. This we will only do for safety properties: G(p). We want to
show all reachable states satisfy G(p), the induction here is clear:

1. Show initial states satisfy G(p).
2. Show that if a state satisfies p then so does it successor states.

Remember at our disposal is a SAT solver, if we want to check that a boolean
formula is always true, we should negate it, and give it to the SAT-solver. If it
finds a satisfying assignment we are not true. From now on I just write checking
a formula, but actually it needs to be negated first.

1. Init(V0)→ ¬p0
2. p1 ∧ Trans(V1, V2)→ p2

Example 1. A model for a 3-bit counter counting up to 5.

init(x) = init(y) = init(z) = 0

DEF five := x & !y & z

next(z) = five? 0 : !z

next(y) = five? 0 : z XOR y

next(x) = five? 0 : (z & y) XOR x

We want to prove G(¬(x ∧ y)). Induction works here. Both formulas will be
tautologies.

(x = 0) ∧ (y = 0) ∧ (z = 0) → ¬(x ∧ y)
¬(x1 ∧ y1) ∧ Trans(V1, V2)→ ¬(x2 ∧ y2)

7.1 Strengthening the invariant

Sometimes what we try to prove cannot be proved by induction. Think of the
case G(x∧y∧z) This would not work in the second formula. Show the satisfying
assignment.

For this we need to strengthen the inductive invariant. Instead of proving
G(p) we will prove G(q), where q → p. The we need to check three formulas.
The two as above plus another one: q → p.

In this example, q would be x ∧ y

Example 2. Our critical section example:

idlestart entering critical exiting
sem =?F ; sem := T

sem =?T

sem := F

Lets write down Trans. Notice we have two state variables v, u, each can take
one of 4 values, and one semaphore variable sem. At each step either one process
moves or the other.

Trans(V, V ′) =


(v = idle)→ (v′ = idle ∨ v′ = entering) ∧
(v = entering ∧ sem)→ (v′ = critical ∧ ¬sem′) ∧
(v = entering ∧ ¬sem)→ (v′ = entering) ∧
(v = critical)→ (v′ = critical ∨ v′ = exiting) ∧
(v = exiting)→ (v′ = idle ∧ sem′) ∧
u = u′

∨(same(u↔ v))

Here we would like to prove G(¬(u = critical ∧ v = critical)) Base case works,
but step doesn’t. For example the state where u = critical, v = entering, sem =
1. We strengthen it, to

¬(u = critical ∧ v = critical)) ∧ ¬((u = critical ∨ v = critical) ∧ sem)

This seems right, but also won’t work! Notice the state:

v = critical, u = exiting, sem = 1

It satisfies the invariant, but on the next step will violate it. I think adding:

¬(v = critical ∧ u = exiting) ∧ ¬(u = critical ∧ v = exiting)

Will work.

7.2 Longer induction

For proving G(p), instead of just saying p held one step ago, we can assume p a
few steps back. To prove this way we check the formulas:

Init(V0) ∧ Trans(V0, V1) ∧ ... ∧ Trans(Vk−1, Vk)→ (p0 ∧ p1 ∧ ... ∧ pk)
Trans(V0, V1) ∧ ... ∧ Trans(Vk−1, Vk) ∧ Trans(Vk, Vk+1) ∧ p0 ∧ ... ∧ pk → pk+1

On our previous example this should work on the once strengthened formula:

¬(u = critical ∧ v = critical)) ∧ ¬((u = critical ∨ v = critical) ∧ sem)

Using k = 1: looking two steps back - notice how it rules out our bad example.
It will however not work on the original formula since we can always just remain
in critical, so the original problem remains.

This will also help the original counter counting to 5. Wanting to show we
don’t reach 7, lengthening the induction will require a path of length 3 leading
to 7, but such a path does not exist.

In a variant of our model where the counter goes in circles between 6 and 7
will word as well. We assume we are not in seven for the two last steps, so we
cannot be in 6 either, and then it would work.

7.3 distinct states

We can force our states to be different. This does not harm the induction, and
will solve our original problem. The change to the formula is simple.

Why does it not harm the induction? Draw the graph in a doughnut fashion
- first one is initial states, next one is those reachable but different and so on.
Induction base checks first k−1, next one is provable through this new induction
by definition, and so on.

