

Microsoft® ADO.NET 4
Step by Step

Tim Patrick

Dwonloaded from: iDATA.ws

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2010 Tim Patrick.

Complying with all applicable copyright laws is the responsibility of the user. All rights reserved. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without express written permission of O’Reilly Media, Inc.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCT 5 4 3 2 1 0

Microsoft Press titles may be purchased for educational, business or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com. Visit our website at microsoftpress.oreilly.com. Send
comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, FrontPage, Internet Explorer, PowerPoint, SharePoint, Webdings, Windows,
and Windows 7 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious, and no association with any real company, organization, prod-
uct, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the author, O’Reilly Media, Inc., Microsoft Corporation, nor their
respective resellers or distributors, will be held liable for any damages caused or alleged to be caused either directly
or indirectly by such information.

Acquisitions and Development Editor: Russell Jones
Production Editor: Kristen Borg
Production Services: Octal Publishing, Inc.
Technical Reviewer: Sahil Malik
Indexing: Potomac Indexing, LLC
Cover: Karen Montgomery
Compositor: Susan Brown
Illustrator: Robert Romano

978-0-735-63888-4

Dwonloaded from: iDATA.ws

To Abel Chan, a good friend and a good programmer.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 v

Contents at a Glance

Part I	 Getting to Know ADO.NET
	Chapter 1
	Introducing ADO.NET 4 . 3
	Chapter 2
	Building Tables of Data . 17
	Chapter 3
	Storing Data in Memory . 37
	Chapter 4
	Accessing the Right Data Values . 59
	Chapter 5
	Bringing Related Data Together . 73
	Chapter 6
	Turning Data into Information . 89
	Chapter 7
	Saving and Restoring Data . 107

Part II	 Connecting to External Data Sources
	Chapter 8
	Establishing External Connections . 121
	Chapter 9
	Querying Databases . 135
	Chapter 10
	Adding Standards to Queries . 153
	Chapter 11
	Making External Data Available Locally . . 169
	Chapter 12
	Guaranteeing Data Integrity . . 191

Dwonloaded from: iDATA.ws

vi	 Contents at a Glance

Part III	 Entity Framework
	Chapter 13
	Introducing the Entity Framework . 213
	Chapter 14
	Visualizing Data Models . 225
	Chapter 15
	Querying Data in the Framework . 245
	Chapter 16
	Understanding Entities Through Objects . 267

Part IV	LINQ
Chapter 17
	Introducing LINQ . 289
	Chapter 18
	Using LINQ to DataSet . 305
	Chapter 19
Using LINQ to Entities . 315
	Chapter 20
	Using LINQ to SQL . . 331

Part V	 Providing RESTful Services with WCF Data Services
Chapter 21
Binding Data with ADO.NET . 347
	Chapter 22
	Providing RESTful Services with WCF Data Services 369

Dwonloaded from: iDATA.ws

	 	 vii

Table of Contents
Acknowledgments . xv

Introduction . xvii

Part I	 Getting to Know ADO.NET
1	 Introducing ADO.NET 4 . 3

What Is ADO.NET? . 3

Why ADO.NET? . 5

Major Components of ADO.NET . 5

Extensions to ADO.NET . 7

Connecting to External Data . 8

Summary . 15

Chapter 1 Quick Reference . 16

2	 Building Tables of Data . 17
Implementing Tables . 17

Logical and Physical Table Implementations . 17

The DataTable Class . 18

Adding Data Columns . 21

Dataset Designer . 27

Summary . 34

Chapter 2 Quick Reference . 35

3	 Storing Data in Memory . 37
Adding Data . 37

Creating New Rows . 37

Defining Row Values . 38

Storing Rows in a Table . 40

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Dwonloaded from: iDATA.ws

viii	 Table of Contents

Examining and Changing Data . 42

Removing Data . 45

Batch Processing . 46

Row State . 47

Row Versions . 48

Validating Changes . 49

Exception-Based Errors . 50

Validation-Based Errors . 51

Summary . 56

Chapter 3 Quick Reference . 57

4	 Accessing the Right Data Values . 59
Querying and Sorting Data . 59

Finding Rows by Primary Key . 60

Selecting Rows with a Search Criteria . 62

Sorting Search Results . 64

Performing Case-Sensitive Lookups . 67

Using Expression Columns . 67

Summary . 71

Chapter 4 Quick Reference . 71

5	 Bringing Related Data Together . 73
Collecting Tables into Sets . 73

Establishing Relationships Between Tables . 76

Understanding Table Relations . 76

Creating Data Relations . 78

Locating Parent and Child Records . 79

Defining Table Constraints . 81

Summary . 87

Chapter 5 Quick Reference . 88

6	 Turning Data into Information . . 89
Aggregating Data . 89

Generating a Single Aggregate . 91

Adding an Aggregate Column . 94

Aggregating Data Across Related Tables . 95

Referencing Parent Fields in Expressions . 98

Dwonloaded from: iDATA.ws

	 Table of Contents	 ix

Setting Up Indexed Views . 98

Creating a DataView . 99

Using a DataView . 101

Summary . 106

Chapter 6 Quick Reference . 106

7	 Saving and Restoring Data . 107
Serializing DataSet and DataTable Objects . 107

Writing XML . 108

Reading XML . 110

Guiding XML Generation . 111

Identifying Namespaces . 111

Nesting Child Tables . 113

Managing and Positioning Columns . 113

Summary . 117

Chapter 7 Quick Reference . 118

Part II	 Connecting to External Data Sources
8	 Establishing External Connections . 121

Using Connection Strings . 121

SQL Server Connection Strings . 122

OLE DB and ODBC Connection Strings . 124

Connection String Builders . 124

Storing Connection Strings . 126

Understanding Data Providers . 126

Connecting to SQL Server via a Data Provider . 127

Creating and Opening Connections . 128

Connection Pooling . 132

Summary . 133

Chapter 8 Quick Reference . 133

9	 Querying Databases . 135
Processing SQL Queries . 135

Creating Command Objects . 136

Processing Queries . 137

Processing Asynchronously . 139

Dwonloaded from: iDATA.ws

x	 Table of Contents

Returning Query Results . 140

Returning a Single Value . 141

Returning Data Rows . 142

Accessing Field Values . 144

Processing More Complicated Results . 146

Summary . 150

Chapter 9 Quick Reference . 151

10	 Adding Standards to Queries . 153
Developing Parameterized Queries . 153

Understanding the Need for Parameters . 154

Implementing Standard Queries . 155

Using Parameters with Other Providers . 160

Using Parameters in Stored Procedures . 161

Summary . 166

Chapter 10 Quick Reference . 167

11	 Making External Data Available Locally . 169
Understanding Data Adapters . 169

Moving Data from Source to Memory . 171

Moving Data into a DataTable . 171

Moving Data into a DataSet . 173

Moving Data from Memory to Source . 175

Configuring the Update Commands . 175

Performing the Update . 179

Generating Update Commands Automatically . 180

Table and Column Mapping . 186

Summary . 188

Chapter 11 Quick Reference . 189

12	 Guaranteeing Data Integrity . 191
Transactions and Concurrency . 191

Using Local Transactions . 195

Employing Savepoints . 202

Using Distributed Transactions . 204

Summary . 208

Chapter 12 Quick Reference . 209

Dwonloaded from: iDATA.ws

	 Table of Contents	 xi

Part III	 Entity Framework
13	 Introducing the Entity Framework . 213

Understanding the Entity Framework . 213

Defining the Entity Framework’s Terms . 215

Understanding the Entity Framework’s Layers . 216

Understanding the Conceptual Model . 217

Understanding the Storage Model . 217

Understanding the Model Mappings . 218

Using the Entity Framework . 218

Building the Model . 218

Generating the Objects . 220

Instantiating the Context . 221

Running Framework Queries . 222

Summary . 223

Chapter 13 Quick Reference . 223

14	 Visualizing Data Models . 225
Designing an Entity Framework Model . 225

Using the Entity Data Model Wizard . 225

Entity Data Model Designer . 230

Working with the Mapping Details Panel . 235

Using the Model Browser . 240

Managing the Object Layer . 241

Summary . 242

Chapter 14 Quick Reference . 243

15	 Querying Data in the Framework . 245
Getting to Know Entity SQL . 246

Writing Basic Queries . 246

Using Literals, Operators, and Expressions . 249

Grouping and Aggregating Entity Data . 252

Using Features Unique to Entity SQL . 254

Running Entity SQL Queries . 256

Running Queries Using an ObjectQuery . 256

Running Queries Using a Provider . 260

Summary . 264

Chapter 15 Quick Reference . 265

Dwonloaded from: iDATA.ws

xii	 Table of Contents

16	 Understanding Entities Through Objects 267
Managing Entity Data Through Objects . 267

Accessing Entity Data Through Objects . 268

Modifying Entity Data Through Objects . 271

Using Query Builder Methods . 278

Queryable Extension Methods . 283

Summary . 285

Chapter 16 Quick Reference . 285

Part IV	 LINQ
17	 Introducing LINQ . 289

Getting to Know LINQ . 289

Using LINQ with .NET Objects . 291

Starting a Query with the From Clause . 293

Projecting Results with the Select Clause . 293

Filtering Results with the Where Clause . 295

Sorting Results with the Order By Clause . 296

Selecting Linked Results with the Join Keyword 297

Limiting the Queried Content . 299

Summarizing Data Using Aggregates . 301

Applying Set Operations . 302

Summary . 303

Chapter 17 Quick Reference . 304

18	 Using LINQ to DataSet . 305
Understanding the LINQ to DataSet Provider . 305

Writing Queries with LINQ to DataSet . 306

Summary . 312

Chapter 18 Quick Reference . 313

19	 Using LINQ to Entities . 315
Understanding the LINQ to Entities Provider . 315

Writing Queries with LINQ to Entities . 316

Working with Entity and Database Functions . 321

Working with Custom Database Functions . 324

Summary . 329

Chapter 19 Quick Reference . 329

Dwonloaded from: iDATA.ws

	 Table of Contents	 xiii

20	 Using LINQ to SQL . 331
Understanding the LINQ to SQL Provider . 332

Comparing LINQ to SQL with LINQ to Entities . 332

Understanding the Components of LINQ to SQL 333

Using the Object Relational Designer . 335

Using Custom Database Functions in Queries . 339

Summary . 343

Chapter 20 Quick Reference . 343

Part V	 Presenting Data to the World
21	 Binding Data with ADO.NET . . 347

Binding Data in Windows Forms . 347

Creating Complex-Bound Applications . 348

Creating Simple-Bound Applications . 351

Understanding Windows Forms Data Binding . 352

Binding Data in WPF . 354

Creating Data-Bound WPF Applications . 354

Understanding WPF Data Binding . 360

Binding Data in ASP.NET . 362

Creating Data-Bound ASP.NET Applications . 362

Understanding ASP.NET Data Binding . 364

Summary . 367

Chapter 21 Quick Reference . 367

22	 Providing RESTful Services with WCF Data Services 369
Getting to Know the Service Layers . 369

Introducing WCF Data Services . 369

Introducing REST . 370

Setting Up a Data Service . 371

Defining Service Rights . 375

Accessing a Data Service using REST . 377

Querying Entities with REST . 377

Updating Entities with REST . 381

Summary . 384

Chapter 22 Quick Reference . 384

Index . 385

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 xv

Acknowledgments
An open-ended thank you goes to Microsoft, not only for developing some of the products
that have kept me gainfully employed for nearly three decades, but for welcoming me into
their book-writing fold. It was also a pleasure to work again with the team at O’Reilly Media,
Microsoft’s publishing partner. Editors Russell Jones and Kristen Borg kept all the trains run-
ning on time, which wasn’t easy given the busy technical and publishing traffic. Rounding out
the group were Meghan Blanchette, Sumita Mukherji, and Adam Witwer. Thank you all.

Sahil Malik, ADO.NET expert and fellow author, has the distinction of having read through
every single word of this book looking for technical concerns. Nancy Sixsmith did the same
for the mechanics of language, grammar, and consistency. The book is richer for their
involvement.

Claudette Moore once again worked her agenting magic, somehow always managing
to make everyone on both sides of a contract happy. This book would be nothing more
than a series of discarded emails were it not for her hard work and dedication. Thank you,
Claudette, for yet another adventure.

Thanks to all my friends at Harvest, especially fellow food and movie lovers Alice, Brenda,
Andy, Suzy, Matt, Tiffany, Jeff, and Monica. Love and appreciation in heaps to my wife Maki
and my son Spencer, both of whom exude patience and care. And thanks once again to God
for making all these other acknowledgments possible in the first place.

Tim Patrick
October 2010

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 xvii

Introduction
ADO.NET is Microsoft’s core data access library for .NET developers, and is the heart of many
data-centric technologies on the Windows development platform. It works with C#, Visual
Basic, and other .NET-enabled languages. If you are a .NET developer looking to interact with
database content or other external data sources, then ADO.NET is the right tool for you.

Microsoft ADO.NET 4 Step by Step provides an organized walkthrough of the ADO.NET li-
brary and its associated technologies. The text is decidedly introductory; it discusses the
basics of each covered system, with examples that provide a great head start on adding data
features to your applications. While the book does not provide exhaustive coverage of every
ADO.NET feature, it does offer essential guidance in using the key ADO.NET components.

In addition to its coverage of core ADO.NET library features, the book discusses the Entity
Framework, the LINQ query system, and WCF Data Services. Beyond the explanatory content,
each chapter includes step by step examples and downloadable sample projects that you can
explore for yourself.

Who Is This Book For?
As part of Microsoft Press’s “Developer Step By Step” series of training resources, Microsoft
ADO.NET 4 Step by Step makes it easy to learn about ADO.NET and the advanced data tools
used with it.

This book exists to help existing Visual Basic and C# developers understand the core con-
cepts of ADO.NET and related technologies. It is especially useful for programmers looking
to manage database-hosted information in their new or existing .NET applications. Although
most readers will have no prior experience with ADO.NET, the book is also useful for those
familiar with earlier versions of either ADO or ADO.NET, and who are interested in getting
filled in on the newest features.

Assumptions

As a reader, the book expects that you have at least a minimal understanding of .NET devel-
opment and object-oriented programming concepts. Although ADO.NET is available to most,
if not all, .NET language platforms, this book includes examples in C# and Visual Basic only. If
you have not yet picked up one of those languages, you might consider reading John Sharp’s
Microsoft Visual C# 2010 Step by Step (Microsoft Press 2010) or Michael Halvorson’s Microsoft
Visual Basic 2010 Step by Step (Microsoft Press 2010).

With a heavy focus on database concepts, this book assumes that you have a basic under-
standing of relational database systems such as Microsoft SQL Server, and have had brief

Dwonloaded from: iDATA.ws

xviii	 Microsoft ADO.NET 4 Step by Step

exposure to one of the many flavors of the query tool known as SQL. To go beyond this
book and expand your knowledge of SQL and Microsoft’s SQL Server database platform,
other Microsoft Press books such as Mike Hotek’s Microsoft® SQL Server® 2008 Step by Step
(Microsoft Press, 2008) or Itzik Ben-gan’s Microsoft® SQL Server® 2008 T-SQL Fundamentals
(Microsoft Press, 2008) offer both complete introductions and comprehensive information on
T-SQL and SQL Server.

Organization of This Book
This book is divided into five sections, each of which focuses on a different aspect or technol-
ogy within the ADO.NET family. Part I, “Getting to Know ADO.NET,” provides a quick over-
view of ADO.NET and its fundamental role in .NET applications, then delves into the details
of the main ADO.NET library, focusing on using the technology without yet being concerned
with external database connections. Part II, “Connecting to External Data Sources,” continues
that core library focus, adding in the connectivity features. Part III, “Entity Framework,” in-
troduces the Entity Framework, Microsoft’s model-based data service. Another service layer,
LINQ, takes center stage in Part IV, “LINQ.” Finally, Part V, “Presenting Data to the World,”
covers some miscellaneous topics that round out the full discussion of ADO.NET.

Finding Your Best Starting Point in This Book
The different sections of Microsoft ADO.NET 4 Step by Step cover a wide range of technolo-
gies associated with the data library. Depending on your needs and your existing under-
standing of Microsoft data tools, you may wish to focus on specific areas of the book. Use
the following table to determine how best to proceed through the book.

If you are Follow these steps

New to ADO.NET development, or
an existing ADO developer

Focus on Parts I and II and on Chapter 21 in Part V, or read
through the entire book in order.

Familiar with earlier releases
of ADO.NET

Briefly skim Parts I and II if you need a refresher on the core
concepts.

Read up on the new technologies in Parts III and IV and be
sure to read Chapter 22 in Part V.

Interested in the Entity Framework Read Part III. Chapter 22 in Part V discusses data services built
on top of Entity Framework models.

Interested in LINQ data providers Read through the chapters in Part IV.

Most of the book’s chapters include hands-on samples that let you try out the concepts just
learned. No matter which sections you choose to focus on, be sure to download and install
the sample applications on your system.

Dwonloaded from: iDATA.ws

	�  �﻿  Introduction	 xix

Conventions and Features in This Book
This book presents information using conventions designed to make the information read-
able and easy to follow.

■■ In most cases, the book includes separate exercises for Visual Basic programmers and
Visual C# programmers. You can skip the exercises that do not apply to your selected
language.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2, and so on)
listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or alternative
methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press the Tab key.

■■ A vertical bar between two or more menu items (e.g. File | Close), means that you
should select the first menu or menu item, then the next, and so on.

System Requirements
You will need the following hardware and software to complete the practice exercises in this
book:

■■ One of Windows XP with Service Pack 3 (except Starter Edition), Windows Vista with
Service Pack 2 (except Starter Edition), Windows 7, Windows Server 2003 with Service
Pack 2, Windows Server 2003 R2, Windows Server 2008 with Service Pack 2, or
Windows Server 2008 R2

■■ Visual Studio 2010, any edition (multiple downloads may be required if using Express
Edition products)

■■ SQL Server 2008 Express Edition or higher (2008 or R2 release), with SQL Server
Management Studio 2008 Express or higher (included with Visual Studio, Express
Editions require separate download)

■■ Computer that has a 1.6GHz or faster processor (2GHz recommended)

■■ 1 GB (32 Bit) or 2 GB (64 Bit) RAM (add 512 MB if running in a virtual machine or SQL
Server Express Editions; more for advanced SQL Server editions)

■■ 3.5GB of available hard disk space

■■ 5400 RPM hard disk drive

Dwonloaded from: iDATA.ws

xx	 Microsoft ADO.NET 4 Step by Step

■■ DirectX 9 capable video card running at 1024 x 768 or higher-resolution display

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ Internet connection to download software or chapter examples

Depending on your Windows configuration, you might need Local Administrator rights to
install or configure Visual Studio 2010 and SQL Server 2008 products.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and post-
exercise formats, are available for download from the book’s catalog page on the web site
for Microsoft’s publishing partner, O’Reilly Media:

http://oreilly.com/catalog/0790145300034/

Click the Examples link on that page. When a list of files appears, locate and download the
ADO.NET 4 SBS Examples.zip file.

Note  In addition to the code samples, your system should have Visual Studio 2010 and SQL
Server 2008 installed. The instructions below use SQL Server Management Studio 2008 to set up
the sample database used with the practice examples. If available, install the latest service packs
for each product.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use them
with the exercises in this book.

1.	 Open the ADO.NET 4 SBS Examples.zip file that you downloaded from the book’s web
site.

2.	 Copy the entire contents of the opened .zip file to a convenient location on your hard
disk.

Dwonloaded from: iDATA.ws

	�  �﻿  Introduction	 xxi

Installing the Sample Database
Follow these steps to install the sample database used by many of the book’s practice
examples.

Note  You must first download and install the Code Samples using the instructions listed above.
Also, you must have both SQL Server 2008 and SQL Server Management Studio 2008 installed,
any edition.

1.	 Start SQL Server Management Studio 2008 and open a new Object Explorer connec-
tion to the target database instance using the File | Connect Object Explorer menu
command.

2.	 In the Object Explorer panel, right-click on the Databases branch of the connection
tree, and select New Database from the shortcut menu.

3.	 When the New Database dialog box appears, enter StepSample in the Database Name
field. Click OK to create the database.

Dwonloaded from: iDATA.ws

xxii	 Microsoft ADO.NET 4 Step by Step

4.	 Select File | Open | File from the main SQL Server Management Studio menu, and
locate the DB Script.sql file installed with the book’s sample projects. This file appears in
the Sample Database folder within the main installation folder.

5.	 Click the Execute button on the SQL Editor toolbar to run the script. This will create the
necessary tables and objects needed by the practice examples.

6.	 Close SQL Server Management Studio 2008.

Using the Code Samples
The main installation folder extracted from the ADO.NET 4 SBS Examples.zip file contains
three subfolders.

■■ Sample Database  This folder contains the SQL script used to build the sample data-
base. The instructions for creating this database appear earlier in this Introduction.

■■ Exercises  The main example projects referenced in each chapter appear in this folder.
Many of these projects are incomplete, and will not run without following the steps in-
dicated in the associated chapter. Separate folders indicate each chapter’s sample code,
and there are distinct folders for the C# and Visual Basic versions of each example.

■■ Completed Exercises  This folder contains all content from the Exercises folder, but with
chapter-specific instructions applied.

Dwonloaded from: iDATA.ws

	�  �﻿  Introduction	 xxiii

To complete an exercise, access the appropriate chapter-and-language folder in the Exercises
folder, and open the project file. If your system is configured to display file extensions,
Visual Basic project files use a .vbproj extension, while C# project files use .csproj as the file
extension.

Uninstalling the Code Samples
To remove the code samples from your system, simply delete the installation folder that you
extracted from the .zip file.

Software Release
This book was written for use with Visual Studio 2010, including the Express Editions prod-
ucts. Much of the content will apply to other versions of Visual Studio, but the code samples
may be not be fully compatible with earlier or later versions of Visual Studio.

The practice examples in the book use SQL Server 2008, including the Express Edition prod-
ucts. Many of the examples may work with SQL Server 2005 or earlier versions, but neither
the installation script nor the sample projects have been tested with those earlier releases.

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at oreilly.com:

1.	 Go to http://microsoftpress.oreilly.com.

2.	 In the Search box, enter the book’s ISBN or title.

3.	 Select your book from the search results.

4.	 On your book’s catalog page, under the cover image, you’ll see a list of links.

5.	 Click View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

Dwonloaded from: iDATA.ws

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

Dwonloaded from: iDATA.ws

Microsoft ADO.NET 4 Step by Step

	 	 1

Part I

Getting to Know ADO.NET

	 Chapter 1: Introducing ADO.NET 4

	 Chapter 2: Building Tables of Data

	 Chapter 3: Storing Data in Memory

	 Chapter 4: Accessing the Right Data Values

	 Chapter 5: Bringing Related Data Together

	 Chapter 6: Turning Data into Information

	 Chapter 7: Saving and Restoring Data

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 3

Chapter 1

Introducing ADO.NET 4
After completing this chapter, you will be able to:

■■ Identify what ADO.NET is

■■ Explain ADO.NET’s role in an application

■■ Identify the major components that make up ADO.NET

■■ Create an ADO.NET link between a database and a .NET application

This chapter introduces you to ADO.NET and its purpose in the world of Microsoft .NET
application development. ADO.NET has been included with the .NET Framework since
its initial release in 2002, playing a central role in the development of both desktop and
Internet-targeted applications for programmers using C#, Visual Basic, and other Framework
languages.

What Is ADO.NET?
ADO.NET is a family of technologies that allows .NET developers to interact with data in stan-
dard, structured, and primarily disconnected ways. If that sounds confusing, don’t worry. This
book exists to remove the confusion and anxiety that many developers experience when they
first learn of ADO.NET’s multiple object layers, its dozens of general and platform-specific
classes, and its myriad options for interacting with actual data.

Applications written using the .NET Framework depend on .NET class libraries, which exist in
special DLL files that encapsulate common programming functionality in an easy-to-access
format. Most of the libraries supplied with the .NET Framework appear within the System
namespace. System.IO, for instance, includes classes that let you interact with standard disk
files and related data streams. The System.Security library provides access to, among other
things, data encryption features. ADO.NET, expressed through the System.Data namespace,
implements a small set of libraries that makes consuming and manipulating large amounts of
data simple and straightforward.

ADO.NET manages both internal data—data created in memory and used solely within an
application—and external data—data housed in a storage area apart from the application,
such as in a relational database or text file. Regardless of the source, ADO.NET generalizes
the relevant data and presents it to your code in spreadsheet–style rows and columns.

Dwonloaded from: iDATA.ws

4	 Microsoft ADO.NET 4 Step by Step

Note  Although ADO.NET manipulates data in tabular form, you can also use ADO.NET to access
nontabular data. For instance, an ADO.NET provider (discussed later in the chapter, on page 7)
could supply access to hierarchical data such as that found in the Windows Registry, as long as
that provider expressed the data in a tabular structure for ADO.NET’s use. Accessing such non-
tabular data is beyond the scope of this book.

If you are already familiar with relational databases such as Microsoft SQL Server, you will
encounter many familiar terms in ADO.NET. Tables, rows, columns, relations, views; these
ADO.NET concepts are based loosely on their relational database counterparts. Despite these
similarities, ADO.NET is not a relational database because it doesn’t include key “relational
algebra” features typically found in robust database systems. It also lacks many of the com-
mon support features of such databases, including indexes, stored procedures, and triggers.
Still, if you limit yourself to basic create, read, update, and delete (CRUD) operations, ADO.NET
can act like a miniature yet powerful in-memory database.

As an acronym, “ADO.NET” stands for—nothing. Just like the words “scuba,” “laser,” and “NT”
in Windows NT, the capital letters in ADO.NET used to mean something, but now it is just
a standalone term. Before Microsoft released the .NET Framework, one of the primary data
access tools Windows developers used in their programs was known as ADO, which did stand
for something: ActiveX Data Objects. After .NET arrived on the scene, ADO.NET became the
natural successor to ADO. Although conceptual parallels exist between ADO.NET and ADO,
the technologies are distinct and incompatible.

Note  ADO is based on Microsoft’s older COM technology. The .NET Framework provides sup-
port for COM components, and therefore enables .NET programs to use ADO. This is especially
useful for development teams transitioning legacy applications to .NET. Although ADO and
ADO.NET components can appear in the same application, they can interact only indirectly
because their object libraries are unrelated.

When communicating with external data stores, ADO.NET presents a disconnected data
experience. In earlier data platforms, including ADO, software developers would typically
establish a persistent connection with a database and use various forms of record locking to
manage safe and accurate data updates. But then along came the Internet and its browser-
centric view of information. Maintaining a long-standing data connection through bursts of
HTTP text content was no longer a realistic expectation. ADO.NET’s preference toward on-again,
off-again database connections reflects this reality. Although this paradigm change brought
with it difficulties for traditional client-server application developers, it also helped usher in
the era of massive scalability and n-tier development that is now common to both desktop
and Web-based systems.

Dwonloaded from: iDATA.ws

	 Chapter 1  Introducing ADO.NET 4	 5

Why ADO.NET?
In the early days of computer programming, the need for a data library like ADO.NET didn’t
exist. Programmers had only a single method of accessing data: direct interaction with the
values in memory. Permanently stored data existed on tape reels in fire-resistant, climate-
controlled, raised-floor rooms. Data queries could take hours, especially if someone with
more clout had a higher-priority processing need.

Over time, computers increased in complexity, and (as if to fill some eternal maxim) data
processing needs also expanded to consume all available computing resources. Businesses
sought easier ways to manage entire records of numeric, text, and date-time values on their
mainframe systems. Flat-file and relational database systems sprang up to establish propri-
etary management of millions of data values. As personal computers arrived and matured,
developers soon had several database systems at their disposal.

This was great news for data consumers. Businesses and individuals now had powerful tools
to transform data bits into usable information, to endow seemingly unrelated values with
meaning and purpose. But it was bad news for developers. As technology marched on, com-
panies purchased one proprietary system after another. Programming against such systems
meant a reinvention of the proverbial wheel each time a middle manager asked for yet
another one-time report. Even the standard SQL language brought little relief because each
database vendor provided its own spin on the meaning of “standard.”

What programmers needed was a way to generalize different data systems in a standard,
consistent, and powerful way. In the world of .NET application development, Microsoft ADO.NET
meets that need. Instead of worrying about the minutiae associated with the different data-
base systems, programmers using ADO.NET focus on the data content itself.

Major Components of ADO.NET
The System.Data namespace includes many distinct ADO.NET classes that work together to
provide access to tabular data. The library includes two major groups of classes: those that
manage the actual data within the software and those that communicate with external data
systems. Figure 1-1 shows the major parts that make up an ADO.NET instance.