7.4 Last comment

Induction proves, while what we did before can only disprove. Another way of
proving G(p) formulas is our normal method without induction if we just knew
a good k. What would be a good k? the maximal number of states needed to
reach any reachable state. Can we calculate it?

We can write a formula:

[M]k ∧
∧

0≤i<j≤k

Vi 6= Vj

If this formula is satisfiable then there is a state that needs k steps to be reached.
If it is not, then all states are reachable within k steps and we can use that k to
check any G(p) formula.

How about formulas that need a loop? This is much more difficult, because
these might actually need to repeat a state for the counter example. Think of a
counter example needed an infinite number of p’s and q’s - a model where there
a central state leading to a loop with a p and a loop with a q. We will need a
counter example that repeats a state more than once.

So it depends on the formula. If we just want a counter example showing
GF (p), then all we need is exactly one repetition at the end (imagine a much
more complex counter example and simplify it). a simple loop. For this we can
just take k that is larger just by 1 than the one we found with the formula before.

For the example just before it is not so simple, because we may need to repeat
many states, but we can write a formula calculating the max distance between
any two reachable states and then I something like twice that distance plus k
should work.

8 Circuit-SAT to SAT

For checking our formulas we needed something that takes as input a boolean
formula. It would many times be helpful if it could actually get as input a
boolean-circuit and say if it is satisfiable. What is a circuit? its a formula that
can share sub-formulas. Quite useful for making them short.

What is usually provided is something else. Its a SAT checker. As input it
gets a CNF formula: made up of clauses, each consists of literals.

8.1 Every boolean function has a CNF equivalent

This you should all know. Write the truth table. For every 0 in it, write a clause
saying: we are not in this row. All these clauses give us the CNF form. Show
example of x?y : ¬z.

This algorithm is of course exponential, and actually it must be.

8.1.1 Sometimes this must be exponential

Any CNF equivalent of x1 ⊕ x2 ⊕ ...⊕ xn will have 2n−1 clauses:

1. Each clause must contain all variables. If a variable is missing, then we just
dropped at least one legal assignment

2. So each clause drops exactly one assignment.
3. since we have 2n−1 false assignments, we must have this number of clauses

So small formulas we can find exact equivalents, but are we really lost for big
ones?

8.2 Transformation

Instead of finding a formula that is equivalent, we find a formula that is satisfiably
equivalent. That is φ′ is satisfiable if φ is.

The idea is to break down a big formula into a conjunction of very small ones
- each small one can be turned into CNF, and altogether we get CNF. We do
this by adding new variables.

Show an example with a small circuit: each gate gets a new variables, and
we force it to be equal to the value of the gate. We also add the final clause
containing the output variable.

This transformation gives a formula that is linear in the size of the original
one, but adds new variables.

8.2.1 big gates

In real life we may sometimes get into small optimizations that can actually
change our results a lot. This is an example of such a case.

We can be a little more efficient with the big gates. Think of
∨
i xi. We can

try adding many variables - taking it apart into binary operators, we would get
n− 1 new variables.

buy we just want one new variable a and to encode the clause:

(a = x1 ∨ x2 ∨ ... ∨ xn) =
(¬a ∨ (x1 ∨ x2 ∨ ... ∨ xn)) ∧ (a ∨ ¬(x1 ∨ x2 ∨ ... ∨ xn)) =
(¬a ∨ x1 ∨ x2 ∨ ... ∨ xn) ∧ (a ∨ (¬x1 ∧ ¬x2 ∧ ... ∧ ¬xn)) =
(¬a ∨ x1 ∨ x2 ∨ ... ∨ xn) ∧ (a ∨ ¬x1) ∧ (a ∨ ¬x2) ∧ ... ∧ (a ∨ ¬xn)

and so we get just one new variable for the whole gate, and n+ 1 clauses.

9 SAT solving

Exponentially its easy. Most modern SAT-solvers rely on the DPLL algorithm.

boolean SAT(Clauses S)

{

simplify(S);

if (S is empty)

return TRUE;

if (S has an empty clause)

return FALSE;

x = selectVariable(S)

return SAT(assign(S, x = 0) || SAT(assign(S, x = 1)))

}

What is assign? in every clause x appears as is remove the clause. every where
it appears opposite. remove it only.

Two things are missing simplify and selectLiteral.

Show an example.