Dwonloaded from: iDATA.ws

6	 Microsoft ADO.NET 4 Step by Step

Your Source Code

ADO.NET

Entity Framework, LINQ, Other Components

Data Provider

Connection DataSet

Command

DataAdapter

DataReader

Database
or Storage

XML File

DataTable

DataRelation

Figure 1-1  Key ADO.NET elements.

At the data-shaped heart of the library is the DataTable. Similar in purpose to tables in a
database, the DataTable manages all the actual data values that you and your source code
ultimately care about. Each DataTable contains zero or more rows of data, with the individual
data values of each row identified by the table’s column definitions.

■■ Each table defines DataColumn items, each representing the individual data values that
appear in the table’s records. DataColumn definitions include a data type declaration
based on the kind of data destined for each column. For instance, a CustomerLastName
column might be defined to use data of type System.String, whereas an OrderSalesTax
column could be crafted for use with System.Decimal content.

■■ One DataRow entry exists for each record of data stored within a table, providing access
to the distinct columnar data values. ADO.NET includes methods that let you add
to, delete from, modify, and query each DataTable object’s rows. For tables connected
to an external data storage area, any changes made can be propagated back to the
source.

■■ You can optionally establish links between the tables of data using DataRelation entries.

Dwonloaded from: iDATA.ws

	 Chapter 1  Introducing ADO.NET 4	 7

■■ Programmatic limitations can be placed on tables and their data values using Constraint
instances.

■■ DataView instances provide a limited or modified view of the rows in a DataTable.

■■ Tables can be grouped together into a DataSet. Some tools that interact with ADO.NET
data require that any tables be bound within a DataSet, but if you plan to do some lim-
ited work with only a single table, it’s fine to work with just the DataTable instance.

DataTable instances and their associated objects are sufficient for working with internal data.
To connect with external data from a database, ADO.NET features multiple data providers,
including a custom provider for Microsoft SQL Server. Database platforms without a specific
provider use the more generic ODBC and OLE DB providers, both included with ADO.NET.
Several third-party providers can be purchased or obtained free of charge, which target spe-
cific platforms, including Oracle.

■■ All communication with the external data source occurs through a Connection object.
ADO.NET supports connection pooling for increased efficiency between queries.

■■ SQL queries and data management statements get wrapped in a Command object
before being sent to the data source. Commands can include optional Parameter
instances that let you call stored procedures or create fill-in-the-blank queries.

■■ The DataAdapter object stores standard query definitions for interacting with a data-
base, removing the tedium of constantly needing to build SQL statements for each
record you want to read or write, and helping to automate some ADO.NET-related
tasks.

■■ The DataReader object provides fast, read-only access to the results of a query for
those times when you just need to get your data quickly.

ADO.NET also includes features that let you save an entire DataSet as an XML file and load it
back in later. And that’s just the start. You’ll learn how to use all these elements—and more—
throughout the upcoming chapters.

Extensions to ADO.NET
Generalizing access to data is a key benefit of using ADO.NET. But an even greater advantage
for .NET developers is that all values managed through ADO.NET appear as objects, first-class
members of the .NET data world. Each data field in a table is a strongly typed data member,
fully compliant with .NET’s Common Type System. Individual fields can be used just like any
other local variable. Data rows and other sets of objects are standard .NET collections and
can be processed using standard iteration methods.

Dwonloaded from: iDATA.ws

8	 Microsoft ADO.NET 4 Step by Step

Because ADO.NET values exist as true .NET objects and collections, Microsoft has enhanced the
core ADO.NET feature set with new tools. Two of these technologies, the Entity Framework
and LINQ, are not formally part of ADO.NET. But their capability to interact with and enhance
the ADO.NET experience makes them essential topics for study.

The Entity Framework, the focus of Part III of this book, emphasizes the conceptual view of
your data. Although the data classes in ADO.NET are programmer-friendly, you still need to
keep track of primary keys and relationships between tables and fields. The Entity Framework
attempts to hide that messiness, and restores the promise of what object-oriented program-
ming was supposed to be all about. In the Entity Framework, a customer object includes its
orders; each order includes line item details. Instead of working with the raw table data, you
interact with logically designed entities that mimic their real-world counterparts, and let the
Framework worry about translating it all into SQL statements.

LINQ, introduced in Part IV, brings the joy of English-like queries to your favorite program-
ming language. Microsoft enhanced both Visual Basic and C# with new LINQ-specific
language features. Now, instead of building string-based SQL statements to query data, the
syntax of each programming language becomes the query language. LINQ is a generic data
tool, enabling you to easily mix ADO.NET data and other content sources together into a
single set of results.

Connecting to External Data
Chapter 8, “Establishing External Connections,” introduces the code elements that support
communications between ADO.NET and external sources of data. Although using only code
to establish these connections is quite common, Visual Studio also includes the Data Source
Connection Wizard, a mouse-friendly tool that guides you through the creation of a ready-
to-use DataSet. Here’s an example of using the Connection Wizard.

Creating a Data Source Using the Connection Wizard

1.	 Start Visual Studio 2010. Select File | New | Project from the main menu.

ADO.NET is supported in most common project types. To keep things simple for now,
create a Windows Forms application using either C# or Visual Basic as the language.
The following figures show the process using a Visual Basic Windows Forms application,
although the steps are identical in C#.

2.	 In the New Project dialog box, provide a name for the project.

3.	 Click OK.

Visual Studio will create a project.

Dwonloaded from: iDATA.ws

	 Chapter 1  Introducing ADO.NET 4	 9

4.	 Select Data | Add New Data Source from the menu.

Visual Studio displays the Data Source Configuration Wizard.

The Database choice should already be selected in the Choose A Data Source Type
panel.

Dwonloaded from: iDATA.ws

10	 Microsoft ADO.NET 4 Step by Step

5.	 Click Next.

6.	 In the Choose a Database Model panel, choose Dataset.

7.	 Click Next.

The Wizard displays the Choose Your Data Connection panel. If you previously con-
figured data sources, they will appear in the Which Data Connection Should Your
Application Use To Connect To The Database? list.

8.	 Because you are setting up a connection to the test database for the first time, click the
New Connection button.

Dwonloaded from: iDATA.ws

	 Chapter 1  Introducing ADO.NET 4	 11

9.	 When the Choose Data Source dialog box appears, select Microsoft SQL Server from
the Data Source list.

The Data Provider field will automatically choose the SQL Server data provider. For
maximum flexibility, clear the Always Use This Selection field.

Note  Choosing Microsoft SQL Server will access a database that has previously been attached
to a SQL Server database instance. To create a data source that directly references a database file
not necessarily attached to the engine instance, select Microsoft SQL Server Database File from
the Data Source list instead. The wizard will then prompt you for the disk location of the file.

Dwonloaded from: iDATA.ws

12	 Microsoft ADO.NET 4 Step by Step

10.	 Click Continue to accept the data source.

11.	 In the Add Connection dialog box, select the server from the Server Name field.

For SQL Server 2008 Express Edition instances, this is typically the name of the local
computer with \SQLEXPRESS appended to the name. If you are using the full SQL
Server product, leave off the \SQLEXPRESS suffix. For SQL Server instances hosted on
the same system as your Visual Studio installation, you can use (local) as the server
name.

For SQL Server instances configured with database-managed authentication, select Use
SQL Server Authentication and supply the appropriate user name and password. For
databases managed with Windows authentication (the likely choice for the test data-
base), select Use Windows Authentication instead.

The Select Or Enter a Database Name field should now include the available databases
within the test database file. (If not, confirm that you have supplied the right server
name and authentication values and that SQL Server is running on your system.)

12.	 Select StepSample (or the name of your primary test database) from the list. Then click
OK to complete the connection configuration.

Control returns to the wizard with the new data connection selected in the list on the
Choose Your Data Connection panel.

Dwonloaded from: iDATA.ws

	 Chapter 1  Introducing ADO.NET 4	 13

Note  ADO.NET uses connection strings, short, semicolon-delimited definition strings, to iden-
tify the data source. As you develop new applications, you will probably forgo the Data Source
Configuration Wizard as a means of building connection strings. If you are curious about what
appears in a connection string, expand the Connection String field in the Choose Your Data
Connection panel.

13.	 Click the Next button to continue.

The next wizard panel asks if the connection string should be stored in the application’s
configuration file. The field should already be selected, which is good, although you
might want to give it a more programmer-friendly name.

Note  .NET applications use two types of configuration files (although it varies by project type):
application configuration files and user configuration files. Although your application has access
to the settings in both files, if you plan to include a feature in your program that modifies these
saved settings, make sure that you place such settings in the user configuration file. Application
configuration files can’t be modified from within the associated application.

14.	 Click the Next button once more to continue.

SQL Server will perform a quick analysis of your database, compiling a list of all avail-
able data-exposing items, including tables, views, stored procedures, and functions.
The Choose Your Database Objects panel displays all items found during this discovery
process.

Dwonloaded from: iDATA.ws

14	 Microsoft ADO.NET 4 Step by Step

15.	 For this test, include the Customer table in the DataSet by expanding the Tables section
and marking the Customer table with a check mark.

You can optionally modify the DataSet Name field to something that will be easier to
repeatedly type in your source code. Click Finish to exit the wizard and create the data
source. The data source is now available for use in your application.

16.	 Select Data | Show Data Sources from the Visual Studio menu to see the data source.

The wizard also added a new .xsd file to your project; it appears in the Solution Explorer
with your other project files. This XML file contains the actual definition of the data
source. Removing this file from the project removes the Wizard-created data source.

Data Source New .xsd File

Visual Studio also lets you preview the data records within the data source.

17.	 	Select Data | Preview Data from the Visual Studio menu to open the Preview Data
dialog box.

The menu choice might be hidden depending on what is currently active in the Visual
Studio IDE. If that menu choice does not appear, click the form in the design window
and then try to select the menu item again.

Dwonloaded from: iDATA.ws

	 Chapter 1  Introducing ADO.NET 4	 15

Summary
This chapter provided an overview of Microsoft’s ADO.NET technology and its major data
management components. At its heart, computer programming is all about data manipula-
tion, whether the data values represent customer records, characters and objects in a 3D
interactive video game, or the bits in a compressed audio file. With this inherent focus on
data, it makes sense that Microsoft would provide a great tool for interacting with tabular
data, one of the most useful ways of organizing data, especially in a business setting.

As you will see in upcoming chapters, the concepts included in this opening chapter have
direct ties to specific ADO.NET classes and class members. As a .NET developer, you already
have a core understanding of how ADO.NET can be used in an application because every-
thing in the library is expressed as standard .NET objects. The only things you still need to
learn are some of the details that are specific to ADO.NET—the very subjects covered in the
rest of this book.

Dwonloaded from: iDATA.ws

Chapter 1 Quick Reference
To Do This

Create a new data source Create or open a project in Visual Studio.

Select Data | Add New Data Source.

Follow the steps in the Connection Wizard.

Preview data in an existing data source Select Data | Preview Data.

Select the target data source from the Select An Object
To Preview list.

Click the Preview button.

Remove a data source from a project Select the .xsd file in the Solution Explorer.

Press the Delete key or right-click on the file and select
Delete from the shortcut menu.

Dwonloaded from: iDATA.ws

Chapter 2

Building Tables of Data
After completing this chapter, you will be able to:

■■ Understand the ADO.NET classes used to create tables

■■ Create strongly typed columns within a table

■■ Indicate the primary key for a table

■■ Design a table graphically or in code

The focus of all data in ADO.NET is the table—or more correctly, the DataTable. This class,
located at System.Data.DataTable, defines a single table in which strongly typed column
definitions and runtime data rows appear. By itself, a DataTable isn’t very interesting; it’s just
a memory-based repository for data. It becomes useful only when you start employing
ADO.NET and standard .NET Framework methods and tools to process the data stored in
each table and data row.

Note  Some of the exercises in this chapter use the same sample project, a tool that exposes the
structure of a DataTable. Although you can run the application after each exercise, the expected
results for the full application might not appear until you complete all related exercises in the
chapter.

Implementing Tables
As with everything else in .NET, tables in ADO.NET exist as instantiated objects. Whether
hand-written by you, produced by dragging and dropping items in the development envi-
ronment, or generated by one of the Visual Studio tools, the ADO.NET code you include in
your application exists to create and manage DataTable objects and other related objects.

Logical and Physical Table Implementations
ADO.NET’s DataTable object represents a logical implementation of a table of data. When
you visualize the data values within the table, you have an image of a spreadsheet-like table,
with distinct cells for each text, numeric, date/time, or other type of value.

Dwonloaded from: iDATA.ws

18

The physical implementation of a DataTable object is somewhat different. Instead of one
large grid layout, ADO.NET maintains tabular data as a collection of collections. Each
DataTable object contains a collection of ordered rows, each existing as an instance of a
DataRow object. Each row contains its own collection of items that holds the row’s (and ulti-
mately the table’s) actual data values. A set of column definitions exists separately from the
actual column values, although the definitions influence the values. Figure 2-1 shows the
difference between the logical and physical structures of a data table.

Logical Implementation

Physical Implementation

ID First Name Birth Date

0 11 George 8/3/1985

1 96 Annette 2/12/2003

Row

0

1

2

ID

11

96

27

First Name

George

Annette

Toru

Birth Date

8/3/1985

2/12/2003

12/30/1948

2 27 Toru 12/30/1948

Figure 2-1 Logical and physical table layouts.

The DataTable Class
The three main classes that make up a data table are DataTable, DataColumn, and DataRow.
As expected, these classes define a table, its columns, and its data rows, respectively. The main
discussion for the DataRow class appears in Chapter 3, “Storing Data in Memory.”

To define a table, create a new DataTable object, optionally supplying a table name.

C#
System.Data.DataTable unnamedTable = new System.Data.DataTable();

System.Data.DataTable namedTable = new System.Data.DataTable("Customer");

Visual Basic
Dim unnamedTable As New System.Data.DataTable()

Dim namedTable As New System.Data.DataTable("Customer")

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 19

After you create a DataTable, you can modify its TableName property and other relevant
properties as needed.

Note  Both Visual Basic and C# include features that let you use namespace elements as if
they were globally named elements. Visual Basic accomplishes this on a file-by-file basis with
the Imports keyword; C# includes the Using keyword for the same purpose. Visual Basic also
includes a project-specific setting that automatically applies an Imports-like rule to each indi-
cated namespace. (To use this feature, modify the items in the Imported Namespaces list on the
References panel of Project Properties.) From this point forward, all code will assume that
the System.Data and System.Data.SqlClient namespaces have been globalized in this way.

The DataTable class implements several useful events that it fires whenever data is added
to, removed from, or modified in the table. Table 2-1 shows the data-related events you can
plug into your code.

Table 2-1  Data-Related Events in the DataTable Class

Event Name Triggering Action

ColumnChanging, ColumnChanged During and after a single data value change within a row’s
collection of data.

RowChanging, RowChanged During and after any data change within a row of data.

RowDeleting, RowDeleted During and after a row is being deleted from a table.

TableClearing, TableCleared During and after all rows are being deleted from a table
at once.

TableNewRow When a new row is inserted into a table’s collection of rows. This
event is not raised when calling the table’s NewRow method,
but instead when that new row is added to the table.

Creating a DataTable: C#

1.	 	Open the “Chapter 2 CSharp” project from the installed samples folder. The project
includes two Windows.Forms classes: Switchboard and TableDetails.

2.	 	Open the source code view for the Switchboard form. Locate the GetNoColumnTable
function. Add the following statement to that function to create a new DataTable:

return new DataTable("BoringTable");

3.	 	Open the source code view for the TableDetails form. Locate the TableDetails_Load
routine. Just below the comment, “Show the table name,” add the following statement
to access the TableName property of the DataTable:

this.TableName.Text = ActiveTable.TableName;

Dwonloaded from: iDATA.ws

20	 Microsoft ADO.NET 4 Step by Step

4.	 	Run the application. When the switchboard appears, click the Show Table with No
Columns button. The TableDetails form opens with a structural view of the columnless
table.

Creating a DataTable: Visual Basic

1.	 Open the “Chapter 2 VB” project from the installed samples folder. The project includes
two Windows.Forms classes: Switchboard and TableDetails.

2.	 	Open the source code view for the Switchboard form. Locate the GetNoColumnTable
function. Add the following statement to that function to create a new DataTable:

Return New DataTable("BoringTable")

3.	 	Open the source code view for the TableDetails form. Locate the TableDetails_Load
routine. Just below the comment, “Show the table name,” add the following statement
to access the TableName property of the DataTable:

Me.TableName.Text = ActiveTable.TableName

4.	 	Run the application. When the switchboard appears, click the Show Table with No
Columns button. The TableDetails form opens with a structural view of the columnless
table.

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 21

Adding Data Columns
Creating a DataTable instance is an essential first step in using ADO.NET, but a table that
contains no columns is rarely useful. The next task in table building is in populating the
DataTable object’s Columns collection with one or more DataColumn instances that represent
the table’s columnar values.

Database Normalization
Before rushing into the task of adding columns, it is important to think about the
nature of the columns being added. If you are creating a standalone table that won’t
interact with other DataTable objects or some of the more abstract data tools that work
with ADO.NET, it is fine to throw any columns you need into the table. However, if you
are trying to replicate the types of table interactions frequently found in traditional re-
lational databases, you should ensure that your tables are optimized to take advantage
of key ADO.NET features.

Normalization is the process of crafting tables that ensure data integrity and take
advantage of the processing power of relational database systems. E.F. Codd, inventor
of the relational database model, proposed normalization as a method of eliminating
data anomalies that infect data during certain types of insert, update, and delete op-
erations. A discussion of normalization is beyond the scope of this book. If you’re not
familiar with the normalization process or the various “normal forms,” a few moments
spent reading about this essential craft will help support your data management needs.

The DataColumn class, found in the same System.Data namespace as the DataTable class,
defines a single column in your table’s schema. DataColumn objects can be created as
independent instances for inclusion in a DataTable object’s Columns collection, one for each
column in the table. At a useful minimum, you must provide at least the name and data type
of each column. The following code block creates a table with a single long-integer field:

C#
DataTable customer = new DataTable("Customer");

DataColumn keyField = new DataColumn("ID", typeof(long));

customer.Columns.Add(keyField);

Visual Basic
Dim customer As New DataTable("Customer")

Dim keyField As New DataColumn("ID", GetType(Long))

customer.Columns.Add(keyField)

Dwonloaded from: iDATA.ws

22	 Microsoft ADO.NET 4 Step by Step

The following System types are officially supported by DataColumn instances:

■■ Boolean

■■ Byte

■■ Char

■■ DateTime

■■ Decimal

■■ Double

■■ Int16

■■ Int32

■■ Int64

■■ SByte

■■ Single

■■ String

■■ TimeSpan

■■ UInt16

■■ UInt32

■■ UInt64

■■ Arrays of Byte (although there are some limitations)

You can also use the equivalent Visual Basic and C# data types.

Note  You can use any other data types as the column type, but ADO.NET will place limita-
tions—sometimes significant limitations—on a column if you don’t use one of the supported
types. Also, nonsupported types are likely to be incompatible with the available data types
found in any connected database. See the Visual Studio 2010 online documentation entry for
“DataColumn.DataType Property” for full details on these and other limitations.

The DataTable object’s Columns collection includes an Add overload that simplifies the cre-
ation of columns. In this syntax, you pass the standard DataColumn arguments directly to the
Add method.

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 23

C#
DataTable customer = new DataTable("Customer");

customer.Columns.Add("ID", typeof(long));

customer.Columns.Add("FullName", typeof(string));

customer.Columns.Add("LastOrderDate", typeof(DateTime));

Visual Basic
Dim customer As New DataTable("Customer")

customer.Columns.Add("ID", GetType(Long))

customer.Columns.Add("FullName", GetType(String))

customer.Columns.Add("LastOrderDate", GetType(Date))

The DataColumn class includes several useful properties that let you customize each column
to suit your processing needs. Many of these properties enable features that parallel those
common in relational database tables. Table 2-2 documents these helpful properties.

Table 2-2  Useful Properties in the DataColumn Class

Property Description

AllowDBNull A Boolean value that indicates whether database-style NULL values
are permitted in this column in the actual data rows.

A database-style NULL value is not the same as the Visual Basic
Nothing value, nor is it equal to the null value in C#. Instead, they are
more akin to the nullable data types available in both languages—
but still not exactly the same.

The .NET Framework includes a System.DBNull class that you can use
to test for NULL values in ADO.NET fields. Use this object’s Value.
Equals method to test a value for equivalence to DBNull.

C#

if (DBNull.Value.Equals(fieldValue))...

Visual Basic

If (DBNull.Value.Equals(fieldValue)) Then...

Visual Basic also includes an intrinsic function, IsDBNull, that pro-
vides similar functionality.

Visual Basic

If (IsDBNull(fieldValue)) Then...

By default, all ADO.NET fields allow NULL values.

AutoIncrement,
AutoIncrementSeed,
AutoIncrementStep

These three properties control the auto-increment functionality of a
column. When enabled, new rows added to a DataTable automati-
cally generate new values for auto-increment columns, with these
new values based on the rules established by the AutoIncrementSeed
and AutoIncrementStep properties. By default, the AutoIncrement
property is set to False, which disables the functionality.

Dwonloaded from: iDATA.ws

24	 Microsoft ADO.NET 4 Step by Step

Property Description

Caption Provides a place to store a user-friendly title or description for
the column. If unassigned, this property returns the value of the
ColumnName property. Not all database platforms support the idea
of a column caption. When connecting an ADO.NET DataTable in-
stance to a database, this property might or might not be supported.

ColumnName This is the name of the column, which is typically assigned through
the DataColumn class’s constructor.

DataType This property identifies the data type of the column, which is also
normally assigned through the DataColumn class’s constructor.
After data has been added to a DataTable, the data type for each
column is set and can’t be modified.

DateTimeMode For columns that track date and time information, this property
defines the rules for storing the time and its related time-zone
information.

DefaultValue Any column in a DataTable can include a default value. This value is
assigned to the relevant column any time a new row is created. You
can replace the default value in a specific data row as needed.

MaxLength For columns that store text data, this property indicates the maxi-
mum length of the text. By default, the maximum length is set to
-1, which indicates no maximum length.

ReadOnly Read-only columns cannot be modified in any data row that has
already been added to a table. By default, columns can be updated
as needed.

Unique This Boolean property, when set to True, establishes a “unique
value” constraint on the field. No two rows within the table will be
allowed to have the same value. Also, NULL values aren’t allowed in
columns marked as unique.

In addition to these column-level properties, the containing DataTable class includes a
PrimaryKey property that lets you indicate the column (or multiple columns) that make up
the table’s primary key. This property hosts an array of DataColumn objects taken directly
from the Columns collection of the same DataTable.

C#
DataTable customer = new DataTable("Customer");

customer.Columns.Add("ID", typeof(long));

customer.Columns.Add("FullName", typeof(string));

// ----- Use ID for the primary key.

customer.PrimaryKey = new DataColumn[] {customer.Columns["ID"]};

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 25

Visual Basic
Dim customer As New DataTable("Customer")

customer.Columns.Add("ID", GetType(Long))

customer.Columns.Add("FullName", GetType(String)

' ----- Use ID for the primary key.

customer.PrimaryKey = {customer.Columns("ID")}

Note  The table-level PrimaryKey setting, the column-specific Unique property, and other similar
limitations on the table’s data are known as constraints. ADO.NET includes a Constraint class that
works in tandem with these property settings. Constraints are discussed in Chapter 5, “Bringing
Related Data Together.”

Although each DataColumn added to the Columns collection of a DataTable defines the
columns that appear in a table, they don’t hold any actual row data. The individual column-
specific data values for each row are added through the DataTable object’s Rows collection.
Chapter 3 contains details on adding data to a table.

Adding Columns to a DataTable: C#

Note  This exercise uses the “Chapter 2 CSharp” sample project and continues the previous exer-
cise in this chapter.

1.	 	Open the source code view for the Switchboard form. Locate the GetColumnTable
function. This routine already contains a single statement.

return null;

2.	 Replace that line with the following statements to create a new DataTable with columns
and a primary key:

// ----- Return a table that has columns.

DataTable theTable = new DataTable("Customer");

// ----- Add some basic columns.

theTable.Columns.Add("ID", typeof(long));

theTable.Columns.Add("FullName", typeof(string));

theTable.Columns.Add("LastOrderDate", typeof(DateTime));

// ----- Create a primary key for the table.

theTable.PrimaryKey = new DataColumn[] {theTable.Columns["ID"]};

// ----- Finished.

return theTable;

Dwonloaded from: iDATA.ws

26	 Microsoft ADO.NET 4 Step by Step

3.	 Open the source code view for the TableDetails form. Locate the TableDetails_Load rou-
tine. Just below the comment, “Add the columns to the display list,” add the following
statements to access individual columns of the DataTable:

foreach (DataColumn oneColumn in ActiveTable.Columns)

 this.AllColumns.Items.Add(oneColumn);

if (this.AllColumns.Items.Count == 0)

 this.AllColumns.Items.Add("No columns available");

4.	 	Locate the AllColumns_DrawItem event handler. Just below the comment, “Extract the
column details,” add the following statements to access members of the DataColumn:

columnName = itemDetail.ColumnName;

dataTypeName = itemDetail.DataType.ToString();

isPrimaryKey = ((ActiveTable.PrimaryKey != null) &&

 (ActiveTable.PrimaryKey.Contains(itemDetail) == true));

5.	 	Run the application. When the switchboard appears, click the Show Table with Columns
button. The TableDetails form opens with a structural view of the table and its column
details.

Adding Columns to a DataTable: Visual Basic

Note  This exercise uses the “Chapter 2 VB” sample project and continues the previous exercise
in this chapter.

1.	 	Open the source code view for the Switchboard form. Locate the GetColumnTable
function. This routine already contains a single statement.

Return Nothing

2.	 Replace that line with the following statements to create a new DataTable with columns
and a primary key:

' ----- Return a table that has columns.

Dim theTable As New DataTable("Customer")

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 27

' ----- Add some basic columns.

theTable.Columns.Add("ID", GetType(Long))

theTable.Columns.Add("FullName", GetType(String))

theTable.Columns.Add("LastOrderDate", GetType(Date))

' ----- Create a primary key for the table.

theTable.PrimaryKey = {theTable.Columns("ID")}

' ----- Finished.

Return theTable

3.	 	Open the source code view for the TableDetails form. Locate the TableDetails_Load
routine. Just below the comment that says “Add the columns to the display list,” add the
following statements to access individual columns of the DataTable:

For Each oneColumn In ActiveTable.Columns

 AllColumns.Items.Add(oneColumn)

Next oneColumn

If (AllColumns.Items.Count = 0) Then _

 AllColumns.Items.Add("No columns available")

4.	 	Locate the AllColumns_DrawItem event handler. Just below the comment that says
“Extract the column details,” add the following statements to access members of the
DataColumn:

columnName = itemDetail.ColumnName

dataTypeName = itemDetail.DataType.ToString()

isPrimaryKey = ((ActiveTable.PrimaryKey IsNot Nothing) AndAlso

 (ActiveTable.PrimaryKey.Contains(itemDetail) = True))

5.	 	Run the application. When the switchboard appears, click the Show Table with Columns
button. The TableDetails form opens with a structural view of the table and its column
details.

Dataset Designer
Visual Studio includes the Dataset Designer, a drag-and-drop tool through which you can
design your own ADO.NET data sets, including multiple data tables within the set. As with
the data sets created using the Data Source Connection Wizard (refer to the “Connecting to
External Data” section, on page 8 in Chapter 1), the Dataset Designer creates ADO.NET ob-
jects that reside within your Visual Basic or C# project.

Dwonloaded from: iDATA.ws

28	 Microsoft ADO.NET 4 Step by Step

You can use DataTable objects created with the Dataset Designer in your code just like the
DataTable objects you built using code earlier in this chapter. However, rather than being
built with C# or Visual Basic source code, you create the tables with your mouse. These tables
are stored as XML, in a file with an .xsd extension. (Visual Studio will also add a few other files
that it requires to support the Dataset Designer environment. Visual Studio generates these
files automatically, and you shouldn’t change them manually.)

Using the Dataset Designer is straightforward. You add a DataSet item to your project, which
induces Visual Studio to display the designer. Using designer-specific toolbox items, you cre-
ate your data tables and the relationships between them. You can also drag existing database
tables from the Solution Explorer onto the design surface and customize them to meet your
application’s needs. The following two examples take you through the process of building a
DataTable using the Dataset Designer.

Creating a Custom Table in the Dataset Designer

1.	 	Start a new Visual Basic or C# project. A Windows Forms application might be the most
convenient for this demonstration, but most other project types will work as well. (The
images shown in this example use a C# project, but the process is identical for Visual
Basic.)

2.	 	Add a new DataSet item to your project. Select Project | Add New Item from the Visual
Studio menu. When the Add New Item dialog box appears, select the Data item from
the Installed Templates panel and then select DataSet from the main list of items.
Provide a file name with an .xsd extension in the Name field and then click the Add
button. Visual Studio creates the necessary files and opens the designer.

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 29

3.	 The designer displays a blank surface on which you will craft your table.

The Toolbox (accessible through the View | Toolbox menu or possibly already visible
within the development environment), which is commonly used in Windows Forms
projects and other projects with a visual focus, now displays items specific to the de-
signer: DataTable, Query, Relation, and TableAdapter.

For this example, you will focus on the DataTable element. Add a DataTable to the de-
signer by double-clicking the DataTable tool or by dragging the DataTable tool to the
designer surface. A new table named DataTable1 appears on the surface.

4.	 Modify the name of the table either by clicking the name in the table’s image or
through the Name entry in the Properties panel. Changes to the table name are reflected
in the TableName property of the resulting DataTable object. Rename the sample table
to Customer.

Dwonloaded from: iDATA.ws

30	 Microsoft ADO.NET 4 Step by Step

5.	 Add columns to the table (and in turn, to the underlying DataTable object’s Columns
collection) by right-clicking the title bar of the table image and selecting
Add | Column from the shortcut menu that appears. When the table is selected, you
can also use the keyboard shortcut Ctrl+L to add new columns.

Add three columns to the Customer table. Name them ID, FullName, and LastOrderDate.

6.	 Adding a primary key is just as easy. The same Add menu used to create a new column
includes a Key menu command. After you have added one or more columns to the
table’s definition, selecting the Add | Key shortcut menu displays the Unique Constraint
dialog box. This dialog box serves two purposes: to indicate which columns should have
their Unique properties enabled and to establish the primary key for the table.

Bring up the Unique Constraint dialog box for the Customer table. To create a primary key
using the ID column, select the ID check box in the Columns list and then select the Primary
Key check box underneath the Columns list. Click OK to add the key constraint to the table.

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 31

7.	 To set the properties of each column, select the column name in the designer’s view of
the table and then use the development environment’s Properties panel to modify the
relevant settings. If you click the ID column in the Customer table, you will see that the
designer already set this column’s AllowDBNull property to False and its Unique prop-
erty to True, two requirements for any primary key column.

Select the ID column from the table’s image and change its DataType property to
System.Int64. Alter the LastOrderDate column in the same way, so that its DataType
property is set to System.DateTime.

Dwonloaded from: iDATA.ws

32	 Microsoft ADO.NET 4 Step by Step

8.	 The designer includes features for establishing relationships between tables and for
building custom data queries. These ADO.NET features will be discussed in later chap-
ters. For now, save the changes you made in the designer by choosing File | Save in the
Visual Studio menu.

Adding an existing database table to the designer surface is as simple as creating a new
table. The main difference is that instead of obtaining new designer items from the Toolbox,
you get them from the Server Explorer, another toolbox-like panel in Visual Studio.

Adding a Database Table to the Dataset Designer

1.	 	In a C# or Visual Basic project, open the Dataset Designer by adding a DataSet item to
the project, as detailed in the previous exercise.

Note  If the Server Explorer is not already visible in the development environment, access it by
choosing View | Server Explorer. If you completed the exercise in Chapter 1 that added a connec-
tion to the StepSample example database, that connection will appear in the Server Explorer. (If
not, you can add a connection to the database by right-clicking Data Connections in the Server
Explorer and following the prompts, as discussed in the Chapter 1 example.)

Some editions of Visual Studio include a Database Explorer instead of a Server Explorer. Although
this example uses the Server Explorer, completing the steps using the Database Explorer is a
nearly identical process. Access the Database Explorer by choosing View | Database Explorer.

2.	 	Expand the Data Connections item in the Server Explorer. Then expand the StepSample
database entry and the Tables item within it.

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 33

3.	 To add one of the tables to the designer, drag it from the Server Explorer to the design
surface. For example, dragging the Customer table places a representation of that
table’s structure on the design surface. The designer also sets all the correct properties
for the table and its columns in the Properties panel.

After you have added a complete .xsd file to a project through the Dataset Designer, its
member tables are immediately available to the project’s source code. In this exercise, you
will complete the sample project started earlier in this chapter.

Using Dataset Designer Tables in Code

Note  If you have not yet done so, follow the coding steps for the “Chapter 2 VB” or “Chapter 2
CSharp” project documented previously.

1.	 	Using the steps in the prior example, add the Customer table to a new Dataset
Designer file named ExternalTable.xsd.

Dwonloaded from: iDATA.ws

34	 Microsoft ADO.NET 4 Step by Step

2.	 Open the source code for the Switchboard form. Locate the GetDesignerTable function.
The code currently includes a single source code line that returns null (in C#) or Nothing
(in Visual Basic). Replace this line with the following source code:

C#
return new ExternalTable.CustomerDataTable();

Visual Basic
Return New ExternalTable.CustomerDataTable

3.	 Run the application. When the switchboard appears, click the Show Designer Table but-
ton. The TableDetails form opens with a structural view of the Customer table from the
StepSample database.

Summary
This chapter introduced the DataTable class, the focus of data activity in ADO.NET. To be use-
ful, the DataTable class requires support from additional objects, especially the DataColumn
class that defines the columns for a table. There are many ways to create data tables in .NET
applications. Direct coding of the relevant table objects in Visual Basic or C# source code is
quite common, but you can also build new tables visually by using the Visual Studio Dataset
Designer. Adding existing table designs from external databases is also an option.

After the table structures exist in code, they can be processed and analyzed just like any
other set of objects. In the example in the preceding section, you added DataColumn objects
from a data table as items in a ListBox control, and the control displayed various properties
from each column in its list of items.

Dwonloaded from: iDATA.ws

	 Chapter 2  Building Tables of Data	 35

Chapter 2 Quick Reference
To Do This

Design a DataTable in code Create a System.Data.DataTable object.

Create one or more objects and add them to the table’s
Columns collection.

Add a primary key in code Assign to the DataTable object’s PrimaryKey property an
array of items from the table’s Columns collection.

Build a new table visually Create or open a project.

Select Project | Add New Item.

Add a DataSet item to your project.

Drag DataTable items from the Toolbox to the Dataset
Designer design surface.

Use Ctrl+L to add new columns quickly.

Add an external database table visually Create or open a project.

Select Project | Add New Item.

Add a DataSet item to your project.

Drag the table from the Server Explorer (or Database
Explorer) to the Dataset Designer design surface.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 37

Chapter 3

Storing Data in Memory
After completing this chapter, you will be able to:

■■ Explain how a DataTable stores data

■■ Add new data rows to a table

■■ Examine, update, and remove existing values in a table row

■■ Explain how ADO.NET differentiates between pending and final data values

■■ Integrate data verification code into your DataTable object

Adding columns to a DataTable is an essential step in managing data in ADO.NET, but the
columns themselves contain no data. To store actual data values in an ADO.NET table, you
must use the DataRow class. After you place one or more data rows in a table, the real work
of managing application-specific information begins. This chapter introduces the DataRow
class and its role in data storage within each data table.

Note  The exercises in this chapter all use the same sample project, a simple editor of DataRow
records within a single DataTable. Although you will be able to run the application after each
exercise, the expected results for the full application might not appear until you complete all
exercises in the chapter.

Adding Data
Adding new data rows to a table is a three-step process:

1.	 Create a new row object.

2.	 Store the actual data values in the row object.

3.	 Add the row object to the table.

Creating New Rows
The DataColumn objects you add to a DataTable let you define an unlimited number of
column combinations. One table might manage information on individuals, with textual
name fields and dates for birthdays and driver-license expirations. Another table might exist
to track the score in a baseball game, and contain no names or dates at all. The type of
information you store in a table depends on the columns included in that table, along with
the name, data type, and field constraints for each column.

Dwonloaded from: iDATA.ws

38	 Microsoft ADO.NET 4 Step by Step

The DataRow class lets you store a single row of data in a table. However, a row of data that
tracks customers or medical patients is not the same as a row that tracks baseball scores. The
columns differ in number, data types, and even their names and positions. Therefore, each
ADO.NET DataRow must be configured to work with a specific DataTable and its collection of
DataColumn instances.

The DataTable class includes the NewRow method to generate table-specific data rows.
Whenever you want to add a new row of data to a table, the first step always involves gener-
ating a new DataRow with the NewRow method.

C#
DataRow oneRow = someTable.NewRow();

Visual Basic
Dim oneRow As DataRow = someTable.NewRow()

The generated row includes information about each data column defined for the table.
Typically, the data associated with each column in the new row is initially NULL, the database
state for an unassigned field. However, if a DataColumn definition includes a DefaultValue
setting, that initial value will appear immediately in the generated row for the named column.
Also, any column that has its AutoIncrement and related fields set (typically a primary key
field) will include generated sequential values for that column.

Defining Row Values
The DataRow class includes an Item property that provides access to each defined column,
by name, zero-based index number, or reference to the physical DataColumn instance. When
writing code with a specific table format in mind, programmers generally use the column-
name method because it makes clear which field is being referenced in a code statement.

C#
oneRow.Item["ID"] = 123; // by column name

oneRow.Item[0] = 123; // by column position

DataColumn whichColumn = someTable.Columns[0];

oneRow.Item[whichColumn] = 123; // by column instance

Visual Basic
oneRow.Item("ID") = 123 ' by column name

oneRow.Item(0) = 123 ' by column position

Dim whichColumn As DataColumn = someTable.Columns(0)

oneRow.Item(whichColumn) = 123 ' by column instance

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 39

Because Item is the default member for the DataRow class, you can omit the name when
referencing row values, as shown here:

C#
oneRow["ID"] = 123;

Visual Basic
oneRow("ID") = 123

Visual Basic includes a special “exclamation point” syntax that condenses the statement even
more, but you can use it only with column names, not with column indexes.

Visual Basic
oneRow!ID = 123

Note  Members of the Item class are defined as the generic Object type; they are not strongly
typed to the data type defined for the columns. This means that you can store data of an incorrect
type in any field during this assignment phase. Errors will not be reported until you attempt to
add the DataRow object to the table’s Rows collection, as described in the “Storing Rows in a
Table” section of this chapter on page 40.

As you assign values to a row, they become available immediately for use in other
expressions.

C#
orderData["Subtotal"] = orderRecord.PreTaxTotal;

orderData["SalesTax"] = orderRecord.PreTaxTotal * orderRecord.TaxRate;

orderData["Total"] = orderData["Subtotal"] + orderData["SalesTax"];

Visual Basic
orderData!Subtotal = orderRecord.PreTaxTotal

orderData!SalesTax = orderRecord.PreTaxTotal * orderRecord.TaxRate

orderData!Total = orderData!Subtotal + orderData!SalesTax

Dwonloaded from: iDATA.ws

40	 Microsoft ADO.NET 4 Step by Step

Fields with no default or auto-increment value are automatically set to NULL. If for any
reason you need to set a field to NULL from a non-NULL state, assign it with the value of
.NET’s DBNull class.

C#
oneRow["Comments"] = System.DBNull.Value;

Visual Basic
oneRow!Comments = System.DBNull.Value

As mentioned in Chapter 2, “Building Tables of Data,” you can test field values in C# using the
DBNull.Value.Equals method or in Visual Basic with the IsDBNull function. The DataRow class
includes its own IsNull method; it is functionally equivalent to the methods from Chapter 2.
Instead of passing the IsNull method a field value to test, you pass it the column’s name, the
column’s position, or an instance of the column.

C#
if (oneRow.IsNull("Comments"))...

Visual Basic
If (oneRow.IsNull("Comments") = True)...

Note  System.DBNull is not the same as null in C#, or Nothing in Visual Basic. Those keywords
indicate the absence of an object’s value. System.DBNull.Value is an object that presents a value.

Storing Rows in a Table
After you have assigned all required data values to the columns in a new row, add that row
to the DataTable using the table’s Rows.Add method.

C#
someTable.Rows.Add(oneRow);

Visual Basic
someTable.Rows.Add(oneRow)

An overload of the Add method lets you skip the formal row-object creation process; instead,
you supply the final field values directly as arguments. All provided values must appear in the
same order and position as the table’s DataColumn instances.

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 41

C#
// ----- Assumes column 0 is numeric, 1 is string.

someTable.Rows.Add(new Object[] {123, "Fred"});

Visual Basic
' ----- Assumes column 0 is numeric, 1 is string.

someTable.Rows.Add(123, "Fred");

Whichever method you employ, the Add process tests all data values to be added to the
table for data type compliance before adding the row. If the new row contains any values
that can’t be stored in the target column-specific data type, the Add method throws an
exception.

Adding Rows to a DataTable : C#

1.	 Open the “Chapter 3 CSharp” project from the installed samples folder. The project
includes two Windows.Forms classes: AccountManager and AccountDetail.

2.	 	Open the source code view for the AccountManager form. Locate the AccountManager_
Load event handler. This routine creates a custom DataTable instance with five columns:
ID (a read-only, auto-generated long integer), FullName (a required 30-character
unique string), Active (a Boolean), AnnualFee (an optional decimal), and StartDate (an
optional date).

3.	 Add the following statements just after the “Build some sample data rows” comment.
These rows add new DataRow objects to the table using the Rows.Add alternative
syntax:

CustomerAccounts.Rows.Add(new Object[] {1L, "Blue Yonder Airlines", true,

 500m, DateTime.Parse("1/1/2007")});

CustomerAccounts.Rows.Add(new Object[] {2L, "Fourth Coffee", true, 350m,

 DateTime.Parse("7/25/2009")});

CustomerAccounts.Rows.Add(new Object[] {3L, "Wingtip Toys", false});

Adding Rows to a DataTable: Visual Basic

1.	 	Open the “Chapter 3 VB” project from the installed samples folder. The project includes
two Windows.Forms classes: AccountManager and AccountDetail.

2.	 	Open the source code view for the AccountManager form. Locate the AccountManager_
Load event handler. This routine creates a custom DataTable instance with five columns:
ID (a read-only, auto-generated long integer), FullName (a required 30-character
unique string), Active (a Boolean), AnnualFee (an optional decimal), and StartDate (an
optional date).

Dwonloaded from: iDATA.ws

42	 Microsoft ADO.NET 4 Step by Step

3.	 	Add the following statements just after the “Build some sample data rows” comment.
These rows add new DataRow objects to the table using the Rows.Add alternative
syntax:

CustomerAccounts.Rows.Add({1&, "Blue Yonder Airlines", True, 500@, #1/1/2007#})	

CustomerAccounts.Rows.Add({2&, "Fourth Coffee", True, 350@, #7/25/2009#})		

CustomerAccounts.Rows.Add({3&, "Wingtip Toys", False})

Examining and Changing Data
After adding a data row to a table, you can process it as a table member. For instance, you can
iterate through the table’s Rows collection, examining the stored column values as you pass
through each record. The following code adds up the sales tax for all records in the allSales
table:

C#
decimal totalTax = 0m;

foreach (DataRow scanRow in someTable.Rows)

 if (!DBNull.Value.Equals(scanRow["SalesTax"]))

 totalTax += (decimal)scanRow["SalesTax"];

Visual Basic
Dim totalTax As Decimal = 0@

For Each scanRow As DataRow In someTable.Rows

 If (IsDBNull(scanRow!SalesTax) = False) Then _

 totalTax += CDec(scanRow!SalesTax)

Next scanRow

Because each row’s collection of items is not strongly typed, you might need to cast or convert
each field to the target data type before using it.

Note  ADO.NET does include extension methods that provide strongly typed access to each
row’s members. These methods were added to the system to support LINQ and its method of
querying data within the context of the Visual Basic or C# language. Part IV of this book intro-
duces LINQ and its use with ADO.NET data.

Because of this lack of strong typing, be careful when assigning new values to any row already
included in a table. For example, code that assigns a string value to an integer column will
compile without error, but will generate a runtime error.

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 43

Modifying Existing Rows in a DataTable: C#

Note  This exercise uses the “Chapter 3 CSharp” sample project and continues the preceding
exercise in this chapter.

1.	 	Open the source code view for the AccountDetail form. Locate the AccountDetail_Load
routine.

2.	 	Add the following code, which fills in the form’s display fields with content from an
existing DataRow instance:

if (AccountEntry != null)

{

 AccountID.Text = string.Format("{0:0}", AccountEntry["ID"]);

 ActiveAccount.Checked = (bool)AccountEntry["Active"];

 if (DBNull.Value.Equals(AccountEntry["FullName"]) == false)

 AccountName.Text = (string)AccountEntry["FullName"];

 if (DBNull.Value.Equals(AccountEntry["AnnualFee"]) == false)

 AnnualFee.Text = string.Format("{0:0.00}",

 (decimal)AccountEntry["AnnualFee"]);

 if (DBNull.Value.Equals(AccountEntry["StartDate"]) == false)

 StartDate.Text = string.Format("{0:d}",

 (DateTime)AccountEntry["StartDate"]);

}

3.	 Locate the ActOK_Click routine. In the Try block, just after the “Save the changes in the
record” comment, you’ll find the following code line:

workArea.BeginEdit();

Just after that line, add the following code, which updates an existing DataRow instance
with the user’s input:

workArea["Active"] = ActiveAccount.Checked;

if (AccountName.Text.Trim().Length == 0)

 workArea["FullName"] = DBNull.Value;

else

 workArea["FullName"] = AccountName.Text.Trim();

if (AnnualFee.Text.Trim().Length == 0)

 workArea["AnnualFee"] = DBNull.Value;

else

 workArea["AnnualFee"] = decimal.Parse(AnnualFee.Text);

if (StartDate.Text.Trim().Length == 0)

 workArea["StartDate"] = DBNull.Value;

else

 workArea["StartDate"] = DateTime.Parse(StartDate.Text);

Dwonloaded from: iDATA.ws

44	 Microsoft ADO.NET 4 Step by Step

Modifying Existing Rows in a DataTable: Visual Basic

Note  This exercise uses the “Chapter 3 VB” sample project and continues the preceding exercise
in this chapter.

1.	 	Open the source code view for the AccountDetail form. Locate the AccountDetail_Load
routine.

2.	 	Add the following code, which fills in the form’s display fields with content from an
existing DataRow instance:

If (AccountEntry IsNot Nothing) Then

 AccountID.Text = CStr(AccountEntry!ID)

 ActiveAccount.Checked = CBool(AccountEntry!Active)

 If (IsDBNull(AccountEntry!FullName) = False) Then _

 AccountName.Text = CStr(AccountEntry!FullName)

 If (IsDBNull(AccountEntry!AnnualFee) = False) Then _

 AnnualFee.Text = Format(CDec(AccountEntry!AnnualFee), "0.00")

 If (IsDBNull(AccountEntry!StartDate) = False) Then _

 StartDate.Text = Format(CDate(AccountEntry!StartDate), "Short Date")

End If

3.	 Locate the ActOK_Click routine. In the Try block, just after the “Save the changes in the
record” comment, you’ll find the following code line:

workArea.BeginEdit()

Just after that line, add the following code, which updates an existing DataRow instance
with the user’s input:

workArea!Active = ActiveAccount.Checked

If (AccountName.Text.Trim.Length = 0) _

 Then workArea!FullName = DBNull.Value _

 Else workArea!FullName = AccountName.Text.Trim

If (AnnualFee.Text.Trim.Length = 0) _

 Then workArea!AnnualFee = DBNull.Value _

 Else workArea!AnnualFee = CDec(AnnualFee.Text)

If (StartDate.Text.Trim.Length = 0)

 Then workArea!StartDate = DBNull.Value _

 Else workArea!StartDate = CDate(StartDate.Text)

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 45

Removing Data
You remove DataRow objects from a table via the DataTable.Rows collection’s Remove and
RemoveAt methods. The Remove method accepts an instance of a row that is currently in
the table.

C#
DataRow oneRow = someTable.Rows[0];

someTable.Rows.Remove(oneRow);

Visual Basic
Dim oneRow As DataRow = someTable.Rows(0)

someTable.Rows.Remove(oneRow)

The RemoveAt method also removes a row, but you pass it the index position of the row to
delete.

C#
someTable.Rows.RemoveAt(0);

Visual Basic
someTable.Rows.RemoveAt(0)

If you have an instance of a data row available, but you want to call the RemoveAt method,

you can obtain the index of the row from the Rows collection’s IndexOf method.

C#
int rowPosition = someTable.Rows.IndexOf(oneRow);

Visual Basic
Dim rowPosition As Integer = someTable.Rows.IndexOf(oneRow)

You can put any row you remove from a table right back into the Rows collection by using
the standard DataTable.Rows.Add method. Another Rows method, InsertAt, adds a DataRow
object to a table, but lets you indicate the zero-based position of the newly added row. (The
Add method always puts new rows at the end of the collection.) The following code inserts a
row as the first item in the collection:

C#
someTable.Rows.InsertAt(oneRow, 0);

Visual Basic
someTable.Rows.InsertAt(oneRow, 0)

Dwonloaded from: iDATA.ws

46	 Microsoft ADO.NET 4 Step by Step

To remove all rows from a table at once, use the DataTable.Rows object’s Clear method.

C#
someTable.Rows.Clear();

Visual Basic
someTable.Rows.Clear()

As convenient as Remove, RemoveAt, and Clear are, they come with some negative side
effects. Because they fully remove a row and all evidence that it ever existed, these methods
prevent ADO.NET from performing certain actions, including managing record removes
within an external database. The next section, “Batch Processing,” discusses a better method
of removing data records from a DataTable instance.

Batch Processing
The features shown previously for adding, modifying, and removing data records within
a DataTable all take immediate action on the content of the table. When you use the Add
method to add a new row, it’s included immediately. Any field-level changes made within
rows are stored and considered part of the record—assuming that no data-specific exceptions
get thrown during the updates. After you remove a row from a table, the table acts as if it
never existed.

Although this type of instant data gratification is nice when using a DataTable as a simple
data store, sometimes it is preferable to postpone data changes or make several changes at
once, especially when you need to verify that changes occurring across multiple rows are
collectively valid.

ADO.NET includes table and row-level features that let you set up “proposed” changes to
be accepted or rejected en masse. When you connect data tables to their external database
counterparts in later chapters, ADO.NET uses these features to ensure that updates to both
the local copy of the data and the remote database copy retain their integrity. You can also
use them for your own purposes, however, to monitor changes to independent DataTable
instances.

Note  In reality, ADO.NET always uses these batch processing monitoring tools when changes
are made to any rows in a table, even changes such as those in this chapter’s simple code samples.
Fortunately, the Framework is designed so that you can safely ignore these monitoring
features if you don’t need them.

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 47

To use the batch system, simply start making changes. When you are ready to save or reject all
changes made within a DataTable, call the table’s AcceptChanges method to commit and ap-
prove all pending changes, or call the RejectChanges method to discard all unsaved changes.
Each DataRow in the table also includes these methods. You can call the row-level methods
directly, but the table-level methods automatically trigger the identically named methods in
each modified row.

C#
someTable.AcceptChanges(); // Commit all row changes

someTable.RejectChanges(); // Reject changes since last commit

Visual Basic
someTable.AcceptChanges() ' Commit all row changes

someTable.RejectChanges() ' Reject changes since last commit

Row State
While making your row-level edits, ADO.NET keeps track of the original and proposed ver-
sions of all fields. It also monitors which rows have been added to or deleted from the table,
and can revert to the original row values if necessary. The Framework accomplishes this by
managing various state fields for each row. The main tracking field is the DataRow.RowState
property, which uses the following enumerated values:

■■ DataRowState.Detached  The default state for any row that has not yet been added
to a DataTable.

■■ DataRowState.Added  This is the state for rows added to a table when changes to
the table have not yet been confirmed. If you use the RejectChanges method on the
table, any added rows will be removed immediately.

■■ DataRowState.Unchanged  The default state for any row that already appears in a
table, but has not been changed since the last call to AcceptChanges. New rows created
with the NewRow method use this state.

■■ DataRowState.Deleted  Deleted rows aren’t actually removed from the table until
you call AcceptChanges. Instead, they are marked for deletion with this state setting.
See the following discussion for the difference between “deleted” and “removed” rows.

■■ DataRowState.Modified  Any row that has had its fields changed in any way is
marked as modified.

Every time you add or modify a record, the data table updates the row state accordingly.
However, removing records from a data table with the Rows.Remove and Rows.RemoveAt
methods circumvents the row state tracking system, at least from the table’s point of view.

Dwonloaded from: iDATA.ws

48	 Microsoft ADO.NET 4 Step by Step

To enable ADO.NET batch processing support on deleted rows, use the DataRow object’s
Delete method. This does not remove the row from the DataTable.Rows collection. Instead,
it marks the row’s state as deleted. The next time you use the table or row AcceptChanges
method to confirm all updates, the row will be removed permanently from the table.

If you want to use the batch processing features, or if your DataTable instances are associated
with a database table, even if that table is temporarily disconnected, you need to use the
row-specific Delete method instead of Remove and RemoveAt.

C#
someTable.Rows.Remove(oneRow); // Removes row immediately

oneRow.Delete(); // Marks row for removal during approval

Visual Basic
someTable.Rows.Remove(oneRow) ' Removes row immediately

oneRow.Delete() ' Marks row for removal during approval

If you retain a reference to a deleted row once it has been removed from the table, its
RowState property will be set to DataRowState.Detached, just like a new row that has not yet
been added to a table.

Note  When working with DataTable instances that are connected to true database tables,
ADO.NET will still allow you to use the Remove and RemoveAt methods. However, these methods
will not remove the row from the database-side copy. They remove only the local DataTable.Rows
copy of the row. You must use the row’s Delete method to ensure that the row gets removed
from the database upon acceptance.

Row Versions

When you make changes to data within a data table’s rows, ADO.NET keeps multiple copies

of each changed value. Row version information applies to an entire row, even if only a single

data column in the row has changed.

■■ DataRowVersion.Original  The starting value of the field before it was changed (the
value that was in effect after the most recent use of AcceptChanges occurred).

■■ DataRowVersion.Proposed  The changed but unconfirmed field value. The Proposed
version of a field doesn’t exist until you begin to make edits to the field or row.
When changes are accepted, the proposed value becomes the actual (Original) value
of the field.

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 49

■■ DataRowVersion.Current  For fields with pending edits, this version is the same as
Proposed. For fields with confirmed changes, the Current version is the same as the
Original version.

■■ DataRowVersion.Default  For rows attached to a DataTable, this version is the same
as Current. For detached rows, Default is the same as Proposed. The Default version of
a row is not necessarily the same as the default values that might appear in newly
created rows.

Depending on the current state of a row, some of these row versions might not exist. To
determine whether a row version does exist, use the DataRow.HasVersion method. The fol-
lowing code block uses the HasVersion method and a special overload of the Item method
to access various row versions:

C#
if (oneRow.HasVersion(DataRowVersion.Proposed))

{

 if (oneRow.Item["Salary", DataRowVersion.Original] !=

 oneRow.Item["Salary", DataRowVersion.Proposed])

 MessageBox.Show("Proposed salary change.");

}

Visual Basic
If (oneRow.HasVersion(DataRowVersion.Proposed) = True) Then

 If (oneRow.Item("Salary", DataRowVersion.Original) <>

 oneRow.Item("Salary", DataRowVersion.Proposed)) Then _

 MessageBox.Show("Proposed salary change.")

End If

The default row version returned by the Item property is the Current version.

Validating Changes
As mentioned earlier in the “Storing Rows in a Table” section on page 40, attempting to store
data of the incorrect data type in a column will throw an exception. However, this will not
prevent a user from entering invalid values, such as entering 7,437 into a System.Int32 col-
umn that stores a person’s age. Instead, you must add validation code to your data table to
prevent such data range errors.

Dwonloaded from: iDATA.ws

50	 Microsoft ADO.NET 4 Step by Step

Exception-Based Errors
ADO.NET monitors some data errors on your behalf. These errors include the following:

■■ Assigning data of the wrong data type to a column value.

■■ Supplying string data to a column that exceeds the maximum length defined in the
column’s DataColumn.MaxLength property.

■■ Attempting to store a NULL value in a primary key column.

■■ Adding a duplicate value in a column that has its Unique property set.

■■ Taking data actions that violate one of the table’s custom constraints. Constraints are
discussed in Chapter 5, “Bringing Related Data Together.”