(p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ (r ∨ q)

9.1 simplification

The original DPLL algorithm had two simplifications:

1. Unit clause propagation. If we have a clause with just one literal, then it
must be true. then assign it, just as we’ve seen before. This is very simple
and very powerful.

2. If a variable appears everywhere in the same polarity, remove all clauses
containing it.

Example 3.

p ∨ q
p ∨ ¬q
¬p ∨ t ∨ s
¬p ∨ ¬t ∨ s
¬p ∨ ¬s
¬p ∨ s ∨ ¬a

Start by noticing that a is pure. Then split on s - and then on one side, on p.
don’t forget to propagate.

At each stage we have a variable we decide on, and then there are those that
result from it. Show how the stack of variables looks.

9.2 How this works for 2-CNF

Let us examine how this algorithm behaves where all clauses are of size 2 (or
less). We decide on a variable, and then we have the resulting assignments. This
can either cause a direct contradiction, or result in a smaller formula.

Claim. In 2-CNF, If original formula is satisfiable, then if decision does not cause
a direct contradiction then resulting formula is satisfiable.

Proof. If we did not reach a contradiction, then what we get now is a subset of
the original clauses. This is important - it does not necessarily happen in non
2-SAT instances.

So we have two sets of clauses - those we have left, and those eliminated by
our partial assignment.

Now take the values of variables
We claim that
Assume now that the original formula has ut

9.3 A different algorithm

each (a∨b) can be interpreted as an implication. If we think of progogation, it is
actually two implications: ¬a → b and ¬b → a. We draw there as a graph with
a vertex for each a and each ¬a.

We try to assign {0, 1} values to vertices. Three rules suffice here for it to be
a valid assignment to the formula:

1. x and ¬x should always be assigned opposing values.
2. if some vertex is given 1 and there is an edge coming out of it then the vertex

it goes into should also be given 1
3. If a vertex is given 0, then the vertices before it (who have edges coming into

it) should also get 0.

Actually notice that we don’t really need rule 3 because rule 1 and 2 give it.
So what we need is an assignment to the graph following the rules. Split the

graph to SCC’s (with the linear algorithm). Note that each SCC must be all 1
or all 0, because even if one vertex is 1 then all become 1 by the second rule.

This means that if some x and some ¬x are in the same SCC the formula is
not satisfiable. This turns out to be an ”iff” condition.

Why? look at the SCC graph - it is a DAG. we want to give it values so
that each SCC gets a 0 or 1 value, SCC’s that hold opposing literals should get
opposing values, and no 1 leads to a 0.

Notice that this graph has a following symmetry. If x leads to y, then ¬y
leads to ¬x. This means that each SCC has the dual SCC with all the opposite
literals.

topologically order the graph. take the first vertex and give it 0. its dual must
get 1, but if this SCC is first then it has no ion edges, and therefore the dual
has no out edges. Go on like this and you’ll always be fine.

9.4 selecting the split variable

This turns out to be quite important. Selecting the right one can make an ex-
ponential difference.

We would generally like to choose a variable that has the most effect.

1. Choose one randomly.
2. choose one that appears the most.
3. Better. Choose one that appears the most in small clauses.

Of course, it is very important that this heuristic does not take too much time
because then it becomes the overhead itself. For example, this heuristic can be
dynamic, but the bookkeeping is usually not worth it.

10 Home brewed SAT solver

We build a small and simple SAT solver. We would really like to optimize this
basic algorithm. Most of the time is constant propagation.

10.1 Keep assignment only

Split steps are very expensive. because we have to remember the situation before
the split and then come back to it. So in each split we should copy the whole
formula. that is very bad.

A better idea is to actually not change the formula at all. but to just keep
the current assignment. Then checking for unit clauses is a little different.

10.2 Literal counting

So how do we keep track of what is going on.

1. each clause will have counters, saying how many literals in it are free, how
many are positive and how many negative.

2. each variable has a list of clauses where it appears positively and a list where
it appears negatively.

3. when a variable is assigned we go over its list of clauses and change their
counters.

4. if a clause has no positive literals, and only one free literal left - it should be
propagated.

show all our basic data-structures. Note that clauses hold pointers to literals
which hold pointers to singular variables.

10.3 assignment queue

how do we handle all these propagation work? we keep a queue saving all our
assigned variables so far (actually literals). when we discover a new constant we
put it in the end. we handle each variable at a time until the queue is completed.