When one of these data violations occurs, ADO.NET throws an exception in your code at
the moment when the invalid assignment or data use happens. The following code block
generates an exception because it attempts to assign a company name that is too long for a
20-character column:

C#
DataColumn withRule = someTable.Columns.Add("FullName", typeof(string));

withRule.MaxLength = 20;

// ...later...

DataRow rowToUpdate = someTable.Rows[0];

rowToUpdate["FullName"] = "Graphic Design Institute"; // 24 characters

 // ----- Exception occurs with this assignment

Visual Basic
Dim withRule As DataColumn = someTable.Columns.Add("FullName", GetType(String))

withRule.MaxLength = 20

' ...later...

Dim rowToUpdate As DataRow = someTable.Rows(0)

rowToUpdate!FullName = "Graphic Design Institute" ' 24 characters

 ' ----- Exception occurs with this assignment

Naturally, you would want to enclose such assignments within exception handling blocks.

However, there are times when adding this level of error monitoring around every field

change is neither convenient nor feasible—not to mention the impact it has on performance

when adding or updating large numbers of records. To simplify exception monitoring, the

DataRow class includes the BeginEdit method. When used, any data checks normally done at

assignment are postponed until you issue a matching DataRow.EndEdit call.

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 51

C#
rowToUpdate.BeginEdit();

rowToUpdate["FullName"] = "Graphic Design Institute"; // 24 characters

 // ----- No exception occurs

rowToUpdate["RevisionDate"] = DateTime.Today; // Other field changes as needed

rowToUpdate.EndEdit();

 // ----- Exception for FullName field occurs here

Visual Basic
rowToUpdate.BeginEdit()

rowToUpdate!FullName = "Graphic Design Institute" ' 24 characters

 ' ----- No exception occurs

rowToUpdate!RevisionDate = Today ' Other field changes as needed

rowToUpdate.EndEdit()

 ' ----- Exception for FullName field occurs here

To roll back any changes made to a row since using BeginEdit, use the CancelEdit method.
Even when you complete a row’s changes with the EndEdit method, the changes are not yet
committed. It is still necessary to call the AcceptChanges method, either at the row or the
table level.

The DataTable.AcceptChanges and DataRow.AcceptChanges methods, when used, automati-
cally call DataRow.EndEdit on all rows with pending edits. Similarly, DataTable.RejectChanges
and DataRow.RejectChanges automatically issue calls to DataRow.CancelEdit on all pending
rows changes.

Validation-Based Errors
For data issues not monitored by ADO.NET, including business rule violations, you must set up
the validation code yourself. Also, you must manually monitor the data table for such errors
and refuse to confirm changes that would violate the custom validation rules.

Validation occurs in the various event handlers for the DataTable instance that contains the
rows to monitor. Validation of single-column changes typically occurs in the ColumnChanging
event. For validation rules based on the interaction between multiple fields in a data row, use
the RowChanging event. The RowDeleting and TableNewRow events are useful for checking
data across multiple rows or the entire table. You can also use any of the other table-level
events (ColumnChanged, RowChanged, RowDeleted, TableClearing, TableCleared) to execute
validation code that meets your specific needs.

Inside the validation event handlers, use the Proposed version of a row value to assess its
preconfirmed value. When errors occur, use the row’s SetColumnError method (with the name,
position, or instance of the relevant column) to indicate the problem. For row-level errors,
assign a description of the problem to the row’s RowError property. The following code applies
a column-level business rule to a numeric field, setting a column error if there is a problem:

Dwonloaded from: iDATA.ws

52	 Microsoft ADO.NET 4 Step by Step

C#
private void Applicant_ColumnChanging(Object sender,

 System.Data.DataColumnChangeEventArgs e)

{

 // ----- Check the Age column for a valid range.

 if (e.Column.ColumnName == "Age")

 {

 if ((int)e.ProposedValue < 18 || (int)e.ProposedValue > 29)

 e.Row.SetColumnError(e.Column,

 "Applicant's age falls outside the allowed range.");

 }

}

Visual Basic
Private Sub Applicant_ColumnChanging(ByVal sender As Object,

 ByVal e As System.Data.DataColumnChangeEventArgs)

 ' ----- Check the Age column for a valid range.

 If (e.Column.ColumnName = "Age") Then

 If (CInt(e.ProposedValue) < 18) Or (CInt(e.ProposedValue) > 29) Then

 e.Row.SetColumnError(e.Column,

 "Applicant's age falls outside the allowed range.")

 End If

 End If

End Sub

Adding column or row-level errors sets both the DataRow.HasErrors and the DataTable.
HasErrors properties to True, but that’s not enough to trigger an exception. Instead, you need
to monitor the HasErrors properties before confirming data to ensure that validation rules are
properly applied. Another essential method, ClearErrors, removes any previous error notices
from a row.

C#
// ----- Row-level monitoring.

oneRow.ClearErrors();

oneRow.BeginEdit();

oneRow.FullName = "Tailspin Toys"; // Among other changes

if (oneRow.HasErrors)

{

 ShowFirstRowError(oneRow);

 oneRow.CancelEdit();

}

else

 oneRow.EndEdit();

// ----- Table-level monitoring. Perform row edits, then...

if (someTable.HasErrors)

{

 DataRow[] errorRows = someTable.GetErrors();

 ShowFirstRowError(errorRows[0]);

 someTable.RejectChanges(); // Or, let user make additional corrections

}

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 53

else

 someTable.AcceptChanges();

// ...later...

public void ShowFirstRowError(DataRow whichRow)

{

 // ----- Show first row-level or column-level error.

 string errorText = "No error";

 DataColumn[] errorColumns = whichRow.GetColumnsInError();

 if (errorColumns.Count > 0)

 errorText = whichRow.GetColumnError(errorColumns[0]);

 else if (whichRow.RowError.Length > 0)

 errorText = whichRow.RowError;

 if (errorText.Length == 0) errorText = "No error";

 MessageBox.Show(errorText);

}

Visual Basic
' ----- Row-level monitoring.

oneRow.ClearErrors()

oneRow.BeginEdit()

oneRow.FullName = "Tailspin Toys" ' Among other changes

If (oneRow.HasErrors = True) Then

 ShowFirstRowError(oneRow)

 oneRow.CancelEdit()

Else

 oneRow.EndEdit()

End If

' ----- Table-level monitoring. Perform row edits, then...

If (someTable.HasErrors = True) Then

 Dim errorRows() As DataRow = someTable.GetErrors()

 ShowFirstRowError(errorRows(0))

 someTable.RejectChanges() ' Or, let user make additional corrections

Else

 someTable.AcceptChanges()

End If

' ...later...

Public Sub ShowFirstRowError(ByVal whichRow As DataRow)

 ' ----- Show first column-level or row-level error.

 Dim errorText As String = ""

 Dim errorColumns() As DataColumn = whichRow.GetColumnsInError()

 If (errorColumns.Count > 0) Then

 errorText = whichRow.GetColumnError(errorColumns(0))

 ElseIf (whichRow.RowError.Length > 0) Then

 errorText = whichRow.RowError

 End If

 If (errorText.Length = 0) Then errorText = "No error"

 MessageBox.Show(errorText)

End Sub

Dwonloaded from: iDATA.ws

54	 Microsoft ADO.NET 4 Step by Step

Validating Content in a DataRow: C#

Note  This exercise uses the “Chapter 3 CSharp” sample project and continues the preceding
exercise in this chapter.

1.	 Open the source code view for the AccountManager form.

2.	 Locate the CustomerAccounts_ColumnChanging event handler, which is called when-
ever a column value in a CustomerAccounts table row changes. Add the following code,
which checks for valid data in two of the columns:

if (e.Column.ColumnName == "AnnualFee")

{

 // ----- Annual fee may not be negative.

 if (DBNull.Value.Equals(e.ProposedValue) == false)

 {

 if ((decimal)e.ProposedValue < 0m)

 e.Row.SetColumnError(e.Column,

 "Annual fee may not be negative.");

 }

}

else if (e.Column.ColumnName == "StartDate")

{

 // ----- Start date must be on or before today.

 if (DBNull.Value.Equals(e.ProposedValue) == false)

 {

 if (((DateTime)e.ProposedValue).Date > DateTime.Today)

 e.Row.SetColumnError(e.Column,

 "Start date must occur on or before today.");

 }

}

3.	 Locate the CustomerAccounts_RowChanging event handler, which is called whenever
any value in a row changes within the CustomerAccounts table. Add the following code,
which checks for valid data involving multiple columns:

if (e.Row.HasVersion(DataRowVersion.Proposed) == true)

{

 if (((bool)e.Row["Active", DataRowVersion.Proposed] == true) &&

 (DBNull.Value.Equals(e.Row["StartDate",

 DataRowVersion.Proposed]) == true))

 e.Row.RowError = "Active accounts must have a valid start date.";

}

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 55

4.	 Run the program. Use its features to create, edit, and delete data rows. When you
attempt to provide invalid data—incorrect data types, violations of business rules,
duplicate account names—the program provides the appropriate error messages.

Validating Content in a DataRow: Visual Basic

Note  This exercise uses the “Chapter 3 VB” sample project and continues the preceding exercise
in this chapter.

1.	 Open the source code view for the AccountManager form.

2.	 Locate the CustomerAccounts_ColumnChanging event handler, which is called when-
ever a column value in a CustomerAccounts table row changes. Add the following code,
which checks for valid data in two of the columns:

If (e.Column.ColumnName = "AnnualFee") Then

 ' ----- Annual fee may not be negative.

 If (IsDBNull(e.ProposedValue) = False) Then

 If (CDec(e.ProposedValue) < 0@) Then _

 e.Row.SetColumnError(e.Column,

 "Annual fee may not be negative.")

 End If

ElseIf (e.Column.ColumnName = "StartDate") Then

 ' ----- Start date must be on or before today.

 If (IsDBNull(e.ProposedValue) = False) Then

 If (CDate(e.ProposedValue).Date > Today) Then _

 e.Row.SetColumnError(e.Column,

 "Start date must occur on or before today.")

 End If

End If

Dwonloaded from: iDATA.ws

56	 Microsoft ADO.NET 4 Step by Step

3.	 Locate the CustomerAccounts_RowChanging event handler, which is called whenever
any value in a row changes within the CustomerAccounts table. Add the following code,
which checks for valid data involving multiple columns:

If (e.Row.HasVersion(DataRowVersion.Proposed) = True) Then

 If (CBool(e.Row("Active", DataRowVersion.Proposed)) = True) And

 (IsDBNull(e.Row("StartDate",

 DataRowVersion.Proposed)) = True) Then

 e.Row.RowError = "Active accounts must have a valid start date."

 End If

End If

4.	 Run the program. Use its features to create, edit, and delete data rows. When you attempt
to provide invalid data—incorrect data types, violations of business rules, duplicate
account names—the program provides the appropriate error messages.

Summary
This chapter discussed the DataRow class, the final destination of all data in ADO.NET. With
one instance created per data record, the DataRow class manages each individual columnar
field. When used alone, its stored values use the generic Object data type, but when inserted
into a DataTable object’s Rows collection, all data type limitations and other constraints
established for the table’s columns act together to verify the row’s content.

Beyond these column settings, you can add event handlers to the DataTable that apply custom
business rules to the column and row data, providing an additional layer of validation—and
ultimately, integrity—for the table’s data.

Dwonloaded from: iDATA.ws

	 Chapter 3  Storing Data in Memory	 57

Chapter 3 Quick Reference
To Do This

Add a row to a DataTable Use the DataTable object’s NewRow method to obtain a
DataRow instance.

Update the Item values in the DataRow as needed.

Add the row using the table’s Rows.Add method.

Delete a row from a DataTable Call the DataRow object’s Delete method.

Call the DataTable object’s AcceptChanges method.

Check for data issues in new and modified
DataRow objects

Create a DataTable.

Add DataColumn definitions as needed.

Add event handlers for the DataTable object’s
ColumnChanging, RowChanging, or other events.

In the handlers, call the DataRow object’s SetColumnError
method or update its RowError property.

Temporarily suspend data validation while
modifying a data row

Call the DataRow object’s BeginEdit method.

Update the Item values in the DataRow as needed.

Call the DataRow object’s EndEdit method.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 59

Chapter 4

Accessing the Right Data Values
After completing this chapter, you will be able to:

■■ Find items in a DataTable by primary key

■■ Search for DataRow instances using standard query statements

■■ Obtain a set of DataRow objects sorted by one or more columns

■■ Add expression columns to a DataTable that present calculated values

Although adding records to a DataTable is important, the real value of ADO.NET lies in get-
ting those records back out in a variety of ways. Fortunately, the data framework includes
many different methods and tools to fulfill that very purpose.

This chapter introduces a few of the most basic tools, all of which appear in the DataTable,
DataColumn, and DataRow classes you’ve already met. Each data table includes features that
let you select just the records you need. These features are flexible enough to rival those you
might find in traditional databases. The chapter also includes a discussion of “expression col-
umns,” a way to add useful values to each table row without adding any actual data.

Note  The exercises in this chapter all use the same sample project, a tool that queries data
from a sample DataTable. Although you will be able to run the application after each exercise,
the expected results for the full application might not appear until you complete all exercises in
the chapter.

Both forms in the sample application use the DataGridView control, one of the standard controls
provided with Visual Studio. Chapter 21, “Binding Data with ADO.NET,” discusses the ADO.NET-
specific features of this control.

Querying and Sorting Data
In Chapter 3, “Storing Data in Memory,” you learn how to iterate through all the records in a
DataTable object’s Rows collection. However, there are times when you need to access only
specific rows, often based on applying search criteria to one or more of the table’s columns.
Although you can scan through every row in the table, checking each record as you encoun-
ter it to see whether it matches your search limits, the DataTable class already includes fea-
tures that will let you select just those DataRow instances that match a selection rule.

Dwonloaded from: iDATA.ws

60

Finding Rows by Primary Key
Each DataTable can include an optional primary key definition, a collection of DataColumn
objects assigned to the table’s PrimaryKey member. This key is often a unique value from a
single column, but tables also support multicolumn keys. After you define a table’s primary
key, all rows added to that table must have a non-NULL, unique key.

To locate a row based on its primary key, use the table’s Rows.Find method. For tables with
single-column keys, pass this method a key value of the appropriate data type. For multi-
column keys, pass the key components as an array. Find returns a single DataRow instance for
the matching row.

C#
// ----- Single-part key.

DataRow matchingRow = someTable.Rows.Find(searchValue);

// ----- Multi-part key.

DataRow matchingRow = someTable.Rows.Find(new Object[]

 {keyPart1, keyPart2, keyPart3});

Visual Basic
' ----- Single-part key.

Dim matchingRow As DataRow = someTable.Rows.Find(searchValue)

' ----- Multi-part key.

Dim matchingRow As DataRow = someTable.Rows.Find({keyPart1,

 keyPart2, keyPart3})

If no row matches the provided primary key, Find returns Nothing (in Visual Basic) or null (in
C#). The method throws an exception if you apply it to tables with no defined primary key.

Note  It is possible to add two rows with the same primary key to a DataTable by disabling its
constraints (as discussed in Chapter 5, “Bringing Related Data Together”). In such tables, the Find
method returns only the first row with a matching primary key value.

 Finding a Row by Primary Key: C#

1.	 Open the “Chapter 4 CSharp” project from the installed samples folder. The project in-
cludes two Windows.Forms classes: TableExaminer and ResultsViewer.

2.	 Open the source code view for the TableExaminer form. Locate the ActPrimaryKey_Click
event handler. This routine obtains a long-integer value from the user and then uses it
as the primary key lookup value in the application’s sample DataTable. Most of the code
exists to ensure that the user provides a valid ID.

Dwonloaded from: iDATA.ws

	 Chapter 4  Accessing the Right Data Values	 61

3.	 Locate the try...catch statement just after the “Perform the lookup” comment. In the try
block, add the following statement:

result = workTable.Rows.Find(usePrimaryKey);

This line performs the actual primary-key lookup, returning the DataRow of the match-
ing record, or null when the key doesn’t match any of the table’s primary keys.

4.	 Run the program. On the Lookup By Primary Key tab, enter a value in the Primary Key
field (try 2352), and then click the Lookup button. The matching row appears in a sepa-
rate window (not shown here).

Finding a Row by Primary Key: Visual Basic

1.	 Open the “Chapter 4 VB” project from the installed samples folder. The project includes
two Windows.Forms classes: TableExaminer and ResultsViewer.

2.	 Open the source code view for the TableExaminer form. Locate the ActPrimaryKey_Click
event handler. This routine obtains a long-integer value from the user and then uses it
as the primary key lookup value in the application’s sample DataTable. Most of the code
exists to ensure that the user provides a valid ID.

3.	 Locate the Try...Catch statement just after the “Perform the lookup” comment. In the
Try block, add the following statement:

result = workTable.Rows.Find(usePrimaryKey)

This line performs the actual primary-key lookup, returning the DataRow of the match-
ing record, or Nothing when the key doesn’t match any of the table’s primary keys.

Dwonloaded from: iDATA.ws

62	 Microsoft ADO.NET 4 Step by Step

4.	 Run the program. On the Lookup By Primary Key tab, enter a value in the Primary Key
field (try 2352), and then click Lookup. The matching row appears in a separate window,
as shown here.

Selecting Rows with a Search Criteria
The Find method is useful when you need to retrieve a single row based on a primary key
lookup value, but useful data analysis typically involves searching across many of a table’s
columns and returning all possible matches. To provide this functionality, the DataTable class
includes the Select method.

Note  When you anticipate issuing the same Select request on a table multiple times, it’s more
efficient to create a DataView that provides a limited presentation of the table’s rows. Chapter 6,
“Turning Data into Information,” introduces the DataView class and its use in presenting content
from a data table.

You pass the Select method a string that contains the selection criteria. When successful, the
method returns an array of matching DataRow instances from the table.

C#
DataRow[] matchingRows = someTable.Select(filterCriteria);

Visual Basic
Dim matchingRows() As DataRow = someTable.Select(filterCriteria)

Note  You can iterate through the returned array as your processing needs require. Although
the rows come to you packaged in an array, they are still part of the original table. Any changes
you make to these rows affect the underlying table.

Dwonloaded from: iDATA.ws

	 Chapter 4  Accessing the Right Data Values	 63

The filter expression passed to the Select method uses a SQL-like syntax to build a Boolean
statement that will either match or not match specific rows in the table. Any of the columns
in your DataTable object is fair game for comparisons. As an example, the following expres-
sion will return all rows with a Salary column value of at least 100,000:

Salary >= 100000

Columns can be compared to each other and standard mathematical expressions can en-
hance the column elements.

Bonus > Salary * 0.15

You can string together multiple criteria using the Boolean operators AND, OR, and NOT, and
use parentheses to force evaluation in a specific order.

Age >= 18 AND (InSchool = True OR LivingAtHome = True)

Table 4-1 lists the some of the elements you can use in filter expressions. To view the full doc-
umentation for filter expressions, access the Visual Studio online help entry for “DataColumn.
Expression Property.”

Table 4-1  Filter Expression Elements

Event Name Triggering Action

Column names Any of the column names from the DataTable. Surround column
names that contain embedded space characters or other non-
alphanumeric characters with a set of square brackets, as in [Full
Name] for a column named Full Name.

<, >, <=, >=, <>, = Use the standard comparison operators to compare columns to
literal values, to each other, or to more complex expressions.

IN Match from a collection of comma-delimited elements.

BillDenomination IN (5, 10, 20)

LIKE Match a string pattern. The pattern can include zero or more oc-
currences of the wildcard character (“*” or “%”), but at the ends of
the pattern string only, not in the middle.

ProductClass = 'AA*'

or:

ProductClass = 'AA%'

AND, OR, NOT Use these Boolean operators to join multiple expressions together.

Parentheses Force the order of expression evaluation with parentheses.

Dwonloaded from: iDATA.ws

64	 Microsoft ADO.NET 4 Step by Step

Event Name Triggering Action

Literals Literals include integers, decimals, numbers in scientific notation,
strings in single quotes, and dates or times in # marks.

CONVERT Convert an expression or column from one data type to another.

CONVERT(expression, new-type)

The list of allowed data types is pretty close to those allowed
when creating data columns. There are also restrictions on which
data types can be coerced into other types. See the Visual Studio
online help for full details.

LEN Returns the length of a string column or expression.

ISNULL Returns an expression or a default expression if the first argument
evaluates to NULL. Useful for ensuring that a NULL value does
not appear in a calculation. For example, the following expres-
sion compares the FamilyMembers column to the value 2 when
FamilyMembers is not NULL. However, if FamilyMembers evaluates
to NULL, it defaults to 1 instead.

ISNULL(FamilyMembers, 1) >= 2

IIF The ternary conditional function, similar to the If and IIf operators
in Visual Basic, and to the :? operator in C#. The operator contains
three arguments. If the first argument evaluates to true, the func-
tion returns the second argument, the “true” part. Otherwise, it
returns the third argument, the “false” part.

IIF(Age >= 18, 'Adult', 'Minor')

TRIM Trims whitespace from the ends of a string column or expression.

SUBSTRING Returns a portion of a string column or expression, starting from a
1-based position and continuing on for a specific length count.

SUBSTRING(PhoneNumber, 1, 3)

Sorting Search Results
By default, the DataTable.Select method returns DataRow objects in the order in which they
were added to the table. To sort the results based on one or more columns in the returned
rows, send a second string argument to the Select method that indicates the sort rules.

C#
DataRow[] sortedRows = someTable.Select(filterCriteria, sortRules);

Visual Basic
Dim sortedRows() As DataRow = someTable.Select(filterCriteria, sortRules)

Dwonloaded from: iDATA.ws

	 Chapter 4  Accessing the Right Data Values	 65

The sort string contains a comma-delimited list of the columns to be used for sorting, from
left to right. Each column can be optionally followed by ASC for an ascending sort on that
column or DESC for a descending sort; ascending is the default. The following sort expression
orders the returned rows by descending OrderDate and then by (ascending) customer name:

OrderDate DESC, CustomerName

A third argument to the Select method lets you limit the results based on the state
of each row. In tables that have had row-level changes, but for which you haven’t yet
called AcceptResults, this feature can return just the deleted rows, or just the unchanged
rows, among other options. See the Visual Studio online help entry “DataViewRowState
Enumeration” for a complete list of available options.

Selecting and Sorting DataRow Objects: C#

Note  This exercise uses the “Chapter 4 CSharp” sample project and continues the previous exer-
cise in this chapter.

1.	 Open the source code view for the TableExaminer form. Locate the ActCriteria_Click
event handler. This routine collects user-supplied selection and sorting expressions;
then uses them to obtain a set of DataRow instances from a DataTable. Most of the
code exists to ensure that the user provides valid expressions.

2.	 Locate the try...catch statement just after the “Apply the filter and sorting list” comment.
In the try block, add the following statement:

results = workTable.Select(CriteriaFilter.Text, CriteriaSorting.Text);

This line performs the actual row selection, returning the optionally sorted DataRow
instances, or an empty array when the selection expression doesn’t match any of the
table’s rows.

3.	 Run the program. On the Lookup By Criteria tab, provide expressions that will return
a list of students with improving grades, sorted by name. Enter ScoreTrimester3 >
ScoreTrimester1 OR ScoreTrimester3 > ScoreTrimester2 in the Filter Criteria field,
and StudentName in the Sorting List field. Click Lookup. The matching rows appear in
a separate window.

Dwonloaded from: iDATA.ws

66	 Microsoft ADO.NET 4 Step by Step

Selecting and Sorting DataRow Objects: Visual Basic

Note  This exercise uses the “Chapter 4 VB” sample project and continues the previous exercise
in this chapter.

1.	 Open the source code view for the TableExaminer form. Locate the ActCriteria_Click
event handler. This routine collects user-supplied selection and sorting expressions;
then uses them to obtain a set of DataRow instances from a DataTable. Most of the
code exists to ensure that the user provides valid expressions.

2.	 Locate the Try...Catch statement just after the “Apply the filter and sorting list” com-
ment. In the Try block, add the following statement:

results = workTable.Select(CriteriaFilter.Text, CriteriaSorting.Text)

This line performs the actual row selection, returning the optionally sorted DataRow
instances or an empty array when the selection expression doesn’t match any of the
table’s rows.

3.	 Run the program. On the Lookup By Criteria tab, provide expressions that will return
a list of students with improving grades, sorted by name. Enter ScoreTrimester3 >
ScoreTrimester1 OR ScoreTrimester3 > ScoreTrimester2 in the Filter Criteria field,
and StudentName in the Sorting List field. Click Lookup. The matching rows appear in
a separate window.

Dwonloaded from: iDATA.ws

	 Chapter 4  Accessing the Right Data Values	 67

Performing Case-Sensitive Lookups
The Select method ignores character casing by default when comparing string values. For
instance, the following expression will match joe, Joe, JOE, or any other mixed-case variation
on the name:

FirstName = 'joe'

To enforce case-sensitive matches on all searches instead, set the table’s CaseSensitive
property.

C#
someTable.CaseSensitive = true;

Visual Basic
someTable.CaseSensitive = True

Using Expression Columns
In Chapter 2, “Building Tables of Data,” you learned how to add columns to a table that
would each hold data values of a specific type. These static columns define the core data
within a table. The DataTable class also supports expression columns, fields that expose a cal-
culated result based on the data in other row columns. For instance, if your table of orders
includes a Subtotal column and a Tax column, you could add an expression column named
Total that calculated the sum of Subtotal and Tax.

Dwonloaded from: iDATA.ws

68	 Microsoft ADO.NET 4 Step by Step

To add an expression column to a table, create a standard DataColumn object, fill in its
ColumnName and DataType properties, and then assign a string expression that performs the
custom calculation to the Expression property.

C#
// ----- Syntax using a DataColumn object.

DataColumn orderTotal = new DataColumn();

orderTotal.ColumnName = "Total";

orderTotal.DataType = typeof(decimal);

orderTotal.Expression = "Subtotal + ISNULL(Tax, 0)";

someTable.Columns.Add(orderTotal);

// ----- Syntax using Add arguments only.

someTable.Columns.Add("Total", typeof(decimal),

 "Subtotal + ISNULL(Tax, 0)");

Visual Basic
' ----- Syntax using a DataColumn object.

Dim orderTotal As New DataColumn

orderTotal.ColumnName = "Total"

orderTotal.DataType = GetType(Decimal)

orderTotal.Expression = "Subtotal + ISNULL(Tax, 0)"

someTable.Columns.Add(orderTotal)

' ----- Syntax using Add arguments only.

someTable.Columns.Add("Total", GetType(Decimal),

 "Subtotal + ISNULL(Tax, 0)")

The expression field uses the same elements from Table 4-1 that you used with the
DataTable.Select method. To view the full documentation for this expression, access the
Visual Studio online help entry for “DataColumn.Expression Property.”

Note  The documentation for the Expression property discusses “aggregate functions.” These are
covered in Chapter 6.

After being added to your table, you can query expression columns in Select statements or
examine them with standard ADO.NET code just like static columns. Expression columns are
not calculated until you attempt to access them. If there is anything wrong with the expres-
sion, such as including references to non-existent columns, the code accessing the column
will throw an exception.

Dwonloaded from: iDATA.ws

	 Chapter 4  Accessing the Right Data Values	 69

Adding Expression Columns to a DataTable: C#

Note  This exercise uses the “Chapter 4 CSharp” sample project and continues the previous exer-
cise in this chapter.

1.	 Open the source code view for the TableExaminer form. Locate the ActExpression_Click
event handler. This routine defines up to three expression columns based on column
names, data types, and calculation expressions supplied by the user. It then adds these
columns to the application’s sample DataTable. Most of the code exists to ensure that
the user provides valid column definitions.

2.	 Locate the try...catch statement just after the “Add the expression column” comment. In
the try block, add the following statement:

workTable.Columns.Add(nameField.Text.Trim(),

 Type.GetType("System." + typeField.SelectedItem.ToString()),

 expressionField.Text);

This code adds the expression columns to the sample table, passing the column name,
the data type from the System namespace, and the field expression.

3.	 Run the program. On the Add Expression Columns tab, fill in the Name, Type, and
Expression fields with the desired custom columns. To create a column that calcu-
lates the average annual score for each student, in the first row of fields, set Name
to YearAverage, select Decimal in the Type field, and enter (ScoreTrimester1 +
ScoreTrimester2 + ScoreTrimester3) / 3 in the Expression field.

4.	 Expression columns can reference other expression columns. Create a column that
calculates a letter grade for the YearAverage column. In the second row of fields,
enter LetterGrade in the Name field, select String in the Type field, and enter
IIF(YearAverage >= 3.5, 'A', IIF(YearAverage >= 2.5, 'B', IIF(YearAverage >= 1.5, 'C',
IIF(YearAverage >= 0.5, 'D', 'F')))) in the Expression field. Click Build to see the results.