10.4 back tracking

if we try a variable both ways and both eventually lead to failure we have to
backtrack. but notice we have to free set variables and fix clause counts. we
therefore have a special backtrack method.

10.5 improvements

1. (Exercise) change code to first handle all 1-clauses
2. (Exercise) change code so that it does not put new constants in the end if

they are already in the queue. this can improve running time a lot and will
cause our queue to be maximum of length n.

3. Note that the clauses are always in the list of a variable even if they become
true. we would sure want to remove them so we don’t have to check them
every time. However, this can be a big overhead, since when backtracking
we will have to return them.

11 Improvements and problems

Last chapter’s solver was very basic. In the last years a few major improvements
were introduced to this basic scheme.

11.1 watched literals

In our solver, note that we have to handle clauses for every variable touched,
even if they are far from being interesting. We want to catch clauses when they
become of size 1 or 0.

For each clause we choose two literals.

1. In the beginning they are both free. And we don’t care about anything while
they remain so.

2. If one of them turns true. Then clause is satisfied.
3. If one turns false, we search the clause and try to find another free literal to

watch.
(a) If we find someone who is true we move there, understanding the clause

is actually satisfied.
(b) If we find a free literal we move our watch there.
(c) If we find no such literal - then we realise the other watched literal should

now be a constant and we propagate it
4. We will find contradictions in the usual manner - in the last case, trying to

set a variable, we may discover it is already set.

Example: http://www.cs.cmu.edu/~emc/spring06/home_files/zchaff4ed.
new.ppt basically, example shown there is :

v2 + v3 + v1 + v4 + v5
v1 + v2 + v3
v1 + v2
v1 + v4
v1

http://www.cs.cmu.edu/~emc/spring06/home_files/zchaff4ed.new.ppt
http://www.cs.cmu.edu/~emc/spring06/home_files/zchaff4ed.new.ppt

where in the beginning watched literals are the first two.
Here you have to show what happens with back-tracking. Setting the vari-

ables back to free on our queue is enough. There is no need to move watched
literals back.

This saves us the complex backtracking we are used to to.

11.2 back jumping

Consider this:
x1,−x2,−x3
x1,−x2, x3
x1, x2,−x3
x1, x2, x3

y1, y2, ..., y100
−y1,−y2, ...,−y100

Its easy to see that x1 = 0 cannot be. But lets say variable order is x1, y1, y2, ..., y100, x2, x3,
and we start by assigning x1 = 0, so we get:

−x2,−x3
−x2, x3
x2,−x3
x2, x3

y1, y2, ..., y100
−y1,−y2, ...,−y100

Now we assign y1..y100 and then only x2 which gives the problem.
How do we know where to back-jump to? we will see this next week.

11.3 Choosing decision variable

There are many heuristics for choosing a variable order. Here is a relatively
simple one. It is important to notice that our running time should be fast for
this one.

Each variable gets a score according to how many times it appears in clauses.
Higher numbers means the variable is more important and we want to decide on
it.

We keep all variables in a heap and can have fast access to the highest one
easy: O(log(n)).

There is a slight complication we will see next week - new clauses are added
at certain points. For this we need to update the counters of variables, perhaps
changing the heap a bit.

A variation to make new clauses more important, is to once in a while cut
scores by half.

Note this is not really a dynamic heuristic, it does not consider the present
state of clauses. But it is not totally static.

11.4 random restarts

12 Learning new Clauses

Idea is to try and learn from our mistakes. Seeing we reached a conflict, let’s
understand why and not repeat it. We will try and put our understanding of our
conflict into a new clause, add it to our clauses, and therefore avoid searching
the same area again.

12.1 Example 1

Consider the following constraints:

c1 = {x1, x2}
c2 = {x1, x3, x7}
c3 = {−x2,−x3, x4}
c4 = {−x4, x5, x8}
c5 = {−x4, x6, x9}
c6 = {−x5,−x6}

and the following labelling choices: −x9 then −x8 then −x7 then −x1. The
following implication graph leading to a conflict is constructed:

12.2 Example 2

12.3 1-UIP

We can choose any cut to learn a new clause, as long as the conflict is on one
side and the all decisions on the other.

A common heuristic is 1-UIP. We go back until the first time there is only
one variable at the current decision level.

We start with the conflict and expand backwards, whenever there is a variable
of higher older level we just put it in the clause. When our frontier is just with
1 variable - that’s the last one.

There is always guaranteed to be such a clause - because go all the way back,
and just one variable started the current level.

12.4 Back Tracking

Where would we backtrack now. We should go all the way until this clause can
actually be satisfied.

Imagine we would have had our new clause from the start. When would it
start propagating? We have there only one variable from this decision level (this
is 1-UIP), so it would propagate at some point. This point is when all others
were set. so we take the latest level of all other variables. We go back to that
point. Get our new propagation and continue to see what will happen.

Examine our back jumping example and see what happens.

13 BDDs

Reduced ordered binary decision diagram - ROBDD, or for short - BDD. They
are an instrument to represent binary formulas over a set of given variables. It is
simply a different representation than CNF. Lets start with something simpler:

13.1 Binary Decision Trees

Lets look at a tree for (a ∧ c) ∨ ¬b. Draw it in the natural order of variables
(a, b, c).

1. Each node is labelled by a variable name.
2. Each leaf is labelled 0 or 1.
3. The order of variables is fixed (ordered).

This is actually a small automata. How can we improve it?

13.2 Minimization

identify isomorphic sub-trees and identify them. This reduces our tree consider-
ably. Show it on the example. We see two minimization rules:

1. Have only one copy of node.
2. If a node has left and right that are the same, then don’t create it, just use

its children.

How can this be achieved? just take care while creating. First create the two
leaves: trueBDD and falseBDD. Keep a BDD pool, where all nodes created
so far sit.

13.3 unique table

Class BDD {

int level; // variable

BDD left,right;

static Set pool;

public BDD(int level, BDD left, BDD right) {

this.level = level;

this.left = left;

this.right = right;

pool.add(this);

}

public makeNode(int level, BDD left, BDD right) {

if (left == right)

return left;

BDD p = FindInPool(level, left, right);

if (p != null)

return p;

return new BDD(level, left, right);

}

}

How does the pool work? its a hash table, which uses the three values level, left, right
to calculate the hash. For example (level+137∗left+253∗right) mod tableSize.

13.4 Creating BDD’s

How would we create a BDD from formula in some other format?

BDD create(phi, i) {

if (phi == 1) return oneBDD;

if (phi == 0) return zeroBDD;

return makeNode(i,

create(assign(phi, 0), i+1),

create(assign(phi, 1), i+1))

}

Show how this works on a simple example like a⊕ b⊕ c. This is basically expo-
nential, but if we remember our results we can save time (in a temporary hash
table for example).

13.5 Uniqueness

We can actually think of each node of the BDD as a formula (or boolean func-
tion). We see it as it is represented by a very specific boolean circuit, with ITE
gates.

Claim. Given a variable order, for every boolean function there is only one BDD
that implements it.

IT is not hard to see this by induction. for zero and one it is clear. so for one
variable BDDs, and then for two by induction. and so on.

If we are working using BDDs it is very easy to see if two functions are the
same. Also checking for satisfiability is trivial.

13.6 basic BDD manipulations

The real strength of BDDs is in the ability to do boolean operations on them.
A BDD representing the formula v is easy to build: makeNode(level, trueBDD,

falseBDD) What is the BDD for ¬v?
How do we negate a BDD? we go through the vertices and reverse all leaves.

We cant really reverse without destroying the original BDD, so we need to be
slightly more careful. Easiest way:

BDD negateBDD(BDD n)

{

if (n == trueBDD)

return falseBDD;

if (n == falseBDD)

return trueBDD;

return makeNode(n.level, negateBDD(n.left), negateBDD(n.right));

}

This works well except it is really inefficient. Think of a BDD that is not a tree.
So we use dynamic programming.

BDD negateBDD(BDD n)

{

if (n == trueBDD)

return falseBDD;

if (n == falseBDD)

return trueBDD;

BDD old = results.find(negateBDD, n);

if (old != null)

return old;

BDD res = makeNode(n.level, negateBDD(n.left), negateBDD(n.right));

results.add(negateBDD, n, res);

return res;

}

How about assigning a value to a variable?

BDD assignBDD(BDD n, int level, boolean value)

{

if (n is leaf)

return n;

BDD res;

if (n.level == level)

res = value ? n.right : n.left);

else if (n.level < level)

res = makeNode(n.level, assignBDD(n.left,level, value),

assignBDD(n.right,level, value));

else

res = n;

return res;

}

And of course we should remember our previous results. Exercise: Calculate
the support of a BDD. Given a BDD, print out a satisfying assignment from the
BDD. Print out all.