Dwonloaded from: iDATA.ws

70	 Microsoft ADO.NET 4 Step by Step

Adding Expression Columns to a DataTable: Visual Basic

Note  This exercise uses the “Chapter 4 VB” sample project and continues the previous exercise
in this chapter.

1.	 Open the source code view for the TableExaminer form. Locate the ActExpression_Click
event handler. This routine defines up to three expression columns based on column
names, data types, and calculation expressions supplied by the user. It then adds these
columns to the application’s sample DataTable. Most of the code exists to ensure that
the user provides valid column definitions.

2.	 Locate the Try...Catch statement just after the “Add the expression column” comment. In
the Try block, add the following statement:

workTable.Columns.Add(nameField.Text.Trim,

 Type.GetType("System." & typeField.SelectedItem.ToString),

 expressionField.Text)

This code adds the expression columns to the sample table, passing the column name,
the data type from the System namespace, and the field expression.

3.	 Run the program. On the Add Expression Columns tab, fill in the Name, Type, and
Expression fields with the desired custom columns. To create a column that calcu-
lates the average annual score for each student, in the first row of fields, set Name
to YearAverage, select Decimal in the Type field, and enter (ScoreTrimester1 +
ScoreTrimester2 + ScoreTrimester3) / 3 in the Expression field.

4.	 Expression columns can reference other expression columns. Create a column that
calculates a letter grade for the YearAverage column. In the second row of fields,
enter LetterGrade in the Name field, select String in the Type field, and enter
IIF(YearAverage >= 3.5, 'A', IIF(YearAverage >= 2.5, 'B', IIF(YearAverage >= 1.5,
'C', IIF(YearAverage >= 0.5, 'D', 'F')))) in the Expression field. Click Build to see the
results.

Dwonloaded from: iDATA.ws

	 Chapter 4  Accessing the Right Data Values	 71

Summary
This chapter introduced different ways to access records previously added to a DataTable
instance. The DataTable.Rows.Find method uses the table’s primary key value(s) to return a
single DataRow instance, similar to the way that .NET’s Generic.Dictionary class returns an
object based on a lookup key. The DataTable.Select method also performs a row lookup, but
uses a SQL–like Boolean expression, expanding the search criteria to all columns in the table,
not just the primary key. This method also provides a way to sort the results.

Expression columns let you add real-time calculated values to each DataRow in your table.
Like the other columns in the table, expression columns are strongly typed. Because they are
calculated only when accessed, their values refresh automatically whenever any of their de-
pendent column values change.

Chapter 4 Quick Reference
To Do This

Access a DataRow by its primary key Add DataColumn instances to a DataTable.

Add one or more of those DataColumn instances to the
table’s PrimaryKey property.

Add relevant DataRow objects to the DataTable.

Call the table’s Rows.Find method, passing it the desired
row’s primary key value(s).

Locate DataRow objects with a SQL-like query Add DataColumn instances to a DataTable.

Add relevant DataRow objects to the DataTable.

Build a query expression string (see the “DataColumn.
Expression Property” entry in online help).

Call the table’s Select method, passing it the query
expression.

Perform a case-sensitive or
case-insensitive DataRow lookup

Set the DataTable object’s CaseSensitive Boolean property.

Call Rows.Find or Select methods with string search
content.

Add calculated columns to a DataTable Add standard DataColumn instances to a DataTable.

Create a new DataColumn instance for the calculated
column.

Assign the DataColumn object’s ColumnName and
DataType fields.

Build a column expression string (see “DataColumn.
Expression Property” entry in online help).

Set the DataColumn object’s Expression property to the
expression string.

Add the DataColumn to the DataTable.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 73

Chapter 5

Bringing Related Data Together
After completing this chapter, you will be able to:

■■ Join multiple DataTable instances into a DataSet

■■ Establish parent-child relationships between tables of data

■■ Understand the types of table constraints available in ADO.NET

■■ Build relationships that auto-correct linked rows when needed

The DataTable class provides ADO.NET’s core data-management functionality. But many
of the tools that build and interact with DataTable content do so through a higher level of
abstraction: the DataSet. Instead of relying on a single table’s worth of DataRows, a DataSet
links multiple tables together, making it possible to generate data queries based on the rela-
tionships between the tables and their data.

In this chapter, the DataSet object takes center stage. You will discover how a DataSet becomes
more than the sum of its DataTable parts. By combining data tables, relationship definitions be-
tween those tables, and column-specific constraints that help ensure data integrity between
the tables, ADO.NET provides new views on data that would be complicated to achieve with
solitary data tables.

Note  The exercises in this chapter all use the same sample project, a tool that shows the related
records between two DataTable instances. Although you will be able to run the application after
each exercise, the expected results for the full application might not appear until you complete
all exercises in the chapter.

Collecting Tables into Sets
ADO.NET includes a System.Data.DataSet class that defines a collection of tables, their rela-
tionships, and related field constraints. To establish a data set in your program, create a new
DataSet object, optionally passing it a set name.

C#
DataSet someSet = new DataSet("SetName");

Visual Basic
Dim someSet As New DataSet("SetName")

Dwonloaded from: iDATA.ws

74	 Microsoft ADO.NET 4 Step by Step

Adding a name to a standalone DataTable instance might be inconsequential, but some
table-related features in ADO.NET do enable access to a DataTable object by its table name.
For example, the DataSet class includes a Tables property that, as expected, holds a collection
of individual DataTable instances. You access tables within the collection either by name or
by an index number. To add a new DataTable to a DataSet, write the following:

C#
someSet.Tables.Add(someTable);

Visual Basic
someSet.Tables.Add(someTable)

You can also pass a string to the Add method, which creates a new named table object with-
out columns or rows. You can add as many data tables as you want to the Tables collection.
At this point, they are still treated as individual tables; adding them to the collection of tables
does not automatically endow them with relationship features.

Note  A DataSet can contain two tables with the same name as long as their namespace values
differ. Chapter 7, “Saving and Restoring Data,” discusses these namespaces. Also, if two tables
share a common name (and namespace) but differ in the casing of those names (“CUSTOMERS”
versus “customers”), the DataSet will treat them as distinct tables. When querying these tables,
you must provide the same casing as the original table names, or else the query will fail.
However, if a table name has no duplicate within a DataSet, its name in queries can be case-
insensitive.

The DataSet includes some properties and methods that replicate the functionality of the
contained tables. These features share identical names with their table counterparts. When
used, these properties and methods work as if those same features had been used at the
table level in all contained tables. Some of these members that you’ve seen before include
the following:

■■ Clear

■■ CaseSensitive

■■ AcceptChanges

■■ RejectChanges

■■ EnforceConstraints

■■ HasErrors

Dwonloaded from: iDATA.ws

	 Chapter 5  Bringing Related Data Together	 75

Adding Tables to a DataSet: C#

1.	 Open the “Chapter 5 CSharp” project from the installed samples folder. The project in-
cludes three Windows.Forms classes: FlightInfo, FlightDetail, and LegDetail.

2.	 Open the source code view for the FlightInfo form. Locate the BuildSampleDataSet
function. This routine creates the main DataSet used in the application.

3.	 Just after the “Add the two tables to the data set” comment, add the following
statements:

result = new DataSet("FlightSample");

parentTable = BuildFlightTable();

childTable = BuildLegTable();

result.Tables.Add(parentTable);

result.Tables.Add(childTable);

These lines create two tables that share a common value: the flight ID number. In the
flight table the field is named ID, whereas it is called FlightID in the leg table. A later
example in this chapter will establish the relationship between the two tables.

Adding Tables to a DataSet: Visual Basic

1.	 Open the “Chapter 5 VB” project from the installed samples folder. The project includes
three Windows.Forms classes: FlightInfo, FlightDetail, and LegDetail.

2.	 Open the source code view for the FlightInfo form. Locate the BuildSampleDataSet
function. This routine creates the main DataSet used in the application.

3.	 Just after the “Add the two tables to the data set” comment, add the following
statements:

result = New DataSet("FlightSample")

parentTable = BuildFlightTable()

childTable = BuildLegTable()

result.Tables.Add(parentTable)

result.Tables.Add(childTable)

These lines create two tables that share a common value: the flight ID number. In the
flight table the field is named ID, whereas it is called FlightID in the leg table. A later
example in this chapter will establish the relationship between the two tables.

Dwonloaded from: iDATA.ws

76	 Microsoft ADO.NET 4 Step by Step

Establishing Relationships Between Tables
Before focusing on the relationship features of the DataSet class, it is essential to have a clear
understanding of what it means for two tables to be related.

Understanding Table Relations
In relational database modeling, the term cardinality describes the type of relationship that
two tables have. There are three main types of database model cardinality:

■■ One-to-One  A record in one table matches exactly one record in another table. This
is commonly used to break a table with a large number of columns into two distinct
tables for processing convenience.

Table1

Record 1

Record 2

Record 3

Table2

Record 1

Record 2

Record 3

■■ One-to-Many  One record in a “parent” table has zero or more “child” records in
another table. A typical use for the one-to-many relationship is in an ordering system
in which a single customer record (the parent) will have none, one, or many order re-
cords (the children) on file. Likewise, a single order record will have multiple order line
items. One-to-many relationships are the most common type of table link in relational
databases.

Customer

Customer 1

Customer 2

Customer 3

Order

Order 1 for Customer 1

Order 2 for Customer 1

Order 1 for Customer 2

■■ Many-to-Many  In this third and most complex type of link, one record in the first
table is associated with zero or more records in the second table, and each record in
the second table can also be associated with zero or more records in the first table.
Students taking classes is a typical real-world example of a many-to-many relationship.
Each student can take multiple classes, and each class can have multiple students listed
as class participants.

Dwonloaded from: iDATA.ws

	 Chapter 5  Bringing Related Data Together	 77

Student

Student 1

Student 2

Student 3

Class

Class 1

Class 2

Class 3

Fortunately, all three of these model relationships share a common physical implementation
concept: the foreign key—the use of a table’s identifying column(s) by another table. In a
foreign-key relationship, both tables include a column (or multiple columns when the master
table uses a multipart key) that uses an agreed-upon domain of values. When records in each
table share a common value for that column, the records are related.

For example, in a customer-order relationship, the Customer table includes a customer iden-
tification column that uniquely defines each record. The associated Order table also includes
a customer identification column. Each order that shares a customer identifier with a specific
customer record belongs to that customer record. There might be multiple order records
that include that customer’s identifier, each of which is related to the same customer.

Note  The name given to the identifying column in the first table doesn’t need to be the same
as the name of the column in the second table. Only the data relationships are important, not the
names given to the columns in those relationships.

Records in a one-to-one relationship work the same way, but there is never more than one
occurrence of a specific identifier value in each table. If a record in one table always has a
match in the second table, it doesn’t matter which one is the parent and which is the child. If
one table’s records are optional, the table with the optional records is the child.

Many-to-many relationships also use the foreign-key concept, but they require a “go-between”
table that indicates which two keys link up. Both primary tables are the parent; the interim
table is the child.

Student

Student 1

Student 2

Student 3

StudentClassInterim

Student 1

Student 1

Student 1

Class 1

Class 2

Class 3

Student 3 Class 2

Student 3 Class 3

Class

Class 1

Class 2

Class 3

Dwonloaded from: iDATA.ws

78	 Microsoft ADO.NET 4 Step by Step

There are some expectations that come with these types of data relationships:

■■ The relationship column in the parent or master table must contain unique values; no
duplicates are allowed. Also, NULL values are not allowed in this column.

■■ Any value that appears in the relationship column of the child must have a related par-
ent record. If the child record has no related parent record, that child record must be
deleted or its link-column value must be set to NULL.

In short, every parent must be unique, and every child requires a parent.

Creating Data Relations
The DataRelation class, found within the System.Data namespace, makes table joins within a
DataSet possible. Each relationship includes a parent and a child. The DataRelation class even
uses the terms “parent” and “child” in its defining members.

To create a relationship between two DataSet tables, first add the parent and child table to
the data set. Then create a new DataRelation instance, passing its constructor the name of
the new relationship, plus a reference to the linking columns in each table. The following
code joins a Customer table with an Order table, linking the Customer.ID column as the par-
ent with the related Order.CustomerID column as the child:

C#
DataSet orderTracking = new DataSet("OrderTracking");

orderTracking.Tables.Add(customerTable);

orderTracking.Tables.Add(orderTable);

DataRelation customerOrder = new DataRelation("CustomerOrder",

 customerTable.Columns["ID"], orderTable.Columns["CustomerID"]);

orderTracking.Relations.Add(customerOrder);

Visual Basic
Dim orderTracking As New DataSet("OrderTracking")

orderTracking.Tables.Add(customerTable)

orderTracking.Tables.Add(orderTable)

Dim customerOrder As New DataRelation("CustomerOrder",

 customerTable.Columns!ID, orderTable.Columns!CustomerID)

orderTracking.Relations.Add(customerOrder)

For tables with multipart relational keys, the second and third arguments to the DataRelation
constructor each accept an array of DataColumn objects.

Note  Columns bound in a relationship must always be the same data type. In tables with multi-
part keys, each positional part between the tables must be the same data type.

Dwonloaded from: iDATA.ws

	 Chapter 5  Bringing Related Data Together	 79

Adding a Relationship Between Two Tables: C#

Note  This exercise uses the “Chapter 5 CSharp” sample project and continues the previous
exercise in this chapter.

1.	 Open the source code view for the FlightInfo form. Locate the BuildSampleDataSet
function.

2.	 Just after the “Build the relationship between the tables” comment, add the following
statements:

tableLink = new DataRelation("FlightLeg", parentTable.Columns["ID"],

 childTable.Columns["FlightID"], true);

result.Relations.Add(tableLink);

These lines create a new DataRelation instance named “FlightLeg” using the matching
DataColumn instances from the two tables. Adding the DataRelation to the DataSet
completes the column-linking process.

Adding a Relationship Between Two Tables: Visual Basic

Note  This exercise uses the “Chapter 5 VB” sample project and continues the previous exercise
in this chapter.

1.	 Open the source code view for the FlightInfo form. Locate the BuildSampleDataSet
function.

2.	 Just after the “Build the relationship between the tables” comment, add the following
statements:

tableLink = New DataRelation("FlightLeg", parentTable.Columns("ID"),

 childTable.Columns("FlightID"), True)

result.Relations.Add(tableLink)

These lines create a new DataRelation instance named “FlightLeg” using the matching
DataColumn instances from the two tables. Adding the DataRelation to the DataSet
completes the column-linking process.

Locating Parent and Child Records
After you’ve established a parent-child relationship between two tables, it’s easy to re-
trieve data that capitalizes on that relationship. The DataRow class includes two methods—
GetChildRows and GetParentRow—that retrieve the relevant row(s) at the other end of a
linked relationship. Because a column could be involved in multiple relationships, you must

Dwonloaded from: iDATA.ws

80	 Microsoft ADO.NET 4 Step by Step

pass either the name or the instance of the relationship to the relevant method. The follow-
ing statements retrieve the customer (parent) record given an order (child) record row, de-
pending on the DataRelation with a name of “CustomerOrder”:

C#
DataRow customer = whichOrder.GetParentRow("CustomerOrder");

Visual Basic
Dim customer As DataRow = whichOrder.GetParentRow("CustomerOrder")

Getting the child records for a parent row uses nearly identical code. Because a parent can
have multiple children, the GetChildRows method returns an array of DataRow matches.

C#
DataRow[] orders = whichCustomer.GetChildRows("CustomerOrder");

Visual Basic
Dim orders() As DataRow = whichCustomer.GetChildRows("CustomerOrder")

The DataRow class also includes a variant of GetParentRow (named GetParentRows) that
returns multiple parent rows for a single child record. This is useful for parent-child relation-
ships that are linked on columns other than the parent’s primary key. In the class-student
example mentioned previously, consider a university that has multiple campuses within a city.
If both students and classes are associated with a specific campus, a link can be established
between the columns in each table that define the campus.

C#
DataTable classTable = new DataTable("Class");

// Add columns, including...

classTable.Columns.Add("Campus", typeof(string));

DataTable studentTable = new DataTable("Student");

// Add columns, including...

studentTable.Columns.Add("Campus", typeof(string));

DataSet siteCourses = new DataSet("SiteCourses");

siteCourses.Tables.Add(classTable);

siteCourses.Tables.Add(studentTable);

DataRelation classStudent = new DataRelation("ClassStudent",

 classTable.Columns["Campus"], studentTable.Columns["Campus"], false);

siteCourses.Relations.Add(classStudent);

// ----- Later, get available classes for a student by campus.

DataRow[] availableClasses = whichStudent.GetParentRows("ClassStudent");

Dwonloaded from: iDATA.ws

	 Chapter 5  Bringing Related Data Together	 81

Visual Basic
Dim classTable As New DataTable("Class")

' Add columns, including...

classTable.Columns.Add("Campus", GetType(String))

Dim studentTable As New DataTable("Student")

' Add columns, including...

studentTable.Columns.Add("Campus", GetType(String))

Dim siteCourses As New DataSet("SiteCourses")

siteCourses.Tables.Add(classTable)

siteCourses.Tables.Add(studentTable)

Dim classStudent As New DataRelation("ClassStudent",

 classTable.Columns("Campus"), studentTable.Columns("Campus"), False)

siteCourses.Relations.Add(classStudent)

' ----- Later, get available classes for a student by campus.

Dim availableClasses() As DataRow = whichStudent.GetParentRows("ClassStudent")

Because the parent table can include duplicate values in its related column, this relationship
doesn’t follow the normal rules for a key-based, one-to-many relationship. It is instead a
form of many-to-many cardinality, albeit one that does not involve either table’s primary key.
Normally, new DataRelation instances create special “constraint” objects that establish the re-
lationship rules, such as the need for a unique primary key. (This next section, "Defining Table
Constraints,” discusses these constraints.) In this many-to-many relationship, such constraints
would generate errors. Therefore, when creating the DataRelation instance, the code passed
a fourth Boolean argument with a value of False to the constructor, telling it to dispense with
the constraints.

Defining Table Constraints
As mentioned earlier in this chapter, data relationships come with certain expectations
known as constraints, expressed through the System.Data.Constraint class. ADO.NET supports
two types of constraints, both designed to maintain the integrity of each table’s data: unique
column (System.Data.UniqueConstraint) and foreign key (System.Data.ForeignKeyConstraint).
As you would expect, the unique column constraint prevents duplicate values from showing
up in a table column, a requirement for the parent column in a one-to-many relationship.
Attempts to add a duplicate value to a unique column will result in a thrown exception.

The foreign-key constraint establishes similar limitations on the participating columns.
Although the parent column might include values that do not appear in the child table’s
joined column, the reverse is not true. In a one-to-many relationship, any value in the child
column must exist in the parent column as well. The ForeignKeyConstraint class enforces this

Dwonloaded from: iDATA.ws

82	 Microsoft ADO.NET 4 Step by Step

rule. But unlike the UniqueConstraint class, which just throws an exception when you violate
the rule, ForeignKeyConstraint gives you options for how ADO.NET should behave when data
violates the foreign-key regulation. There are four rules that can be followed when a parent-
column value is updated or deleted:

■■ The child rows can be automatically updated or deleted in the same manner.

■■ The child column values can be set to NULL.

■■ The child column values can be set to a default value, assuming that the value does not
violate the foreign-key constraint.

■■ An exception can be thrown. This is the default.

You define these actions by setting the DeleteRule and UpdateRule properties in the
ForeignKeyConstraint object as needed. Each field can be set to one of the following enumer-
ated values:

■■ System.Data.Rule.Cascade

■■ System.Data.Rule.SetNull

■■ System.Data.Rule.SetDefault

■■ System.Data.Rule.None

By default, adding a DataRelation that links two tables in a DataSet adds both a unique
constraint to the parent column and a foreign-key constraint to the child column. As shown
previously, you can also pass an argument to the DataRelation constructor that prevents the
creation of these constraints and add the constraints yourself as needed.

Note  If you choose to define the constraints for a relationship yourself, you must (1) add a
UniqueConstraint to the parent column; (2) add a ForeignKeyConstraint to the child column; (3)
update the appropriate properties in the DataRelation instance, including the ChildKeyConstraint
and the ParentKeyConstraint properties; and (4) make various changes to properties in the
Constraint, DataTable, and DataRelation instances so that they all reference each other. To ensure
proper configuration between the fields, it is often best to let the DataRelation constructor fill in
all these fields on your behalf.

To add a constraint manually, create and fill out an instance of either UniqueConstraint or
ForeignKeyConstraint; you can’t create an instance of the Constraint class directly. Then add
the new instance to the DataTable object’s Constraints collection.

Dwonloaded from: iDATA.ws

	 Chapter 5  Bringing Related Data Together	 83

C#
Constraint exemptUnique = new UniqueConstraint(

 customers.Columns["TaxExemptID"]);

customers.Constraints.Add(exemptUnique);

Visual Basic
Dim exemptUnique As Constraint = New UniqueConstraint(

 customers.Columns!TaxExemptID)

customers.Constraints.Add(exemptUnique)

The second Boolean argument in the UniqueConstraint constructor can be set to True to
indicate primary key columns. Other constructor variations let you name the constraint or
associate it with multiple columns.

Implementing a many-to-many relationship based on primary keys—the multiple-students-
in-multiple-classes scenario diagrammed earlier in this chapter—requires an interim table
to join the two main tables. The interim table will have a two-part primary key, with each
part hosting the primary key of one of the two main joined tables. Adding a multipart
UniqueConstraint instance to the interim table prevents a pair of records between the tables
from being joined twice to each other.

C#
DataTable studentTable = new DataTable("Student");

// Add columns, including...

studentTable.Columns.Add("ID", typeof(long));

DataTable classTable = new DataTable("Class");

// Add columns, including...

classTable.Columns.Add("ID", typeof(long));

DataTable interimTable = new DataTable("StudentClassInterim");

// Add columns, including...

interimTable.Columns.Add("StudentID", typeof(long));

interimTable.Columns.Add("ClassID", typeof(long));

// ----- Make the linking fields unique.

Constraint interimKey = new UniqueConstraint(

 new DataColumn[] { interimTable.Columns["StudentID"],

 interimTable.Columns["ClassID"] }, true);

interimTable.Constraints.Add(interimKey);

Dwonloaded from: iDATA.ws

84	 Microsoft ADO.NET 4 Step by Step

// ----- Relations exist within a data set context.

DataSet registration = new DataSet("Registration");

registration.Tables.Add(classTable);

registration.Tables.Add(studentTable);

registration.Tables.Add(interimTable);

// ----- Add standard joins between the core tables and the interim.

DataRelation joinPart = new DataRelation("ClassToStudent",

 classTable.Columns["ID"], interimTable.Columns["ClassID"], true);

registration.Relations.Add(joinPart);

joinPart = new DataRelation("StudentToClass",

 studentTable.Columns["ID"], interimTable.Columns["StudentID"], true);

registration.Relations.Add(joinPart);

Visual Basic
Dim studentTable As New DataTable("Student")

' Add columns, including...

studentTable.Columns.Add("ID", GetType(Long))

Dim classTable As New DataTable("Class")

' Add columns, including...

classTable.Columns.Add("ID", GetType(Long))

Dim interimTable As New DataTable("StudentClassInterim")

' Add columns, including...

interimTable.Columns.Add("StudentID", GetType(Long))

interimTable.Columns.Add("ClassID", GetType(Long))

' ----- Make the linking fields unique.

Dim interimKey As Constraint = New UniqueConstraint(

 { interimTable.Columns!StudentID, interimTable.Columns!ClassID }, True)

interimTable.Constraints.Add(interimKey)

' ----- Relations exist within a data set context.

Dim registration As New DataSet("Registration")

registration.Tables.Add(classTable)

registration.Tables.Add(studentTable)

registration.Tables.Add(interimTable)

' ----- Add standard joins between the core tables and the interim.

Dim joinPart As New DataRelation("ClassToStudent",

 classTable.Columns("ID"), interimTable.Columns("ClassID"), True)

registration.Relations.Add(joinPart)

joinPart = New DataRelation("StudentToClass",

 studentTable.Columns("ID"), interimTable.Columns("StudentID"), True)

registration.Relations.Add(joinPart)

Dwonloaded from: iDATA.ws

	 Chapter 5  Bringing Related Data Together	 85

Defining the Update and Delete Rules in a DataRelation: C#

Note  This exercise uses the “Chapter 5 CSharp” sample project and continues the previous exer-
cise in this chapter.

1.	 	Open the source code view for the FlightInfo form. Locate the RefreshConstraints
method. The application lets the user alter the rules for adjusting the child table when
changes are made to the parent table. The RefreshConstraints routine updates the
relevant constraint with the user’s rule choice.

2.	 Just after the “Alter its cascade rules” comment, add the following statements:

linkConstraint.DeleteRule = (System.Data.Rule)DeleteRule.SelectedItem;

linkConstraint.UpdateRule = (System.Data.Rule)UpdateRule.SelectedItem;

3.	 Run the program. The Update Rule and Delete Rule fields are both set to None by
default. This prevents parent records (Flights) from being deleted or having their ID col-
umn values changed if related child rows (Legs) exist.

4.	 Test cascade updates. Set the Update Rule field to Cascade. Select the first row in the
Flights field, the one with ID 834. Click the (Flights) Edit button. Use the Edit Flight form
that appears to alter the Flight ID value from 834 to another value, such as 759. Click
OK on that editor form.

5.	 Review the Flights and Legs fields. Not only did the first row in the Flights field have its
ID value changed to 759 but the FlightID values for the related rows in the Legs field
changed to 759 as well.

Dwonloaded from: iDATA.ws

86	 Microsoft ADO.NET 4 Step by Step

6.	 Test setting linked child fields to NULL when a parent record is deleted. Set the Delete
Rule field to SetNull. Select the first row in the Flights field, the one with ID 759. Click
the (Flights) Delete button and confirm the delete action.

7.	 Review the Flights and Legs fields. Although the first row in the Flights field has been
removed, its child records in the Legs field remain. However, their FlightID column val-
ues have been cleared and are set to NULL. Those records no longer have a parent row.

Defining the Update and Delete Rules in a DataRelation: Visual Basic

Note  This exercise uses the “Chapter 5 VB” sample project and continues the previous exercise
in this chapter.

1.	 Open the source code view for the FlightInfo form. Locate the RefreshConstraints
method. The application lets the user alter the rules for adjusting the child table when
changes are made to the parent table. The RefreshConstraints routine updates the
relevant constraint with the user’s rule choice.

2.	 Just after the “Alter its cascade rules” comment, add the following statements:

linkConstraint.DeleteRule = CType(DeleteRule.SelectedItem, Data.Rule)

linkConstraint.UpdateRule = CType(UpdateRule.SelectedItem, Data.Rule)

3.	 Run the program. The Update Rule and Delete Rule fields are both set to None by
default. This prevents parent records (Flights) from being deleted or having their ID col-
umn values changed if related child rows (Legs) exist.

4.	 Test cascade updates. Set the Update Rule field to Cascade. Select the first row in the
Flights field, the one with ID 834. Click the (Flights) Edit button. Use the Edit Flight form
that appears to alter the Flight ID value from 834 to another value, such as 759. Click
OK on that editor form.

5.	 	Review the Flights and Legs fields. Not only did the first row in the Flights field have its
ID value changed to 759 but the FlightID values for the related rows in the Legs field
changed to 759 as well.

6.	 Test setting linked child fields to NULL when a parent record is deleted. Set the Delete
Rule field to SetNull. Select the first row in the Flights field, the one with ID 759. Click
the (Flights) Delete button and confirm the delete action.

7.	 Review the Flights and Legs fields. Although the first row in the Flights field has been
removed, its child records in the Legs field remain. However, their FlightID column val-
ues have been cleared and are set to NULL. Those records no longer have a parent row.

Dwonloaded from: iDATA.ws

	 Chapter 5  Bringing Related Data Together	 87

Summary
This chapter demonstrated how individual DataTable instances can be joined together in an
ADO.NET DataSet. Each data table object includes many features that let you query and
manipulate the data in its rows. By bringing distinct tables together in a data set, you gain
additional features that affect multiple tables simultaneously and, if desired, automatically.

The DataRelation class defines the link between columns in two different tables. This class
defines only the relationship; it doesn’t enforce the rules of the relationship. Constraint ob-
jects, specifically the UniqueConstraint and ForeignKeyConstraint derived classes, impose the
data requirements needed to ensure data integrity and data expectations between linked
tables.

Dwonloaded from: iDATA.ws

88	 Microsoft ADO.NET 4 Step by Step

Chapter 5 Quick Reference
To Do This

Add a table to a DataSet Define a DataSet instance.