13.7 BDD conjunction

How do we do it? assume x is the topmost variable.

f ∧ g = ite(x, f0, f1) ∧ ite(x, g0, g1)
= ((¬x ∧ f0) ∨ (x ∧ f1)) ∧ ((¬x ∧ g0) ∨ (x ∧ g1))
= (¬x ∧ f0 ∧ g0) ∨ (x ∧ f1 ∧ g1)
= ite(x, f0 ∧ g0, f1 ∧ g1

This is actually not so surprising...

BDD andBDD(BDD f, BDD g)

{

if (f == falseBDD || g == falseBDD)

return falseBDD;

if (g == trueBDD)

return f;

if (f == trueBDD)

return g;

if (f.level < g.level)

return makeNode(f.level, andBDD(f.left, g), andBDD(f.right, g));

else if (g.level < f.level)

return makeNode(g.level, andBDD(f, g.left), andBDD(f, g.right));

else

return makeNode(f.level, andBDD(f.left, g.left), andBDD(f.right, g.right));

}

We have a serious problem with running time, but it can be solved with dynamic
programming as before. For each pair of nodes we save the result of their and.
This promises us a complexity at most O(|f | · |g|).

13.8 General binary operators

This whole thing can work for any binary operator. Examine how the Shannon
expression behaves for ⊕ for example.

So now, given a formula (or circuit) we can bottom up construct BDDs for it.
Constants and lone variables are easy BDDs. We join them using our operations.

This is an algorithm for satisfiability - but it is generally not that good.

13.9 Quantification

This is very interesting. Examine the formula:

φ(y) = ∃x(x ∨ y)

We can do many more of these. What is really this existential quantification?

∃x.φ = φ|x=0 ∨ φ|x=1

BDD existBDD(BDD f, ints levels)

{

if (f is leaf)

return f;

if (f.level is in levels)

return orBDD(existBDD(f.left, levels), existBDD(f.right, levels));

else

return makeNode(f.level, existBDD(f.left, levels), existBDD(f.right, levels));

}

Of course we need a results table here. What is the complexity? not so easy this
time, because we create nodes on the way, and then or them. If we were doing
only one level, then it would be quadratic in the BDD size. So in worst case
it goes very bad. Practically it is usually pretty ok, and will generally decrease
BDD size.

Exercise: Write the function:

BDD andExists(BDD f, BDD g, int levels);

13.10 Using BDDs for verification

Think of the reachability procedure...

13.11 Bad and Good BDD order

Examine the function:

f(x1, .., xn, y1, ..., yn) = ∧ni=1(xi = yi)

Think of it in the ordering x1, ..., xn, y1, ..., yn where it is exponential because
after you’ve seen all the x, you must have a separate node for each assignment.
Otherwise you cannot differentiate and you don’t know what y must be. So this
gives a BDD with at least 2n nodes.

What is a good ordering? the interleaving: x1, y1, x2, y2, ..., xn, yn. Draw it
and see we get a BDD with something like 3n nodes.

There are functions that have no good variable ordering. They are always
exponential. Like the middle bit of a multiplier. And many more.

13.12 How to change the BDD order of an existing BDD

You can easily change the order of two consecutive levels. Think of the general
thing:

x?(y?f1 : f2) : (y?f3 : f4)

Can be written as:
y?(x?f1 : f3) : (y?f2 : f4)

The way it is done is to stop everything and change the whole BDD pool at
once. This can be leveraged to all sorts of greedy algorithms. Most famous is
Ruddel’s which takes a variable moves it around all its options and then moves
it to the minimum. Do this for all variables.

Needless to say, this takes a lot of time but is worth it.

13.13 Discussion of BDD usage and sizes

So now we have a formula handler as we wanted. We can calculate any boolean
operation. Check for equality of formulas, calculate the support variables of a
formula and so on.

We can for example check simple boolean formulas - are they satisfiable?
Take such a formula, build a BDD for every variable (a 3 node BDD). and then
calculate operations until you get the BDD for the whole thing. Then check if it
is equal to falseBDD.

How much would this cost us? If we have n operators in the formula then it
would be 3n+1. Thats not so good but we really cant expect something better.