Define a DataTable instance, adding columns and rows as needed.

Call the DataSet object’s Tables.Add method, passing it the instance
of the DataTable.

Link two DataTable objects in a relation-
ship

Define a DataSet instance.

Define two DataTable instances, adding columns and rows as
needed.

Determine which columns from each table will form the relationship
link.

Add both tables to the DataSet using the Tables.Add method.

Create a DataRelation instance, passing instances of the columns to
be linked to its constructor.

Call the DataSet object’s Relations.Add method, passing it the in-
stance of the DataRelation.

Enforce cascade deletes in a parent-
child relationship

Locate the DataRelation instance that defines the link relationship.

Set the DataRelation object’s DeleteRule to System.Data.Rule.
Cascade.

Locate the parent row for a child row Ensure that the tables are linked with a DataRelation.

Call the child DataRow object’s GetParentRow method, passing it
the name of the DataRelation that defines the link relationship.

Locate the child rows for a parent row Ensure that the tables are linked with a DataRelation.

Call the parent DataRow object’s GetChildRow method, passing it
the name of the DataRelation that defines the link relationship.

Dwonloaded from: iDATA.ws

	 	 89

Chapter 6

Turning Data into Information
After completing this chapter, you will be able to:

■■ Return a value that aggregates data from a table column

■■ Add a column that aggregates data from a table, or from its parent or child table

■■ Build an index-based view of a table

■■ Generate a new table based on a projected view of the original table

After you have joined DataTable instances together in a DataSet, ADO.NET enables a few
more features that let you use those table relationships to analyze and select data. These
features build upon some of the single-table functions covered in earlier chapters.

This chapter introduces the data-aggregation features included in the ADO.NET Framework,
expressions that summarize data across multiple table rows. Although not as powerful as
the aggregation features found in relational database systems, the DataTable variations still
provide quick access to multirow data summaries. The chapter ends with an introduction to
the DataView class, which lets you establish row selection, filtering, and sorting standards for
a DataTable.

Note  The exercises in this chapter all use the same sample project, a tool that demonstrates
aggregate and data view features. Although you will be able to run the application after each
exercise, the expected results for the full application might not appear until you complete all
exercises in the chapter.

Aggregating Data
An aggregation function returns a single calculated value from a set of related values.
Averages are one type of data aggregation; they calculate a single averaged value from an
input of multiple source values. ADO.NET includes seven aggregation functions for use in
expression columns and other DataTable features.

■■ Sum  Calculates the total of a set of column values. The column being summed must
be numeric, either integral or decimal.

■■ Avg  Returns the average for a set of numbers in a column. This function also requires
a numeric column.

Dwonloaded from: iDATA.ws

90

■■ Min  Indicates the minimum value found within a set of column values. Numbers,
strings, dates, and other types of data that can be placed in order are all valid for the
target column.

■■ Max  Like Min, but returns the largest value from the available column values. As with
the Min function, most column types will work.

■■ Count  Simply counts the number of rows included in the aggregation. You can pass
any type of column to this function. As long as a row includes a non-NULL value in that
column, it will be counted as 1.

■■ StDev  Determines the statistical standard deviation for a set of values, a common
measure of variability within such a set. The indicated column must be numeric.

■■ Var  Calculates the statistical variance for a set of numbers, another measurement re-
lated to the standard deviation. Only numeric columns are supported.

These seven data aggregation features appear as functions within ADO.NET expressions.
Expressions were introduced in the “Using Expression Columns” section of Chapter 4,
“Accessing the Right Data Values.” String expressions form the basis of custom expression col-
umns and are also used in selecting subsets of DataTable rows. To aggregate data, use one of
the following function formats as the expression string:

■■ Sum(column-name)

■■ Avg(column-name)

■■ Min(column-name)

■■ Max(column-name)

■■ Count(column-name)

■■ StDev(column-name)

■■ Var(column-name)

In ADO.NET, aggregates always summarize a single DataTable column. Each aggregate func-
tion considers only non-NULL column values. Rows that contain NULL values in the specified
column are excluded from the aggregation. For example, if you take the average of a table
column with 10 rows, but 3 of those rows contain NULL values in the column being averaged,
the function will average only the 7 non-NULL values. This is especially useful with the Count
function; it counts only the number of rows that have a non-NULL value for the passed column
name. If all the column values are NULL, or if there are no rows to apply to the aggregation
function, the result is NULL (System.DBNull).

Dwonloaded from: iDATA.ws

	 Chapter 6  Turning Data into Information	 91

Generating a Single Aggregate
To calculate the aggregate of a single table column, use the DataTable object’s Compute
method. Pass it an expression string that contains an aggregate function with a column-
name argument.

C#
DataTable employees = new DataTable("Employee");

employees.Columns.Add("ID", typeof(int));

employees.Columns.Add("Gender", typeof(string));

employees.Columns.Add("FullName", typeof(string));

employees.Columns.Add("Salary", typeof(decimal));

// ----- Add employee data to table, then...

decimal averageSalary = (decimal)employees.Compute("Avg(Salary)", "");

Visual Basic
Dim employees As New DataTable("Employee")

employees.Columns.Add("ID", GetType(Integer))

employees.Columns.Add("Gender", GetType(string))

employees.Columns.Add("FullName", GetType(String))

employees.Columns.Add("Salary", GetType(Decimal))

' ----- Add employee data to table, then...

Dim averageSalary As Decimal = CDec(employees.Compute("Avg(Salary)", ""))

In the preceding code, the Compute method calculates the average of the values in the
Salary column. The second argument to Compute is a filter that limits the rows included in
the calculation. It accepts a Boolean criteria expression similar to those used in the DataTable.
Select method call.

C#
int femalesInCompany = (int)employees.Compute("Count(ID)",

 "Gender = 'F'");

Visual Basic
Dim femalesInCompany As Integer = CInt(employees.Compute("Count(ID)",

 "Gender = 'F'"))

Dwonloaded from: iDATA.ws

92	 Microsoft ADO.NET 4 Step by Step

Computing an Aggregate Value: C#

1.	 Open the “Chapter 6 CSharp” project from the installed samples folder. The project in-
cludes three Windows.Forms classes: Switchboard, Aggregates, and DataViews.

2.	 Open the source code view for the Aggregates form. Locate the ActCompute_Click func-
tion. This routine computes an aggregate value for a single table column.

3.	 Just after the “Build the expression” comment, add the following statement:

expression = ComputeFunction.SelectedItem.ToString() + "(" +

 columnName + ")";

This code builds an expression string that combines one of the seven aggregate func-
tions and a column name from the sample table.

4.	 Just after the “Process the expression” comment, add the following code:

try

{

 result = whichTable.Compute(expression, "");

}

catch (Exception ex)

{

 MessageBox.Show("Could not compute the column: " + ex.Message);

 return;

}

The code performs the calculation in a try block because the code that built the ex-
pression didn’t bother to verify things such as allowing only numeric columns to be
used with the Sum aggregate function. The catch block will capture such problems at
runtime.

5.	 Just after the “Display the results” comment, add the following statements:

if (DBNull.Value.Equals(result))

 MessageBox.Show("NULL");

else

 MessageBox.Show(result.ToString());

Some aggregates may return a NULL result depending on the contents of the column.
This code makes that distinction.

6.	 Run the program. When the Switchboard form appears, click Aggregate Functions.
When the Aggregates form appears, use the fields to the right of the Compute label to
generate the aggregate. For example, select Sum from the Aggregate Function field
(the one just to the right of the Compute label), and choose Child.Population2009
from the Column Name field (the one in parentheses). Then click Compute. The
response of “307006550” comes from adding up all values in the child table’s
Population2009 column.

Dwonloaded from: iDATA.ws

	 Chapter 6  Turning Data into Information	 93

Note  The “Child.” prefix shown in the Column Name field is stripped out before the column
name is inserted into the expression. The Compute method does not support the Parent and
Child prefixes before column names.

Computing an Aggregate Value: Visual Basic

1.	 Open the “Chapter 6 VB” project from the installed samples folder. The project includes
three Windows.Forms classes: Switchboard, Aggregates, and DataViews.

2.	 Open the source code view for the Aggregates form. Locate the ActCompute_Click func-
tion. This routine computes an aggregate value for a single table column.

3.	 Just after the “Build the expression” comment, add the following statement:

expression = ComputeFunction.SelectedItem.ToString() & "(" &

 columnName & ")"

This code builds an expression string that combines one of the seven aggregate func-
tions and a column name from the sample table.

4.	 Just after the “Process the expression” comment, add the following code:

Try

 result = whichTable.Compute(expression, "")

Catch ex As Exception

 MessageBox.Show("Could not compute the column: " & ex.Message)

 Return

End Try

Dwonloaded from: iDATA.ws

94	 Microsoft ADO.NET 4 Step by Step

The code performs the calculation in a Try block because the code that built the ex-
pression didn’t bother to verify things such as allowing only numeric columns to be
used with the Sum aggregate function. The Catch block will capture such problems at
runtime.

5.	 Just after the “Display the results” comment, add the following statements:

If (IsDBNull(result) = True) Then

 MessageBox.Show("NULL")

Else

 MessageBox.Show(result.ToString())

End If

Some aggregates may return a NULL result depending on the contents of the column.
This code makes that distinction.

6.	 Run the program. When the Switchboard form appears, click Aggregate Functions.
When the Aggregates form appears, use the fields to the right of the Compute label to
generate the aggregate. For example, select Sum from the Aggregate Function field
(the one just to the right of the Compute label), and choose Child.Population2009
from the Column Name field (the one in parentheses). Then click Compute. The
response of “307006550” comes from adding up all values in the child table’s
Population2009 column.

Note  In the example, the “Child.” prefix shown in the Column Name field is stripped out before
the column name is inserted into the expression. The Compute method does not support the
Parent and Child prefixes before column names.

Adding an Aggregate Column
Expression columns typically compute a value based on other columns in the same row.
You can also add an expression column to a table that generates an aggregate value. In the
absence of a filtering expression, aggregates always compute their totals using all rows in a
table. This is also true of aggregate expression columns. When you add such a column to a
table, that column will contain the same value in every row, and that value will reflect the ag-
gregation of all rows in the table.

Dwonloaded from: iDATA.ws

	 Chapter 6  Turning Data into Information	 95

C#
DataTable sports = new DataTable("Sports");

sports.Columns.Add("SportName", typeof(string));

sports.Columns.Add("TeamPlayers", typeof(decimal));

sports.Columns.Add("AveragePlayers", typeof(decimal),

 "Avg(TeamPlayers)");

sports.Rows.Add(new Object[] {"Baseball", 9});

sports.Rows.Add(new Object[] {"Basketball", 5});

sports.Rows.Add(new Object[] {"Cricket", 11});

MessageBox.Show((string)sports.Rows[0]["AveragePlayers"]); // Displays 8.3...

MessageBox.Show((string)sports.Rows[1]["AveragePlayers"]); // Also 8.3...

Visual Basic
Dim sports As New DataTable("Sports")

sports.Columns.Add("SportName", GetType(String))

sports.Columns.Add("TeamPlayers", GetType(Decimal))

sports.Columns.Add("AveragePlayers", GetType(Decimal),

 "Avg(TeamPlayers)")

sports.Rows.Add({"Baseball", 9})

sports.Rows.Add({"Basketball", 5})

sports.Rows.Add({"Cricket", 11})

MessageBox.Show(CStr(sports.Rows(0)!AveragePlayers)) ' Displays 8.3...

MessageBox.Show(CStr(sports.Rows(1)!AveragePlayers)) ' Also 8.3...

Aggregating Data Across Related Tables
Adding aggregate functions to an expression column certainly gives you more data options,
but as a calculation method it doesn’t provide any benefit beyond the DataTable.Compute
method. The real power of aggregate expression columns appears when working with relat-
ed tables. By adding an aggregate function to a parent table that references the child table,
you can generate summaries that are grouped by each parent row. This functionality is simi-
lar in purpose to the GROUP BY clause found in the SQL language.

To apply an aggregate to a table relationship, you first add both tables to a DataSet and then
add the relevant DataRelation between the linked fields. After the tables are linked, you in-
clude the Child keyword with the aggregate function’s column name reference.

function-name(Child.column-name)

Dwonloaded from: iDATA.ws

96	 Microsoft ADO.NET 4 Step by Step

As with single-table aggregation, the expression can reference any valid column in the child
table, including other expression columns. Consider the following code, which calculates each
customer’s total orders and stores the result in an expression column in the customer (parent)
table:

C#
// ----- Build the parent table and add some data.

DataTable customers = new DataTable("Customer");

customers.Columns.Add("ID", typeof(int));

customers.Columns.Add("Name", typeof(string));

customers.Rows.Add(new Object[] {1, "Coho Winery"});

customers.Rows.Add(new Object[] {2, "Fourth Coffee"});

// ----- Build the child table and add some data. The "Total"

// expression column adds sales tax to the subtotal.

DataTable orders = new DataTable("Order");

orders.Columns.Add("ID", typeof(int));

orders.Columns.Add("Customer", typeof(int));

orders.Columns.Add("Subtotal", typeof(decimal));

orders.Columns.Add("TaxRate", typeof(decimal));

orders.Columns.Add("Total", typeof(decimal), "Subtotal * (1 + TaxRate)");

// ----- Two sample orders for customer 1, 1 for customer 2.

orders.Rows.Add(new Object[] {1, 1, 35.24, 0.0875}); // Total = $38.32

orders.Rows.Add(new Object[] {2, 1, 56.21, 0.0875}); // Total = $61.13

orders.Rows.Add(new Object[] {3, 2, 14.94, 0.0925}); // Total = $16.32

// ----- Link the tables within a DataSet.

DataSet business = new DataSet();

business.Tables.Add(customers);

business.Tables.Add(orders);

business.Relations.Add(customers.Columns["ID"], orders.Columns["Customer"]);

// ----- Here is the aggregate expression column.

customers.Columns.Add("OrderTotals", typeof(decimal), "Sum(Child.Total)");

// ----- Display each customer's order total.

foreach (DataRow scanCustomer in customers.Rows)

{

 Console.WriteLine((string)scanCustomer["Name"] + ": " +

 string.Format("{0:c}", (decimal)scanCustomer["OrderTotals"]));

}

Dwonloaded from: iDATA.ws

	 Chapter 6  Turning Data into Information	 97

Visual Basic
' ----- Build the parent table and add some data.

Dim customers As New DataTable("Customer")

customers.Columns.Add("ID", GetType(Integer))

customers.Columns.Add("Name", GetType(String))

customers.Rows.Add({1, "Coho Winery"})

customers.Rows.Add({2, "Fourth Coffee"})

' ----- Build the child table and add some data. The "Total"

' expression column adds sales tax to the subtotal.

Dim orders As New DataTable("Order")

orders.Columns.Add("ID", GetType(Integer))

orders.Columns.Add("Customer", GetType(Integer))

orders.Columns.Add("Subtotal", GetType(Decimal))

orders.Columns.Add("TaxRate", GetType(Decimal))

orders.Columns.Add("Total", GetType(Decimal), "Subtotal * (1 + TaxRate)")

' ----- Two sample orders for customer 1, 1 for customer 2.

orders.Rows.Add({1, 1, 35.24, 0.0875}) ' Total = $38.32

orders.Rows.Add({2, 1, 56.21, 0.0875}) ' Total = $61.13

orders.Rows.Add({3, 2, 14.94, 0.0925}) ' Total = $16.32

' ----- Link the tables within a DataSet.

Dim business As New DataSet

business.Tables.Add(customers)

business.Tables.Add(orders)

business.Relations.Add(customers.Columns!ID, orders.Columns!Customer)

' ----- Here is the aggregate expression column.

customers.Columns.Add("OrderTotals", GetType(Decimal), "Sum(Child.Total)")

' ----- Display each customer's order total.

For Each scanCustomer As DataRow In customers.Rows

 Console.WriteLine(CStr(scanCustomer!Name) & ": " &

 Format(scanCustomer!OrderTotals, "Currency"))

Next scanCustomer

This code generates the following output, correctly calculating the per-customer total of all
child-record orders:

Coho Winery: $99.45

Fourth Coffee: $16.32

Dwonloaded from: iDATA.ws

98	 Microsoft ADO.NET 4 Step by Step

The code calculated these totals by adding up the Child.Total column values for only those
child rows that were associated to the parent row through the defined DataRelation. Because
the aggregate functions work only with a single named column, a more complex request
such as Sum(Child.SubTotal * (1 + Child.TaxRate)) would fail. The only way to generate totals
from multiple child columns (or even multiple columns within the same table) is to first add
an expression column to the child table and then apply the aggregate function to that new
column.

Referencing Parent Fields in Expressions
Although ADO.NET query expressions support a “Parent” keyword, it can’t be used with the
aggregation functions. Instead you use it to add an expression column to a child table that
references column data from the parent table. For instance, if you had Customer (parent) and
Order (child) tables linked by a customer ID, and the parent table included the address for
the customer, you could include the city name in the child table using an expression column.

C#
orders.Columns.Add("CustomerCity", typeof(string), "Parent.City");

Visual Basic
orders.Columns.Add("CustomerCity", GetType(String), "Parent.City")

All standard expression operators that work with the local table’s column data will also work
with parent columns.

Setting Up Indexed Views
The DataTable.Select method lets you apply a selection query to a table, returning a subset of
the available rows in the DataTable. It’s convenient, but if you will run the same query against
the table repeatedly, it’s not the most efficient use of computing resources. Also, because it
returns an array of DataRow instances instead of a new DataTable, some tools that expect a
full table construct won’t work with the returned results.

Dwonloaded from: iDATA.ws

	 Chapter 6  Turning Data into Information	 99

To overcome these issues, ADO.NET includes the DataView class. As with the DataTable class,
each DataView exposes a set of DataRow objects. But unlike the DataTable, the DataView
does not actually contain any DataRow instances. Instead, it contains an index that refers
to rows in a true DataTable. It builds this index using the same query expressions used by
the DataTable.Select method, with support for both a row selection component and a sort-
ing component. Figure 6-1 shows the general relationship between a DataView and the
DataTable it refers to.

Original DataTable DataView

Row

0

1

2

Row

2

0

1

ID

11

96

27

First Name

George

Annette

Toru

Birth Date

8/3/1985

2/12/2003

12/30/1948

Figure 6-1  DataView entries referencing rows in a DataTable.

Note  The DataView does not actually reference a set of DataRow instances; instead, it refers
to a set of DataRowView instances. ADO.NET uses the DataRowView class to manage the vari-
ous versions of a row, especially when proposed changes have not yet been confirmed with the
DataTable.AcceptChanges method. The DataRowView.Row property returns the actual row based
on other settings in the DataRowView instance.

Creating a DataView
To create a DataView from a DataTable, pass the table to the DataView constructor.

C#
DataView someView = new DataView(someTable);

Visual Basic
Dim someView As New DataView(someTable)

Dwonloaded from: iDATA.ws

100	 Microsoft ADO.NET 4 Step by Step

The new view includes all the rows in the original table, sorted in the order they appear
in the DataTable. To alter the included rows, set the DataView object’s RowFilter property.
This property uses the same row-limiting query expression passed to the DataTable.Select
method.

C#
DataView managersOnly = new DataView(employees);

managersOnly.RowFilter = "IsManager = true";

Visual Basic
Dim managersOnly As New DataView(employees)

managersOnly.RowFilter = "IsManager = True"

To sort the view’s rows, set the DataView.Sort property, using the same sort-expression
syntax from the DataTable.Select method.

C#
managersOnly.Sort = "HireDate DESC";

Visual Basic
managersOnly.Sort = "HireDate DESC"

You can also indicate which row state to expose through the view by setting the DataView
instance’s RowStateFilter property. By default, the view exposes all available rows that meet
the RowFilter criteria. Setting RowStateFilter limits the expressed rows to just those in a spe-
cific edited state. It uses the following enumerated values:

■■ DataViewRowState.None  All rows, regardless of state.

■■ DataViewRowState.Unchanged  Only those rows with no data or state changes.

■■ DataViewRowState.Added  Only those rows added but not yet confirmed.

■■ DataViewRowState.Deleted  Only those rows deleted but not yet confirmed.

■■ DataViewRowState.ModifiedCurrent  Only those rows that have been modified. The
exposed rows include the modified column values.

■■ DataViewRowState.ModifiedOriginal  Only those rows that have been modified.
The exposed rows include the original column values, before changes were made.

■■ DataViewRowState.OriginalRows  Only rows that have not been changed, including
deleted rows.

■■ DataViewRowState.CurrentRows  All nondeleted rows in their current state, includ-
ing new rows.

Dwonloaded from: iDATA.ws

	 Chapter 6  Turning Data into Information	 101

Each time you modify the RowFilter, Sort, and RowStateFilter fields, the DataView rebuilds its
index of the underlying DataTable, even if those properties were previously unset. To reduce
the number of times that a DataView must rebuild the index, the class includes a constructor
that accepts starting RowFilter, Sort, and RowStateFilter values.

C#
DataView someView = new DataView(table, filter-string, sort-string, rowState);

Visual Basic
Dim someView As New DataView(table, filter-string, sort-string, rowState)

The DataView class includes three Boolean properties that let you limit the operations that
can be performed on rows through the view. The AllowNew, AllowEdit, and AllowDelete prop-
erties allow or prohibit new rows, changes to rows, and the removal of rows, respectively.
Any attempt to carry out a prohibited action throws an exception. These limitations apply
only to the view, not to the underlying table. If you set the view’s AllowDelete property to
False, you can still remove rows through the underlying DataTable.Rows.Delete method.

Using a DataView
The DataView class includes several features that return information about the in-view rows.
The most basic is the DataView.Count property, which returns a count of the number of rows
exposed by the DataView once its RowFilter and RowStateFilter properties have been applied.

C#
DataView managersOnly = new DataView(employees);

managersOnly.RowFilter = "IsManager = true";

MessageBox.Show("Total Managers: " + managersOnly.Count);

Visual Basic
Dim managersOnly As New DataView(employees)

managersOnly.RowFilter = "IsManager = True"

MessageBox.Show("Total Managers: " & managersOnly.Count)

The DataView.FindRows method returns an array of rows based on a matching “sort key”
value. To use this method, you must have assigned an expression to the DataView.Sort prop-
erty. The sort key must be for the column(s) identified in the Sort property, and must appear
in the same order.

Dwonloaded from: iDATA.ws

102	 Microsoft ADO.NET 4 Step by Step

C#
DataView playerView = new DataView(teamPlayers);

playerView.Sort = "Position, StartingYear DESC";

DataRowView[] newPitchers = playerView.FindRows(

 new Object[] {"Pitcher", DateTime.Today.Year});

Visual Basic
Dim playerView As New DataView(teamPlayers)

playerView.Sort = "Position, StartingYear DESC"

Dim newPitchers() As DataRowView =

 playerView.FindRows({"Pitcher", Today.Year})

FindRows returns an array of DataRowView instances, an ADO.NET class that manages the
lifetime of a DataRow through its various data and state changes. To access the underlying
row, use the instance’s Row property.

Another DataView method, Find, carries out the same task as FindRows, but returns a zero-
based index to the first matching row according to the view’s defined sort order. If there are
no matches, the method returns -1.

The DataView.ToTable method provides the most convenient way to generate a subset of
table rows while at the same time selecting only a subset of columns. ToTable accepts an
array of column names to build a new DataTable instance that includes only the filtered rows
and only the specified data columns.

C#
DataView playerView = new DataView(teamPlayers);

playerView.RowFilter = "LastActiveYear = " + DateTime.Today.Year;

DataTable currentTeam = playerView.ToTable(true,

 new string[] {"JerseyNumber", "PlayerName", "Position"});

Visual Basic
Dim playerView As New DataView(teamPlayers)

playerView.RowFilter = "LastActiveYear = " & Today.Year

Dim currentTeam As DataTable = playerView.ToTable(True,

 {"JerseyNumber", "PlayerName", "Position"})

The first argument to ToTable is the “distinct” flag. When True, only unique rows (based on all
column values) get copied into the new table. When False, duplicate rows can appear in the
resulting DataTable. Additional variations of the ToTable method let you supply a name for
the new table, which is the same as the original table by default.

Dwonloaded from: iDATA.ws

	 Chapter 6  Turning Data into Information	 103

Note  In addition to creating custom DataView instances, each DataTable can have its own de-
fault DataView. This data view, located at DataTable.DefaultView, not only exposes a filtered view
of the table’s rows but in certain situations it also imposes that view on the table, so that refer-
ences to the table’s collection of rows will express what the view itself expresses.

The DefaultView exists mainly to support data-binding situations. This book introduces data
binding concepts in Chapter 21, “Binding Data with ADO.NET.”

Generating a New DataTable from a DataView: C#

Note  This exercise uses the “Chapter 6 CSharp” sample project and continues the previous exer-
cise in this chapter.

1.	 Open the source code view for the DataViews form. Locate the ActExtract_Click event
handler.

2.	 Just after the “Build a view that will generate the new table” comment, add the follow-
ing statement:

interimView = new DataView(SampleData);

This line creates a new DataView instance, passing an existing DataTable object to the
constructor.

3.	 Just after the “Apply the optional filter” comment, inside of the try block, add the fol-
lowing lines:

if (FilterExpression.Text.Trim().Length > 0)

 interimView.RowFilter = FilterExpression.Text.Trim();

You are not required to apply a RowFilter to a DataView. By default, all rows included in
the view will appear in the generated table.

4.	 Just after the “Generate the new table” comment, inside of the try block, add the fol-
lowing lines:

generatedTable = interimView.ToTable(true,

 IncludedColumns.CheckedItems.Cast<string>().ToArray());

The ToTable method generates the new table. The first Boolean argument, when true,
includes any rows that are duplicates in every column if they appear. The second argu-
ment is an array of column names to include in the new table.

Dwonloaded from: iDATA.ws

104	 Microsoft ADO.NET 4 Step by Step

5.	 Run the program. When the Switchboard form appears, click Data Views And Tables.
When the Data Views form appears, use the Columns and Filter fields to indicate which
columns and rows should appear in the generated table. (Filter accepts an ADO.NET Select
filter expression.) Optionally, you can rearrange the columns using the Move Up and
Move Down buttons. Click Extract to see the results. For example, select StateName
and AreaSqMiles in the Column field, and enter AreaSqMiles >= 100000 in the Filter
field. Clicking Extract shows you the seven largest American states.

Generating a New DataTable from a DataView: Visual Basic

Note  This exercise uses the “Chapter 6 VB” sample project and continues the previous exercise
in this chapter.

1.	 Open the source code view for the DataViews form. Locate the ActExtract_Click event
handler.

2.	 Just after the “Build a view that will generate the new table” comment, add the follow-
ing statement:

interimView = New DataView(SampleData)

This line creates a new DataView instance, passing an existing DataTable object to the
constructor.

Dwonloaded from: iDATA.ws

	 Chapter 6  Turning Data into Information	 105

3.	 Just after the “Apply the optional filter” comment, inside the Try block, add the follow-
ing lines:

If (FilterExpression.Text.Trim.Length > 0) Then

 interimView.RowFilter = FilterExpression.Text.Trim

End If

You are not required to apply a RowFilter to a DataView. By default, all rows included in
the view will appear in the generated table.

4.	 Just after the “Generate the new table” comment, inside the Try block, add the follow-
ing lines:

generatedTable = interimView.ToTable(True,

 IncludedColumns.CheckedItems.Cast(Of String).ToArray())

The ToTable method generates the new table. The first Boolean argument, when True,
includes any rows that are duplicates in every column if they appear. The second argu-
ment is an array of column names to include in the new table.

5.	 Run the program. When the Switchboard form appears, click Data Views And Tables.
When the Data Views form appears, use the Columns and Filter fields to indicate which
columns and rows should appear in the generated table. (Filter accepts an ADO.NET Select
filter expression.) Optionally, you can rearrange the columns using the Move Up and
Move Down buttons. Click Extract to see the results. For example, select StateName
and Statehood in the Columns field, and enter Statehood < #1/1/1791# in the Filter
field. Clicking Extract shows you the original 13 American colonies.

Dwonloaded from: iDATA.ws

106	 Microsoft ADO.NET 4 Step by Step

Summary
This chapter introduced two ADO.NET features that enhance its core functionality: aggre-
gates and data views. DataTable objects support seven distinct aggregates that let you gen-
erate a single value based on computing results from a single table column. Each of these
seven functions—Sum, Avg, Min, Max, Count, StDev, and Var—can be used in a standalone
manner to calculate a single column’s aggregate value. They can also be expressed through a
table column, allowing for grouped summaries.

The DataView class rolls up sorting and filtering rules for a table in a single object that
in some cases can be used much like the underlying DataTable. Containing no data, the
DataView includes an indexed reference to each row in the linked DataTable. Changes made
to the view are reflected in the table, and vice versa. Even more important, views allow you
to have two unique expressions of a single table available at the same time.

Chapter 6 Quick Reference
To Do This

Calculate the average of a column of data Create a DataTable with valid columns and rows.

Create a string containing the expression Avg(xxx),
where “xxx” is the name of the column to average.

Call the DataTable object’s Compute method, passing it
the string expression.

Find the maximum value of a child-table column
associated with each row in a parent table

Create parent and child DataTable objects.

Add the tables to a DataSet instance.

Link the tables with a DataRelation object.

Create a string containing the expression Child.
Max(xxx), where “xxx” is the name of the child-table
column in which to locate the maximum value.

Create a new DataColumn of the same data type as the
examined child column.

Set the DataColumn object’s Expression property to the
string expression.

Add the DataColumn to the parent DataTable.

Generate a DataTable from a DataView Create the original DataTable.

Create a new DataView instance, passing the DataTable
object to its constructor.

Set the DataView object’s RowFilter, Sort, and
RowStateFilter properties as needed.

Call the DataView object’s ToTable method, optionally
indicating which columns to include.

Dwonloaded from: iDATA.ws

	 	 107

Chapter 7

Saving and Restoring Data
After completing this chapter, you will be able to:

■■ Export a DataSet to a file in XML format

■■ Import a previously exported DataSet from XML format

■■ Define the structure of the exported XML content

■■ Access the XSD schema for a DataSet or DataTable

ADO.NET isn’t the only popular format for managing data in .NET applications. XML—content
crafted using the Extensible Markup Language—is another common format that provides
standardized, cross-platform data management in a semi-human-readable format.

The DataSet class and the DataTable instances contained within it include features for moving
data back and forth between ADO.NET and XML. This chapter demonstrates those features,
focusing on the ability to serialize the contents of a DataSet for later use, either by loading
it into another DataSet or by accessing the data directly through some other XML-enabled
application. ADO.NET includes full schema definition support using Schema Definition
Language (XSD).

Note  Before version 4, ADO.NET included an XmlDataDocument class that supported on-demand
synchronization between the contents of a DataSet and an XML document. That class has
since been deprecated. You can simulate some of the functionality formerly available through
XmlDataDocument using the features discussed in this chapter. You can also use DataSet–focused
LINQ queries, as discussed in Chapter 18, “Using LINQ to DataSet,” as a substitute for the obso-
lete XmlDataDocument class.

Serializing DataSet and DataTable Objects
ADO.NET was designed with XML in mind, so generating XML content from a DataSet takes
very little effort. Reading XML content into a DataSet is even easier because ADO.NET will
guess at the correct structure of the data even if you don’t provide table design guidance.

Dwonloaded from: iDATA.ws

108	 Microsoft ADO.NET 4 Step by Step

Writing XML
To generate XML for the data content of an existing DataSet instance, call its WriteXml method,
passing an output file name.

C#
DataSet infoSet = new DataSet();

// ----- Add tables, relations, and data, then call...

infoSet.WriteXml(@"c:\StorageFile.xml");

Visual Basic
Dim infoSet As New DataSet

' ----- Add tables, relations, and data, then call...

infoSet.WriteXml("c:\StorageFile.xml")

In addition to file names, various overloads of WriteXml accept a valid Stream instance, a
TextWriter instance, or an XmlWriter instance as their first argument. The generated XML is
straightforward, using table and column names to define each element tag. Here is some
typical XML data content produced by WriteXml. This content includes three customer
data rows, each with four fields: a string column (BusinessName), two numeric fields (ID,
AnnualFee), and a date value (ContractDate) in UTC format with a time zone offset.

<CustomerDataSet>

 <Customer>

 <ID>1</ID>

 <BusinessName>City Power & Light</BusinessName>

 <AnnualFee>500</AnnualFee>

 <ContractDate>2008-06-01T00:00:00-07:00</ContractDate>

 </Customer>

 <Customer>

 <ID>2</ID>

 <BusinessName>Lucerne Publishing</BusinessName>

 <AnnualFee>300</AnnualFee>

 <ContractDate>2008-01-01T00:00:00-08:00</ContractDate>

 </Customer>

 <Customer>

 <ID>3</ID>

 <BusinessName>Southridge Video</BusinessName>

 <AnnualFee>350</AnnualFee>

 <ContractDate>2010-02-15T00:00:00-08:00</ContractDate>

 </Customer>

</CustomerDataSet>

Dwonloaded from: iDATA.ws

	 Chapter 7  Saving and Restoring Data	 109

By default, WriteXml writes XML for only the data rows in each table; the method saves no
information about the structure of the DataSet. To include the DataSet object’s schema defi-
nition along with the data, add a second argument to the WriteXml method call, passing
XmlWriteMode.WriteSchema.

C#
infoSet.WriteXml(targetFile, XmlWriteMode.WriteSchema);

Visual Basic
infoSet.WriteXml(targetFile, XmlWriteMode.WriteSchema)

Other XmlWriteMode enumeration members include IgnoreSchema (don’t include the schema,
which is the same as leaving off the second argument) and DiffGram (a special format that
outputs differences between the Original and the Current versions of each DataRow within
the DataSet).

If you want to output only the schema, use the DataSet object’s WriteXmlSchema method,
passing it a file name, a Stream, a TextWriter, or an XmlWriter.

C#
infoSet.WriteXmlSchema(targetSchemaFile);

Visual Basic
infoSet.WriteXmlSchema(targetSchemaFile)

The DataTable class also includes WriteXml and WriteXmlSchema methods that you can use
to generate XML content on a table-by-table basis. In addition to the file/stream/writer tar-
get and the XmlWriteMode arguments, the DataTable versions of these methods accept an
optional Boolean argument that indicates whether child tables linked via DataRelation ob-
jects should be sent to the output with the instantiating table’s schema or data. You can use
this Boolean argument either after or instead of the XmlWriteMode argument.

C#
// ----- Write the customer data AND the linked order data.

customers.WriteXml(targetFile, true);

Visual Basic
' ----- Write the customer data AND the linked order data.

customers.WriteXml(targetFile, True)

Dwonloaded from: iDATA.ws

110	 Microsoft ADO.NET 4 Step by Step

If you want to keep the XML content in the application, the DataSet class includes GetXml
and GetXmlSchema methods that return string documents with content similar to the output
of the WriteXml and WriteXmlSchema methods. The DataTable.GetDataTableSchema method
returns the XSD for a table in plain string format.

Reading XML
Both the DataSet and DataTable classes include ReadXml and ReadXmlSchema counterparts
to the XML-writing methods. To use them, create a new DataSet or DataTable instance; then
call the appropriate method, passing a file name, a Stream, a TextReader, or an XmlReader.

C#
DataSet infoSet = new DataSet();

// ----- To read the schema, use...

infoSet.ReadXmlSchema(@"c:\StorageSchemaFile.xml");

// ----- To read the data, use...

infoSet.ReadXml(@"c:\StorageFile.xml");

Visual Basic
Dim infoSet As New DataSet

' ----- To read the schema, use...

infoSet.ReadXmlSchema("c:\StorageSchemaFile.xml")

' ----- To read the data, use...

infoSet.ReadXml("c:\StorageFile.xml")

A second argument to the DataSet.ReadXml method lets you indicate how the incoming
content should be processed. It uses one of the following enumerated values:

■■ XmlReadMode.Auto  Lets ReadXml figure out what to do with the incoming content
automatically. If it detects a valid schema with the data, it processes the schema before
loading the data. If it sees a DiffGram, it interprets it appropriately. This is the default
option if you don’t add the read-mode argument.

■■ XmlReadMode.ReadSchema  Reconstructs the DataTable members of the DataSet
without loading in the data.

Dwonloaded from: iDATA.ws

	 Chapter 7  Saving and Restoring Data	 111

■■ XmlReadMode.IgnoreSchema  Loads in the data, ignoring any schema that might be
included in the XML. Instead, the existing DataSet structure is used.

■■ XmlReadMode.InferSchema  Builds a new schema based on the structure of the XML
data alone, ignoring any included schema. If needed, any existing DataSet structure will
be augmented with new schema information.

■■ XmlReadMode.DiffGram  Reads in the content previously written with the WriteXml
method’s XmlWriteMode.DiffGram mode.

■■ XmlReadMode.Fragment  Reads in and processes XML content that might be partial
or incomplete.

■■ XmlReadMode.InferTypedSchema  Similar to the InferSchema mode, but ReadXml
will go out of its way to figure out the data type of each incoming data column.

ReadXml or ReadXmlSchema support both inline and linked XSD structure definitions.

DataSet includes an additional InferXmlSchema method. It works just like the ReadXmlSchema
method, but you can pass it an array of namespace names to exclude on import.

Guiding XML Generation
The Read... and Write... XML methods generate valid XML that can be used right away with
any XML tools. Still, the default format might be insufficient for your processing needs. That’s
why ADO.NET includes features that let you guide and enhance the XML generation process.
There are three main types of guidance you can provide to the XML content: namespace
identification, child table nesting, and column management.

Identifying Namespaces
XML includes a namespace feature that lets you group content by purpose, even among tags
that appear within the same parent element. Three ADO.NET classes—DataSet, DataTable,
and DataColumn—include properties that let you assign both the namespace and the
namespace prefix that will appear in the XML tags associated with the table and column
values.

Dwonloaded from: iDATA.ws

112	 Microsoft ADO.NET 4 Step by Step

Each of these three classes includes a Namespace property, a string value containing the tar-
get XML namespace name. A second property, Prefix, defines the short prefix prepended to
tag names that belong to the namespace. The following code sets the namespace and prefix
for a DataTable; the process for setting these values in a DataSet or DataColumn is identical:

C#
DataTable customers = new DataTable("Customer");

customers.Namespace = "corporate";

customers.Prefix = "co";

Visual Basic
Dim customers As New DataTable("Customer")

customers.Namespace = "corporate"

customers.Prefix = "co"

The addition of the namespace and the prefix modifies the generated XML to include the
necessary xmlns attributes and prefix components.

<co:Customer xmlns:co="corporate">

 <ID xmlns="corporate">1</ID>

 <BusinessName xmlns="corporate">City Power & Light</BusinessName>

 ...

Setting only the DataTable (or DataSet) namespace values applies the xmlns tag to each
contained column-related element. To change these column entries to prefix-bearing tags
instead, set the Namespace and Prefix properties within each of the table’s DataColumn
objects.

The constructor for the DataTable class also includes a parameter that sets the Namespace
property during object creation. Neither DataSet nor DataColumn includes such a parameter.

C#
DataTable customers = new DataTable("Customer", "corporate");

Visual Basic
Dim customers As New DataTable("Customer", "corporate")

The namespace and prefix settings are overridable. Setting these values at the DataSet level
affects all tables within the data set except those that have their own distinct namespace val-
ues. Setting the DataTable-level fields affects its columns unless you override it by setting the
two properties in the DataColumn object.

Dwonloaded from: iDATA.ws

	 Chapter 7  Saving and Restoring Data	 113

Nesting Child Tables
By default, each table within a DataSet has its rows output at the same element level. In
a data set with Customer and Order tables, each row in the Customer table would appear
within the data set’s top-level XML element, followed by each row in the Order table at the
same level as the Customer records. Sometimes it is better to have the child table records
that belong to a parent record physically appear within their parent XML element. Sample
code earlier in this chapter showed how adding an extra argument to the DataTable.WriteXml
method would accomplish this. But when generating XML for an entire DataSet, you must
indicate your desire to nest child tables by setting the Nested property in the relevant
DataRelation object.

C#
DataRelation customerOrder = new DataRelation(

 customers.Columns["ID"], orders.Columns["CustomerID"]);

customerOrder.Nested = true;

Visual Basic
Dim customerOrder As New DataRelation(

 customers.Columns!ID, orders.Columns!CustomerID)

customerOrder.Nested = True

Managing and Positioning Columns
As ADO.NET outputs the XML content for a DataTable, it first generates a tag for each row in
the table, using the table’s name as the containing tag. Within this row tag, each column gets
its own tagged element. The data for each column appears as text within the column element.
The following content shows a single row from the “Customer” table, with subordinate tag
elements for each of the four columns in the row:

<Customer>

 <ID>1</ID>

 <BusinessName>City Power & Light</BusinessName>

 <AnnualFee>500</AnnualFee>

 <ContractDate>2008-06-01T00:00:00-07:00</ContractDate>

</Customer>

Sometimes you might want one or more columns to appear as attributes for the row-level
tag instead.

<Customer ID="1">

Dwonloaded from: iDATA.ws

114	 Microsoft ADO.NET 4 Step by Step

This is accomplished by setting the DataColumn.ColumnMapping property for the relevant
column object. This property can be set to one of four enumerated values:

■■ MappingType.Element  The column data appears within its own XML tag element.
This is the default setting for all columns.

■■ MappingType.Attribute  The column value is moved into the row’s tag and stored as
an XML attribute.

■■ MappingType.SimpleContent  The data for this column becomes the entire content
for the row’s tag element. Only one column within a table can be designated as the
SimpleContent column. All other columns must either be set as attributes or must be
hidden.

Note  Setting a column’s mapping type to SimpleContent will generate an exception if any other
columns in the same table have a mapping type of Element or SimpleContent.

■■ MappingType.Hidden  This column is excluded from the generated XML content.

In addition to setting the ColumnMapping property, the constructor for the DataColumn ob-
ject lets you define the mapping type.

C#
DataColumn orderID = new DataColumn("ID", typeof(int), MappingType.Attribute);

Visual Basic
Dim orderID As New DataColumn("ID", GetType(Integer), MappingType.Attribute)

Generating XML from a DataSet: C#

1.	 Open the “Chapter 7 CSharp” project from the installed samples folder. The project in-
cludes one Windows.Forms class named Serialization.

2.	 Open the source code view for the Serialization form. Locate the ActGenerate_Click
function. This routine produces the XML content from a sample DataSet containing two
tables: Customer and Order.

3.	 Just after the “Set the XML namespace” comment, add the following statements:

SampleDataSet.Tables["Customer"].Namespace = TableNamespace.Text.Trim();

SampleDataSet.Tables["Customer"].Prefix = TablePrefix.Text.Trim();

SampleDataSet.Tables["Order"].Namespace = TableNamespace.Text.Trim();

SampleDataSet.Tables["Order"].Prefix = TablePrefix.Text.Trim();

This code sets the namespace and prefix values for both of the sample tables.

Dwonloaded from: iDATA.ws

	 Chapter 7  Saving and Restoring Data	 115

Note  As mentioned in the chapter discussion, you can also define namespace and prefix val-
ues within each DataColumn. Although it is not included in the sample code, consider adding
code that will loop through all columns in each of the two tables and add the user-specified
namespace and prefix values.

4.	 Just after the “Indicate the relationship type” comment, add the following line:

SampleDataSet.Relations[0].Nested = NestChildRecords.Checked;

This statement determines whether the order rows for each customer record are con-
tained within the <Customer> tag (true) or whether all <Order> tags appear after and
at the same level as all the <Customer> tags in the XML (false).

5.	 Just after the “Build a memory stream to hold the results” comment, add the following
code:

holdBuffer = new MemoryStream(8192);

SampleDataSet.WriteXml(holdBuffer,

 (XmlWriteMode)OutputWriteMode.SelectedItem);

These lines perform the actual XML generation, sending the results to a stream, in this
case a MemoryStream instance. The remaining code in the event handler moves the
XML content from the stream to an on-form text box.

6.	 Run the program. Use the fields in the upper-right corner of the form to alter the XML
content and then click Generate to produce the XML. As an example, set the XML Write
Mode to WriteSchema, change the Mapping for both Parent.ID and Child.ID to
Attribute, and set the Mapping for Child.CustomerID to Hidden. Click Generate. The
XML will contain the XSD schema for the data set, followed by distinct <Customer> and
<Order> elements.

Dwonloaded from: iDATA.ws

116	 Microsoft ADO.NET 4 Step by Step

Generating XML from a DataSet: Visual Basic

1.	 Open the “Chapter 7 VB” project from the installed samples folder. The project includes
one Windows.Forms class named Serialization.

2.	 Open the source code view for the Serialization form. Locate the ActGenerate_Click
function. This routine produces the XML content from a sample DataSet containing two
tables: Customer and Order.

3.	 Just after the “Set the XML namespace” comment, add the following statements:

SampleDataSet.Tables("Customer").Namespace = TableNamespace.Text.Trim

SampleDataSet.Tables("Customer").Prefix = TablePrefix.Text.Trim

SampleDataSet.Tables("Order").Namespace = TableNamespace.Text.Trim

SampleDataSet.Tables("Order").Prefix = TablePrefix.Text.Trim

This code sets the namespace and prefix values for both of the sample tables.

Note  As mentioned in the chapter discussion, you can also define namespace and prefix val-
ues within each DataColumn. Although it is not included in the sample code, consider adding
code that will loop through all columns in each of the two tables and add the user-specified
namespace and prefix values.

4.	 Just after the “Indicate the relationship type” comment, add the following line:

SampleDataSet.Relations(0).Nested = NestChildRecords.Checked

This statement determines whether the order rows for each customer record are con-
tained within the <Customer> tag (True) or whether all <Order> tags appear after and
at the same level as all the <Customer> tags in the XML (False).

5.	 Just after the “Build a memory stream to hold the results” comment, add the following
code:

holdBuffer = New MemoryStream(8192)

SampleDataSet.WriteXml(holdBuffer,

 CType(OutputWriteMode.SelectedItem, XmlWriteMode))

These lines perform the actual XML generation, sending the results to a stream, in this
case a MemoryStream instance. The remaining code in the event handler moves the
XML content from the stream to an on-form text box.

Dwonloaded from: iDATA.ws

	 Chapter 7  Saving and Restoring Data	 117

6.	 Run the program. Use the fields in the upper-right corner of the form to alter the XML
content and then click Generate to produce the XML. As an example, set the XML
Write Mode to IgnoreSchema; select the Nest Child Records check box; change the
Mapping for Child.ID to Attribute; change the Mapping for Child.CustomerID, Child.
OrderDate, Child.Subtotal, and Child.TaxRate to Hidden; and finally change the
Mapping for Child.Total to SimpleContent. Click Generate. The XML will contain a
simple set of customer records, each containing one or more <Order> tags with an ID
attribute, and with the order total set as the element content.

Summary
This chapter introduced the XML-specific features built into ADO.NET classes. These features
exist primarily to assist in serializing static XML content for disk-based storage or for transfer
to other applications that expect ADO.NET-generated XML content. The XML produced by
these classes can define its own schema using embedded or external XSD and can build hier-
archical XML elements based on the relationships in the original DataSet.

There are other ways to bring ADO.NET data and XML together in your applications. LINQ, a
major language feature in both Visual Basic and C#, includes data-querying features for both
ADO.NET and XML, features that can work in tandem. Chapters 17 through 20 in this book
discuss various LINQ-related technologies. Although “LINQ to XML” is not specifically exam-
ined in this book, the general LINQ concepts outlined in those chapters are similar to those
used when writing LINQ queries for XML data.

Dwonloaded from: iDATA.ws

118	 Microsoft ADO.NET 4 Step by Step

Chapter 7 Quick Reference
To Do This

Export a DataSet to a file as XML Create a DataSet instance.

Add all relevant DataTable, DataRelation, and content objects.

Call the WriteXml method of the DataSet, passing it the file name
as an argument.

Import file-based XML into a new DataSet Create a new DataSet instance.

Call the ReadXml method of the DataSet, passing it the file name
as an argument.

Generate hierarchical parent-child data Create a DataSet instance.

Add the relevant DataTable objects.

Add a DataRelation instance that links the tables.

Set the DataRelation.Nested property to True.

Call DataSet.WriteXml to generate the XML content.

Store a DataColumn as an XML-based
attribute

Set the DataColumn.ColumnMapping property to MappingType.
Attribute.

Dwonloaded from: iDATA.ws

Microsoft ADO.NET 4 Step by Step

	 	 119

Part II

Connecting to External Data
Sources

	 Chapter 8: Establishing External Connections

	 Chapter 9: Querying Databases

	 Chapter 10: Adding Parameters to Queries

	 Chapter 11: Making External Data Available Locally

	 Chapter 12: Guaranteeing Data Integrity

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 121

Chapter 8

Establishing External Connections
After completing this chapter, you will be able to:

■■ Understand the components that make up connection strings

■■ Write code that connects to an external data source

■■ Identify the different data providers included in ADO.NET

The first seven chapters of this book demonstrated many ADO.NET features that let you work
with data in a fully disconnected way. However, there are very few programs that depend on
data created solely within the application itself. Most programs, especially those in a business
environment, depend on content stored in a database or other source external to the ap-
plication. This chapter examines ADO.NET data providers, the connection object, and other
related features that make interactions between the Framework and data sources possible.

The examples in this chapter and in those that follow use the StepSample database men-
tioned in the book’s Introduction. If you haven’t yet installed that database, return to the
Introduction and follow the steps listed there to prepare the sample SQL Server data. You
might also want to review the “Connecting to External Data” section on page 8 of Chapter 1,
for details on connecting to databases using Visual Studio’s data access tools.

Using Connection Strings
The ADO.NET library provides generic access to many different external data platforms.
These data sources include both local files in standardized formats and remote relational
databases from a variety of vendors. To access these data stores, your application must tell
ADO.NET how to locate the resources, tell which data format to expect, and supply the se-
curity credentials required for access. You communicate this information through connection
strings: formatted text strings that document the relevant connection values.

A connection string contains multiple semicolon-delimited elements. Each element ex-
presses a key-value pair that identifies one of the needed connection components or other
relevant configuration settings. The connection string syntax looks like this:

key1=value1;key2=value2;key3=value3

Dwonloaded from: iDATA.ws

122

Typical elements include the file-based or network-based location of the database, the user
ID and password needed to access the data source, the timeout value used to limit the dura-
tion of exceptionally long-running queries, and other values needed to establish the con-
nection and its configuration. The specific keys you must include depend on the target data
platform or file format, the configuration of the data source, and the customizable features
your application requires. This section focuses on the more common elements needed to
communicate with a SQL Server database. For full details on other SQL Server elements, or
on the elements needed by other platforms, see the “Connection String Syntax (ADO.NET)”
page in the Visual Studio online help.

Note  One popular web site, http://www.connectionstrings.com, includes sample connection
strings for all major database platforms, as well as for some relatively unknown data sources. It
also documents some of the more esoteric connection string keys that might be required for
specific configurations. It is an independent site that is not sponsored or officially supported by
Microsoft. But when you are struggling to construct a connection string for a complex or under-
documented data environment, it is an invaluable resource.

SQL Server Connection Strings
In the “Creating a Data Source Using the Connection Wizard” example on page 8 in Chapter
1, step 12 briefly mentioned the connection string generated by the Data Source Connection
Wizard. When creating the data source on the wizard’s Choose Your Data Connection panel,
the configured string appears in the Connection String field.

Dwonloaded from: iDATA.ws

	 Chapter 8  Establishing External Connections	 123

When following the steps in Chapter 1 on my own system, that connection string contained
three key-value pairs.

Data Source=(local)\SQLEXPRESS;Initial Catalog=StepSample;

 Integrated Security=True

The wizard might create a slightly different string on your system. This particular connection
string establishes a connection to a SQL Server 2008 Express Edition database engine. The
three keys provide the information ADO.NET needs to establish the connection.

■■ The Data Source key indicates which server to access. In this case, the (local)\
SQLEXPRESS value refers to the SQL Server 2008 Express Edition installation on the
local workstation.

■■ The Initial Catalog key tells the connection which database within the hosted database
engine to use as the default. In this sample string, StepSample is the name of the default
database catalog to use. You must have the appropriate security credentials to access
this database.

■■ The Integrated Security key with a value of True tells ADO.NET to use your existing
Microsoft Windows security credentials to access the database.

So far, you’ve seen the typical basic format of a SQL Server 2008 connection string when
using your Microsoft Windows security credentials; however, a few additional keys are com-
monly included in SQL Server connection strings.

■■ As shown above, the Data Source key indicates the source database engine. The special
value of “(local)” tells ADO.NET to access the SQL Server instance running on the local
workstation. More commonly, (local) will be replaced with the name of the server that
hosts the database.

■■ If you prefer to use SQL Server’s own security system, set the Integrated Security key to
False (or you can just omit it from the connection string; False is the default value). Then
add two additional keys: User ID (with its value set of the SQL Server user name) and
Password (with its value set to the password of the specified user).

■■ The Application Name key is optional though useful. A user with appropriate security
access can obtain from the SQL Server database engine a list of all connected users, a
list that includes this Application Name setting. If you have users running multiple ver-
sions of multiple applications, setting this value to the name and version number of the
connecting application can simplify application use reporting.

■■ The AttachDBFilename key lets you attach a SQL Server Express Edition .mdf data file by
referring to its filename.

Dwonloaded from: iDATA.ws

124	 Microsoft ADO.NET 4 Step by Step

■■ The Connection Timeout key specifies the number of seconds to wait before terminating
long-running queries or updates. The default is 15 seconds.

■■ The MultipleActiveResultSets key defaults to False. If you set it to True, SQL Server will
allow you to have multiple simultaneous SELECT queries open to the database, or
will allow you to run INSERT, UPDATE, or DELETE commands even when a SELECT query
is active.

■■ The Encrypt and TrustServerCertificate keys work together to enable encrypted data-
base sessions.

Note  While you’ve seen the most common connection string keys, be aware that these com-
prise only a portion of the keys available with SQL Server connections. Some keys also have
synonyms, including the Server synonym that is used in place of the Data Source key. See the
“SqlConnection.ConnectionString Property” page in the Visual Studio documentation for addi-
tional key values.

OLE DB and ODBC Connection Strings
ADO.NET provides generic access to many data platforms through the older OLE DB and
ODBC data access layers. The .NET classes for this type of access are wrappers that provide a
.NET-friendly interface to the underlying data libraries.

Connection strings for both OLE DB and ODBC data sources are conceptually identical to
their SQL Server counterparts. They differ only in the specific keys and values included in
each string. For example, you can connect to Microsoft Access databases (.mdb files) using
the OLE DB interface.

Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=C:\MyDataFolder\MyDatabase.mdb;

 User Id=admin;Password=

For additional examples or details on the keys needed to connect to OLE DB or ODBC data
sources, see the “OleDbConnection.ConnectionString Property” and “OdbcConnection.
ConnectionString Property” pages in the Visual Studio online help, or reference the docu-
mentation for your specific data source platform.

Connection String Builders
Building connection string content by hand is never an exciting proposition, and can some-
times involve security risks. If you allow users to provide portions of the connection string to

Dwonloaded from: iDATA.ws

	 Chapter 8  Establishing External Connections	 125

your application, you open your program up to malicious code injection attacks. Consider
the following SQL Server connection string:

Source=ServerName;Initial Catalog=SalesData;User ID=xxx;Password=yyy

If a user provides the user ID (xxx) and password (yyy) values, a password that includes its
own semicolon-delimited value can alter the intent of the string.

...;Password=abc!123;Initial Catalog=master

Because the rightmost element of a connection string takes priority, the user-supplied Initial
Catalog=master element would override the earlier key, directing the user to the master
database.

To prevent such attacks and make connection string building a more programmer-friendly
activity, ADO.NET includes connection string builders, platform-specific classes that expose
strongly typed properties associated with the keys normally included in the connection
string.

The connection string builder class for SQL Server is located at System.Data.SqlClient.
SqlConnectionStringBuilder. To use it, create a new instance of the class, set its properties as
needed, and then access the object’s ConnectionString property to obtain the ready-to-use
connection string. The following code builds the wizard-generated connection string shown
earlier in this chapter:

C#
SqlClient.SqlConnectionStringBuilder builder =

 new SqlClient.SqlConnectionStringBuilder();

builder.DataSource = @"(local)\SQLEXPRESS";

builder.InitialCatalog = "StepSample";

builder.IntegratedSecurity = true;

return builder.ConnectionString;

Visual Basic
Dim builder As New SqlClient.SqlConnectionStringBuilder

builder.DataSource = "(local)\SQLEXPRESS"

builder.InitialCatalog = "StepSample"

builder.IntegratedSecurity = True

Return builder.ConnectionString

Dwonloaded from: iDATA.ws

126	 Microsoft ADO.NET 4 Step by Step

The .NET Framework also includes string builders for OLE DB (System.Data.OleDb.OleDb
ConnectionStringBuilder) and ODBC (System.Data.Odbc.OdbcConnectionStringBuilder) con-
nections. As with connection strings, the builders include a large number of platform-specific
properties used to set the supported keys and values. See the Visual Studio documentation
of each string builder class for specific property lists.