Still BDDs are usually better than this. BDD sizes are extremely important
and the ordering of the variables is the best way we can try and control it, since
it has a huge effect of the size.

14 Symbolic Model Checking

We see very we have too many states to start to really play with the graph. We
want a way to deal with these huge graphs but handling many states at once.
We we to be able to intersect them, complement, and much more.

If each state is represented by an assignment to our variables V ,
So lets examine sets of assignments. How can we describe them? For our ex-

amples here V = {x, y, z}. First option is list them one by one: {(0, 0, 1), (0, 0, 0)}.
This is a set of two assignments. Second option is to write a formula

1. x ∧ (y ∨ z) = {(1, 1, 0), (1, 0, 1)}
2. x ∧ y = {(1, 1, 0), (1, 1, 1))}
3. z
4. true
5. ∃t, x ∨ t = (y ∧ z) = {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)}

Consider the last one. One way to calculate it (x∨0 = (y∧z))∨(x∨1 = (y∧z))).
Leaving it this way its quite big. But working on it we can see: x→ y ∧ z.

Notice how variables can actually disappear and we can get small formulas.
Its not always clear which variables should really appear in the formula.

Definition 1. We say variable x ∈ V is in the support of formula φ(V), if there
is some assignment α : V → {0, 1}, such that φ(α) 6= φ(α′), where

α′(v) =

{
α(v) v 6= x
¬α(v) v = x

The other way around also works, We can find a formula describing every
set of assignments. start with one assignment: α = (x = 1, y = 0, z = 0). This
is easily φα(x, y, z) = x ∧ ¬y ∧ ¬z. How about a set of n states (assignments) :
α1, α2, ..., αn: φ(x, y, z) = ∧iφi(x, y, z).

So we see a one-to-one correspondence between formulas on V and sets of
assignments to V .

Lets look how this can help us. First we want:

14.1 A Formula Manipulator

We would like some kind of formula handler, that has:

– all basic formulas: true, false, and v for every variable we like.
– basic boolean operations on formulas: ∨,∧,¬,⊕, etc.
– be able to do ∃ and ∀.
– be able to check a specific assignment in a formula.
– be able to check equality of formulas. is φ = ψ? This actually means it knows

how to check if a formula is a tautology. we check whether φ = ψ.
– be able to say what is the support of a formula.

What is a simple formula manipulator : keeps all satisfying assignments. Its easy
to handle all requests but it will not be efficient.

14.2 lets do symbolic model checking

our running example:

VAR

b0, b1, e: boolean;

ASSIGN

init(b0) := 0;

init(b1) := 0;

next(b0) := e xor b0;

next(b1) := b1 xor (e & b0);

Our variables will actually be V and another set V ′ with all variables tagged.
For each variable, we have to formulas:

– initv, a formula of the form: v = φ(V).
– nextv, a formula of the form: v′ = φ(V).
– well, not exactly, what about non-determinism...

So what do we get:
initb0 := b0 = 0
initb1 := b1 = 0
inite := true
nextb0 := b0′ = e⊕ b0
nextb1 := b1′ = b1⊕ (e ∧ b0)
nexte := true

Now we can derive the set of initial states. it is simply the formula: ∧v∈V initv.
Any assignment satisfying this is an initial state. Mark by Init this formula.

In our case:
Init = (b0 = 0) ∧ (b1 = 0)

See that assigning valid initial states gives true.
Remember we want R, the transition relation. Well, here it is: ∧v∈V nextv.

Any assignment satisfying this formula means that the tagged variables represent
a state who is a possible successor to the state marked by the assignment to the
untagged variables. Mark by Trans this formula. Notice its support can use
variables both from V and V ′, unlike init.

So in our case:

Trans = (b0′ = e⊕ b0) ∧ (b1′ = b1⊕ (e ∧ b0))

Try assigning pairs of states and see what happens.
What is the following formula?

∃V, Init ∧ Trans

What is it in our case:

∃b0, b1, e : (b0 = 0) ∧ (b1 = 0) ∧ (b0′ = e⊕ b0) ∧ (b1′ = b1⊕ (e ∧ b0))

simplify:
∃b0, b1, e : (b0 = 0) ∧ (b1 = 0) ∧ (b0′ = e) ∧ (b1′ = 0)

Now remember the support of this formula should be all with tags - we should
do the quantification now. We get:

b′ = 0

If we now detagify the result, and you get a formula for the set of next states.
Lets do it again and see.

14.3 Reachability

How about the set of reachable states?

1. R = Init
2. while R changes do

(a) Next′ = ∃V (R ∧ Trans)
(b) Detagify Next′ to get Next.
(c) R = R ∨Next

Notice we secretly used something from our formula manipulator. For checking
if R changes we have to be able to compare to formulas.

There is another version too.

1. R = Init
2. S = Init
3. while R changes do:

(a) S′ = ∃V, S ∧ Trans
(b) S = detag(S′)
(c) R = R ∪ S

14.3.1 Checking G(p) formulas

.
How do we now check a formula G(p). We represent p as a formula, and

check if R ∧ p 6= False. If it is we would like find a counter example, but first
lets return to our formula manipulator.

14.3.2 finding a cycle

When we want a counter example for an AF (¬p) formula, we are looking for a
cycle containing only p. We look at the states satisfying EG(p). It contains all
sorts of strongly connected components, and trails leading too them. If we catch
a state s in a strongly connected components we can use the same technique as
used for AG, and find a path starting from s and ending in s - as we know it
exists.

How do we remove all the trails? We start with Y = EG(p), and do Y =
Y ∧ EX(Y). This removes the very ends of the trails. We keep going until we
reach a fixed point. This is it. Take any state s from there and run:

1. S0 = {s}
2. S1 = next(S0) ∧ Y
3. S2 = next(S1) ∧ Y
4. until some Sn contains s, where n > 0.
5. start from s, and pick a state in prev(s) ∧ Sn−1,
6. pick a state from there and go back, till you reach s.

14.4 Fairness

Its very useful, but GF () is not CTL. We would like to add it, and ask for a
given CTL formula whether is satisfied only over GF () paths. This is a mixed
logic. But we can support it.

We can have many fairness constraints but lets assume we just have one:
GF (q). Lets say our formula is EG(p). So we would like to find out the set of
states that satisfy EG(p) under the fairness constraint (is this more or less than
the original EG(p) - it is actually more states).

This set Z must satisfy:

1. all states of Z satisfy p.
2. for every state s ∈ Z, there is some non-empty path leading to a q ∈ Z state

where all the path upto q is made up of p’s.

But this gives an algorithm:

1. start with Z = p.
2. calculate Z = Z ∧ EXE(p U Z ∧ q)
3. continue until fixed point.

To calculate EX and EU , we just need to know who are fair states, this is
EG(true) using the above algorithm.

What if we have many fairness constraints? its basically the same. For the
counter example computation it makes our life harder. There are heuristic solu-
tions for it, but its not perfect.

	Formal Verification
	Introduction
	Testing vs. verification
	What do we want to show?

	Linear Temporal Logic - LTL
	Example formulas
	Mutual Exclusion
	Traffic light
	elevator example
	More operators
	Exercises

	Modeling Systems
	Kripke Structure
	modeling asynchronous behaviour
	enhancements
	Exercise

	Checking LTL formulas
	Bounded Model Checking
	The idea
	Init and Trans
	Many possible formulas
	Checking simple LTL formulas
	ad hoc LTL formula checking

	General LTL - Bounded model checking
	Prelude for the general thing
	Checking all LTL formulas
	We are missing a SAT solver

	Induction in bounded model checking
	Strengthening the invariant
	Longer induction
	distinct states
	Last comment

	Circuit-SAT to SAT
	Every boolean function has a CNF equivalent
	Sometimes this must be exponential

	Transformation
	big gates

	SAT solving
	simplification
	How this works for 2-CNF
	A different algorithm
	selecting the split variable

	Home brewed SAT solver
	Keep assignment only
	Literal counting
	assignment queue
	back tracking
	improvements

	Improvements and problems
	watched literals
	back jumping
	Choosing decision variable
	random restarts

	Learning new Clauses
	Example 1
	Example 2
	1-UIP
	Back Tracking

	BDDs
	Binary Decision Trees
	Minimization
	unique table
	Creating BDD's
	Uniqueness
	basic BDD manipulations
	BDD conjunction
	General binary operators
	Quantification
	Discussion of BDD usage and sizes
	Bad and Good BDD order
	How to change the BDD order of an existing BDD

	Symbolic Model Checking
	A Formula Manipulator
	lets do symbolic model checking
	Reachability
	Checking G(p) formulas
	finding a cycle

	Fairness