Storing Connection Strings
Because they are standard text strings, how or where you store the connection strings used
in your applications is up to you. The Data Source Connection Wizard, demonstrated in
Chapter 1, offers to store its generated connection string in your application’s settings file.
As mentioned in that chapter, storing the string in the “user” settings file makes it possible to
modify this string within the application, perhaps based on user-updated values. Storing the
string in the “application” settings file provides consistent access to the connection string, but
it can’t be modified by the application itself.

Wherever you store the string, be sure to weigh the risks of storing a plain-text key into the
database system’s locking mechanism. If your connection string includes the Password ele-
ment, you might want to encrypt the entire string before storing it in a disk file or registry
entry.

Understanding Data Providers
ADO.NET provides a generic interface to many different types of data stores, including SQL
Server, Microsoft Access file-based databases, comma-delimited text files, and Excel spread-
sheets, among others. To link these varied data sources with the common DataSet model,
ADO.NET includes providers, class libraries that understand how to interact with a specific
data platform such as SQL Server, or a common data layer such as OLE DB. Other vendors
offer additional providers beyond those included with Visual Studio that enable access to
more third-party database systems and file formats.

The ADO.NET Framework comes with three providers:

■■ The Microsoft SQL Server provider, expressed through the System.Data.SqlClient
namespace.

■■ The OLE DB provider, expressed through the System.Data.OleDb namespace.

■■ The ODBC provider, expressed through the System.Data.Odbc namespace.

Although all providers are conceptually identical, classes that expose similar functionality be-
tween the providers sometimes have different names. For instance, the SQL Server provider

Dwonloaded from: iDATA.ws

	 Chapter 8  Establishing External Connections	 127

class that establishes a connection to a database is called SqlConnection. The equivalent class
in the OLE DB provider is called OleDbConnection. (They both derive from the System.Data.
Common.DbConnection class.) Each provider also includes many classes that are specific to its
provider experience. The SqlClient namespace includes SqlBulkCopy, a class that provides ac-
cess to SQL Server’s bulk copy features, and that has no counterpart in either the OLE DB or
ODBC providers. This book focuses on the most commonly used classes found in the System.
Data.SqlClient namespace.

Note  Prior to version 4 of ADO.NET, Microsoft also included a functional Oracle provider with
the .NET Framework. This provider, stored in the System.Data.OracleClient namespace, still ships
with Visual Studio. However, its classes have been marked as deprecated and obsolete. Microsoft
will likely remove the provider completely in a future release and recommends that Oracle users
obtain a third-party provider.

Providers exist to transport data between proprietary data platforms and the generic
ADO.NET data layer. They include platform-specific classes that access data resources
through connection strings, establish communications with those data sources, pass query
and data modification commands from the application to the data store, and return data
records back to the application in a form understood by a DataSet and its related classes. The
connection string builder classes discussed earlier in this chapter exist within the provider-
specific namespaces.

The key classes within each provider (with their SQL Server provider-specific class names) in-
clude Command (SqlCommand), Connection (SqlConnection), DataAdapter (SqlDataAdapter),
and DataReader (SqlDataReader). The chapters in this section of the book discuss these
classes plus a few others that form the basis of data management between ADO.NET and
external data sources.

Note  ADO.NET includes an “Entity Client” provider that enables provider-like functionality to
the new ADO.NET Entity Framework system. It does not communicate with databases directly,
but piggybacks on other ADO.NET providers to enable access to external data. Chapter 15,
“Querying Data in the Framework,” discusses this provider.

Connecting to SQL Server via a Data Provider
Connecting to a SQL Server database with ADO.NET requires three components: an active
SQL Server database, an instance of SqlClient.SqlConnection, and a valid connection string.

Dwonloaded from: iDATA.ws

128	 Microsoft ADO.NET 4 Step by Step

Creating and Opening Connections
To create a new database connection, pass a valid SQL Server connection string to the
SqlConnection constructor. After the instance exists, your code must specifically open and
close and dispose of the connection.

C#
SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder();

// ----- Fill in the builder properties as needed, then...

SqlConnection linkToDB = new SqlConnection(builder.ConnectionString);

linkToDB.Open();

// ------ Do various database activities, then...

linkToDB.Close();

linkToDB.Dispose();

Visual Basic
Dim builder As New SqlConnectionStringBuilder

' ----- Fill in the builder properties as needed, then...

Dim linkToDB As New SqlConnection(builder.ConnectionString)

linkToDB.Open()

' ------ Do various database activities, then...

linkToDB.Close()

linkToDB.Dispose()

Again, you must close and dispose of the connection when you are finished with it. Letting
the connection object go out of scope will not automatically close the database connection;
you must close it manually.

Note  Calling the connection’s Dispose method will automatically call Close (if you haven’t done
so already). Calling Close will not automatically call Dispose.

To simplify the process, employ a using/Using block to automatically dispose of the connec-
tion object.

C#
using (SqlConnection linkToDB =

 new SqlConnection(builder.ConnectionString))

{

 linkToDB.Open();

 // ----- Additional code here.

}

Dwonloaded from: iDATA.ws

	 Chapter 8  Establishing External Connections	 129

Visual Basic
Using linkToDB As New SqlConnection(builder.ConnectionString)

 linkToDB.Open()

 ' ----- Additional code here.

End Using

For effective connection pooling (discussed later in this chapter), it is best to open the con-
nection as late as you can, and close it again as soon as you can after that.

Opening a Database Connection: C#

1.	 Open the “Chapter 8 CSharp” project from the installed samples folder. The project in-
cludes a single Windows.Forms class: ConnectionTest.

2.	 Open the source code view for the ConnectionTest form. Locate the BuildConnection
function. This routine creates a SqlConnectionStringBuilder instance based on the user-
specified connection settings.

3.	 Just after the “Add the server name” comment, add the following code:

if (LocalServer.Checked == true)

 connection.DataSource = "(local)";

else

 connection.DataSource = ServerName.Text;

if (IsExpressEdition.Checked == true)

 connection.DataSource += @"\SQLEXPRESS";

This code defines the main SQL Server data source. The code differentiates between the
Express Edition (and its default name extension) and standard instances.

4.	 Just after the “Add the authentication” comment, add the following code:

if (AuthenticateWindows.Checked == true)

 connection.IntegratedSecurity = true;

else

{

 connection.IntegratedSecurity = false;

 connection.UserID = UserName.Text;

 connection.Password = UserPassword.Text;

}

This conditional code supports two types of authentication: integrated security based
on the current Windows login and SQL Server user-based security.

5.	 Locate the ActTest_Click event handler. This routine attempts the connection with the
configured data source. Just after the “Test the connection” comment, add the follow-
ing statements:

testLink = new SqlConnection(connection.ConnectionString);

testLink.Open();

Dwonloaded from: iDATA.ws

130	 Microsoft ADO.NET 4 Step by Step

6.	 Run the program. Use the fields on the form to test your local configuration of SQL
Server. For my test setup, I selected the Local Server option, selected the SQL Server
Express Installation field, entered StepSample in the Initial Catalog field, and left the
other fields at their default settings. Then I clicked Test, which ran successfully. If you
installed the sample database described in the book’s Introduction, your settings will
be similar, although you should set the Server Name field to your own server’s name for
nonlocal databases.

Opening a Database Connection: Visual Basic

1.	 Open the “Chapter 8 VB” project from the installed samples folder. The project includes
a single Windows.Forms class: ConnectionTest.

2.	 Open the source code view for the ConnectionTest form. Locate the BuildConnection
function. This routine creates a SqlConnectionStringBuilder instance based on the user-
specified connection settings.

3.	 Just after the “Add the server name” comment, add the following code:

If (LocalServer.Checked = True) Then

 connection.DataSource = "(local)"

Else

 connection.DataSource = ServerName.Text

End If

If (IsExpressEdition.Checked = True) Then

 connection.DataSource &= "\SQLEXPRESS"

Dwonloaded from: iDATA.ws

	 Chapter 8  Establishing External Connections	 131

This code defines the main SQL Server data source. The code differentiates between the
Express Edition (and its default name extension) and standard instances.

4.	 Just after the “Add the authentication” comment, add the following code:

If (AuthenticateWindows.Checked = True) Then

 connection.IntegratedSecurity = True

Else

 connection.IntegratedSecurity = False

 connection.UserID = UserName.Text

 connection.Password = UserPassword.Text

End If

This conditional code supports two types of authentication: integrated security based
on the current Windows login and SQL Server user-based security.

5.	 Locate the ActTest_Click event handler. This routine attempts the connection with the
configured data source. Just after the “Test the connection” comment, add the follow-
ing statements:

testLink = New SqlConnection(connection.ConnectionString)

testLink.Open()

6.	 Run the program. Use the fields on the form to test your local configuration of SQL
Server. For my test setup, I selected the Local Server option, selected the SQL Server
Express Installation field, entered StepSample in the Initial Catalog field, and left the
other fields at their default settings. Then I clicked Test, which ran successfully. If you
installed the sample database described in the book’s Introduction, your settings will
be similar, although you should set the Server Name field to your own server’s name for
nonlocal databases.

Dwonloaded from: iDATA.ws

132	 Microsoft ADO.NET 4 Step by Step

Connection Pooling
Traditional client-server applications typically established a connection to a database when
the program started up, maintaining the data link until the user exited the application. The
introduction of ADO.NET and a drive toward multitier development challenged that always-
on connection preference with their disconnected models. Yet even a fully disconnected,
web-based, data-centric application might execute multiple queries and updates against a
database during a single server-side page processing event. An important question in de-
signing database applications is this: How long should the connection to the database remain
open?

The answer is this: It depends. If you are still writing client-server desktop applications, it’s
not unheard of to open a connection object and keep it open during the lifetime of the ap-
plication, although both ADO.NET and the wider programming community discourage this
practice. More common, especially in web-centric apps, is to open a connection and keep
it open just long enough to process the database operations needed during a single event
handler call. Some developers prefer to open a new connection for each distinct database
operation. These developers still at times need to keep a connection open through multiple
queries. For example, if you execute a query that creates local temporary tables (those SQL
Server tables that begin with a single “#” symbol), you must maintain an active connection to
use the tables across multiple queries. Also, committable multiupdate database transactions
require a consistent connection experience to work properly.

Even if you choose to limit your connection length to the minimum time required to carry
out your database operations, the SQL Server provider might maintain the underlying con-
nection for a much longer time. That’s because the provider uses connection pooling—the
reuse of identical connection objects to reduce the time needed to establish new connec-
tions. Creating a database connection is somewhat time-consuming because it involves the
overhead of network-level handshaking and security credentialing for each new connection
request. Connection pooling reduces these repetitive activities by keeping prior connections
around in case they are needed again by a new SqlConnection object.

The SQL Server provider maintains separate pools based on different connection strings and
other factors that make shared connections impossible. A single connection pool can include
more than one active connection, each waiting for your code to issue a new Open method
call on a SqlConnection object.

You can turn off pooling for a specific connection by including the Pooling=false key-value
pair in your connection string. The SqlConnection class also includes two methods—ClearPool
and ClearAllPools—that let you clear its associated pool or all pools currently managed by
the provider within your application respectively.

Dwonloaded from: iDATA.ws

	 Chapter 8  Establishing External Connections	 133

Summary
This chapter began the transition from using ADO.NET with purely internal data to engaging
in data communications with external content sources. Platform-specific providers play the
pseudo-role of device drivers, enabling the generic DataSet and its family of objects to com-
municate seamlessly with disparate data sources. Within each provider, the connection object
(known as SqlConnection in the SQL Server provider) contains the information that initiates a
relationship between your application and the external data.

Connection strings provide a simple text-based medium for defining which database or other
content store your application should access. Although the content of these strings can vary
widely from platform to platform, ADO.NET assists you on its supported platforms by includ-
ing connection string builder objects: classes that wrap the crafting of connection strings
within the familiar class-based model.

Chapter 8 Quick Reference
To Do This

Build a SQL Server connection string using a class Create an instance of SqlClient.SqlConnectionStringBuilder.

Set its properties as needed.

Access the object’s ConnectionString property.

Establish a connection to a SQL Server database Build a connection string to the database.

Create an instance of SqlClient.SqlConnection, passing the
connection string to the constructor.

Call the SqlConnection instance’s Open method.

Connect to a Microsoft Access database using an
OLE DB connection

Build a connection string that includes the Data Source
key with a value of the Access file path.

Create an instance of OleDb.OleDbConnection, passing
the connection string to the constructor.

Call the OleDbConnection instance’s Open method.

Disable connection pooling for a database
connection

Add the Pooling=false key-value pair to the connection
string before opening the connection.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Chapter 9

Querying Databases
After completing this chapter, you will be able to:

■■ Issue data-modifying queries on external data sources

■■ Retrieve a table of records from a SQL Server database

■■ Return the primary key value for a newly inserted database record

Despite its capability to work with data generated completely within an application, ADO.NET’s
main purpose is to access and manipulate data in external data stores. To enable this query-
and-update functionality on the source data platform, ADO.NET includes a “command” ob-
ject, a wrapper around a platform-specific query that updates, inserts, or deletes target data;
or returns single or multiple values from the data source.

This chapter introduces this command wrapper, and demonstrates how to process records
returned from a data query. ADO.NET does not impose any limits on the content of the que-
ry statements because they are simply passed on to the data platform. However, the results
that come back might require special handling depending on the structure of the returned
data.

Note  This chapter focuses on the SQL Server provider and its implementation of command-
related processing features. The OLE DB and ODBC providers include conceptually identical
features, although some of the class names and processing details might differ. For complete
information on these providers, refer to the Visual Studio online help.

Processing SQL Queries
SQL is the lingua franca of relational database processing. Although most database systems
include specialized tools that let you organize data values and the table constructs that con-
tain them, you can manage most essential features by crafting queries in SQL. From table
creation to multitable data queries, SQL includes data definition and manipulation com-
mands that give those with sufficient security rights complete control over the database and
its content.

Dwonloaded from: iDATA.ws

136

In SQL Server databases, the SQL language includes different types of statements, including
the following:

■■ SQL query statements  Selection queries that return data results

■■ Data manipulation statements  Statements that modify or change data content

■■ Data definition statements  Commands that modify tables and other structures that
support the data content

■■ Stored procedures  Named blocks of processing logic

ADO.NET lets you process any of these statement types through instances of the System.
Data.SqlClient.SqlCommand class. This class encapsulates one or more SQL statements and
includes methods that request processing of the statement(s) on a SQL Server connection,
optionally returning query results.

Note  In the OLE DB provider, the equivalent command class is located at System.Data.
OleDb.OleDbCommand, whereas the ODBC provider version is found at System.Data.Odbc.
OdbcCommand. These two classes and the SqlCommand class in the SQL Server provider all
derive from System.Data.Common.DbCommand.

Creating Command Objects
Using the SqlCommand class is a straightforward procedure:

1.	 Create an instance of SqlCommand.

2.	 Assign a valid SQL statement to the object’s CommandText property.

3.	 Set the object’s Connection property to an open SqlConnection instance.

4.	 Assign other optional properties as needed.

5.	 Call one of the object’s many synchronous or asynchronous “execute” methods.

The SqlCommand object’s constructor has various overloaded versions that let you specify
the SQL statement text and the ADO.NET connection as arguments.

Dwonloaded from: iDATA.ws

	 Chapter 9  Querying Databases	 137

C#
SqlConnection linkToDB = new SqlConnection(connectionString);

linkToDB.Open();

string sqlText = @"UPDATE WorkTable SET ProcessedOn = GETDATE()

 WHERE ProcessedOn IS NULL";

SqlCommand dataAction = new SqlCommand(sqlText, linkToDB);

Visual Basic
Dim linkToDB As New SqlConnection(connectionString)

linkToDB.Open()

Dim sqlText As String = "UPDATE WorkTable SET ProcessedOn = GETDATE() " &

 "WHERE ProcessedOn IS NULL"

Dim dataAction As New SqlCommand(sqlText, linkToDB)

The SqlCommand.CommandText field accepts two types of string data:

■■ Standard SQL statements  This is the default type. Normally, only a single SQL state-
ment appears in this field. However, you can include multiple semicolon-delimited
statements within a single command instance. Information on retrieving the results of
multiple SELECT statements from a single command appears later in this chapter.

■■ Stored procedures  The command text field contains the stored procedure name. Set
the SqlCommand.CommandType property to CommandType.StoredProcedure. You add
any “in” or “out” arguments to the command through distinct parameters. See Chapter
10, “Adding Parameters to Queries,” for details on using parameters. If you want to in-
clude the arguments within the command text itself (as is commonly done through SQL
Server’s Management Studio tool), treat the text as a standard SQL statement, setting
the CommandType property to CommandType.Text.

Note  The SqlCommand.CommandType property also accepts a value of CommandType.
TableDirect, which indicates that the CommandText field contains nothing more than a table
name to be used for row retrieval and management. The SQL Server provider does not support
this command variation.

Processing Queries
The command object works for queries that return data values from the data source, and
also for statements that take some action on the database but that return no stored data.
These “nonquery” actions are typical when adding, updating, or removing records from the
database; or when processing Data Definition Language commands, such as SQL Server’s
CREATE TABLE statement.

Dwonloaded from: iDATA.ws

138	 Microsoft ADO.NET 4 Step by Step

To run a nonquery, create a new SqlCommand object and set its command text to the server-
side SQL statement. Then call the object’s ExecuteNonQuery method.

C#
string sqlText = "DELETE FROM WorkTable WHERE Obsolete = 1";

SqlCommand dataAction = new SqlCommand(sqlText, linkToDB);

try

{

 dataAction.ExecuteNonQuery();

}

catch (Exception ex)

{

 MessageBox.Show("Failure: " + ex.Message);

}

Visual Basic
Dim sqlText As String = "DELETE FROM WorkTable WHERE Obsolete = 1"

Dim dataAction As New SqlCommand(sqlText, linkToDB)

Try

 dataAction.ExecuteNonQuery()

Catch ex As Exception

 MessageBox.Show("Failure: " & ex.Message)

End Try

ExecuteNonQuery sends the command text to the data source through the previously
opened connection. Any processing errors, including those generated by the data source,
throw an exception.

Calls to stored procedures work the same way.

C#
string sqlText = "dbo.CancelOrder " + orderID;

SqlCommand dataAction = new SqlCommand(sqlText, linkToDB);

dataAction.ExecuteNonQuery();

Visual Basic
Dim sqlText As String = "dbo.CancelOrder " & orderID

Dim dataAction As New SqlCommand(sqlText, linkToDB)

dataAction.ExecuteNonQuery()

Dwonloaded from: iDATA.ws

	 Chapter 9  Querying Databases	 139

Note  Building SQL statements through string concatenation, especially with user-supplied com-
ponents, can be risky. Chapter 10, “Adding Standards to Queries,” introduces command param-
eters, which can reduce or eliminate these risks. Parameters also let your code retrieve data from
stored procedure “out” parameters.

Processing Asynchronously
The ExecuteNonQuery method is synchronous; your application will block until the database
operation completes successfully or aborts with an error or connection timeout. If your ap-
plication is single threaded, it will cease to function (or at least appear that way) until the
method returns.

The command object also supports asynchronous processing of nonqueries. It includes a pair
of methods—BeginExecuteNonQuery and EndExecuteNonQuery—that bracket the operation.
The BeginExecuteNonQuery method returns an object with the interface System.IAsyncResult
that sets its IsCompleted property to True when processing ends. At that point, your code
must call the EndExecuteNonQuery method to complete the process.

C#
SqlCommand dataAction = new SqlCommand(sqlText, linkToDB);

IAsyncResult pending = dataAction.BeginExecuteNonQuery();

while (pending.IsCompleted == false)

{

 // ----- Do work as needed, or...

 Threading.Thread.Sleep(100);

}

dataAction.EndExecuteNonQuery(pending);

Visual Basic
Dim dataAction As New SqlCommand(sqlText, linkToDB);

Dim pending As IAsyncResult = dataAction.BeginExecuteNonQuery()

Do While (pending.IsCompleted = False)

 ' ----- Do work as needed, or...

 Threading.Thread.Sleep(100)

Loop

dataAction.EndExecuteNonQuery(pending)

A variation of the BeginExecuteNonQuery method lets you specify a callback method and an
optional object that will be passed to the callback method when the operation completes.
You must still call EndExecuteNonQuery, although you can call it from within the callback
code. Passing the SqlCommand object as the optional argument simplifies this process.

Dwonloaded from: iDATA.ws

140	 Microsoft ADO.NET 4 Step by Step

C#
SqlCommand dataAction = new SqlCommand(sqlText, linkToDB);

AsyncCallback callback = new AsyncCallback(WhenFinished);

dataAction.BeginExecuteNonQuery(callback, dataAction);

// ----- Elsewhere...

private void WhenFinished(IAsyncResult e)

{

 // ----- The IAsyncResult.AsyncState property contains the

 // optional object sent in by BeginExecuteNonQuery.

 SqlCommand dataAction = (SqlCommand)e.AsyncState;

 // ----- Finish processing.

 dataAction.EndExecuteNonQuery(e);

}

Visual Basic
Dim dataAction As New SqlCommand(sqlText, linkToDB)

Dim callback As New AsyncCallback(AddressOf WhenFinished)

dataAction.BeginExecuteNonQuery(callback, dataAction)

' ----- Elsewhere...

Private Sub WhenFinished(ByVal e As IAsyncResult)

 ' ----- The IAsyncResult.AsyncState property contains the

 ' optional object sent in by BeginExecuteNonQuery.

 Dim dataAction As SqlCommand = CType(e.AsyncState, SqlCommand)

 ' ----- Finish processing.

 dataAction.EndExecuteNonQuery(e)

End Sub

The connection used by the command must remain open during processing. If you want to
halt execution of the command before it completes, call the SqlCommand object’s Cancel
method. Be aware that—depending on the state of processing—the Cancel method might or
might not cancel the execution in time.

Returning Query Results
Sending commands to a database is useful; getting data back is also essential for data-centric
applications. The command object includes several methods that return both single values
and multiple rows of tabular data.

Dwonloaded from: iDATA.ws

	 Chapter 9  Querying Databases	 141

Returning a Single Value
The SqlCommand object’s ExecuteScalar method sends a SQL command or stored procedure
request to the database, just like the ExecuteNonQuery method, but it also returns a single value
produced by the query. This method is useful with SELECT queries that return a simple result.

C#
string sqlText = "SELECT COUNT(*) FROM WorkTable";

SqlCommand dataAction = new SqlCommand(sqlText, linkToDB);

int totalItems = (int)dataAction.ExecuteScalar();

Visual Basic
Dim sqlText As String = "SELECT COUNT(*) FROM WorkTable"

Dim dataAction As New SqlCommand(sqlText, linkToDB)

Dim totalItems As Integer = CInt(dataAction.ExecuteScalar())

Because ExecuteScalar returns data of type System.Object, you must coerce it into the ex-
pected data type. The method can return System.DBNull for nondata results.

SQL Server 2005 introduced a new OUTPUT keyword on INSERT statements that returns
a specified field (typically the primary key) from the newly inserted data row. Before this
change, programmers often had to issue two statements to obtain this new key value: the
first to insert the record and the second to retrieve the primary key through a new SELECT
statement. By combining the OUTPUT keyword with the ExecuteScalar method, it’s easy to
obtain the primary key in a single command.

C#
// ----- Pretend the ...'s represent actual fields, and that

// WorkTable.ID is the name of the primary key.

string sqlText = @"INSERT INTO WorkTable (...)

 OUTPUT INSERTED.ID VALUES (...)";

SqlCommand dataAction = new SqlCommand(sqlText, linkToDB);

int newID = (int)dataAction.ExecuteScalar();

Visual Basic
' ----- Pretend the ...'s represent actual fields, and that

' WorkTable.ID is the name of the primary key.

Dim sqlText As String = "INSERT INTO WorkTable (...) " &

 "OUTPUT INSERTED.ID VALUES (...)"

Dim dataAction As New SqlCommand(sqlText, linkToDB)

Dim newID As Integer = CInt(dataAction.ExecuteScalar())

Stored procedures that return a single value are identical in concept.

Dwonloaded from: iDATA.ws

142	 Microsoft ADO.NET 4 Step by Step

Returning Data Rows
To process one or more rows returned from a SELECT query or row-producing stored pro-
cedure, use the SqlCommand object’s ExecuteReader method. This method returns an object
of type System.Data.SqlClient.SqlDataReader, which lets you scan through the returned rows
once, examining the columnar data values in each row. The data reader is fast and light-
weight, providing no-nonsense access to each row’s values.

Note ExecuteReader accesses the database in a synchronous manner. SqlCommand also in-
cludes a BeginExecuteReader and EndExecuteReader method pair that enables asynchronous
access to the data. The discussion of asynchronous processing earlier in this chapter also applies
to these methods.

To create the reader, add the relevant command text and connection to a SqlCommand, and
call its ExecuteReader method to return the new SqlDataReader instance.

C#
string sqlText = "SELECT ID, FullName, ZipCode FROM Customer";

SqlCommand dataAction = new SqlCommand(sqlText, linkToDB);

SqlDataReader scanCustomer = dataAction.ExecuteReader();

Visual Basic
Dim sqlText As String = "SELECT ID, FullName, ZipCode FROM Customer"

Dim dataAction As New SqlCommand(sqlText, linkToDB)

Dim scanCustomer As SqlDataReader = dataAction.ExecuteReader()

SqlDataReader exposes exactly one data row at a time as a collection of column values. The
reader returned by ExecuteReader doesn’t yet point to a data row. You must call the reader’s
Read method to access the first row, calling it again for subsequent rows. Read returns False
when there are no more rows available. The HasRows property indicates whether any rows
were returned from the query.

C#
SqlDataReader scanCustomer = dataAction.ExecuteReader();

if (scanCustomer.HasRows)

 while (scanCustomer.Read())

 {

 // ----- Perform row processing here.

 }

scanCustomer.Close();

Dwonloaded from: iDATA.ws

	 Chapter 9  Querying Databases	 143

Visual Basic
Dim scanCustomer As SqlDataReader = dataAction.ExecuteReader()

If (scanCustomer.HasRows = True) Then

 Do While scanCustomer.Read()

 ' ----- Perform row processing here.

 Loop

End If

scanCustomer.Close()

Always call the reader’s Close or Dispose method when finished. By default, SQL Server will
permit only a single reader to be open at once. To open another reader, you must close
the previous one. This also applies to other types of queries. Statements issued through the
SqlCommand.ExecuteNonQuery method will also fail if a SqlDataReader is open and in use.

Note  If you include the MultipleActiveRecordSets=True key-value pair in the SQL Server connec-
tion string used to access the database, you will be able to open multiple readers at once and
process other commands while a reader is open. However, be careful when using this feature
because you won’t get a warning if you inadvertently leave a reader open.

When you close the data reader, the associated connection remains open for your further
use, until you specifically close the connection. Passing CommandBehavior.CloseConnection
as an argument to ExecuteReader tells the reader to close the connection when the reader
closes.

C#
SqlDataReader scanCustomer =

 dataAction.ExecuteReader(CommandBehavior.CloseConnection);

// ----- Scan through the reader, then...

scanCustomer.Close();

// ----- The connection closes as well.

Visual Basic
Dim scanCustomer As SqlDataReader =

 dataAction.ExecuteReader(CommandBehavior.CloseConnection)

' ----- Scan through the reader, then...

scanCustomer.Close()

' ----- The connection closes as well.

SqlDataReader is a unidirectional, read-once construct. After you scan through all the avail-
able rows using the Read method, that’s it. You cannot return to the beginning of the set

Dwonloaded from: iDATA.ws

144	 Microsoft ADO.NET 4 Step by Step

and scan through again; to do that, you’d need to generate a new data reader from a new
command object. The reader’s forward-only, read-once limitation helps keep it speedy and
memory-friendly.

Accessing Field Values
Accessing each field in a SqlDataReader is similar to the process used with a DataRow instance.
Both objects include a default Item collection that exposes column values by zero-based
position or by name. (If two fields share a common name that differs only by case, the name
lookup is case-sensitive.)

C#
result = scanCustomer[0]; // By position

result = scanCustomer["ID"]; // By name

Visual Basic
result = scanCustomer(0) ' By position

result = scanCustomer!ID ' By name

The official documentation for the SqlDataReader class says that this method returns data in
its “native format.” In essence, it returns a System.Object instance. You need to cast the data
to the appropriate data type. NULL data fields contain DBNull.Value. The reader’s IsDBNull
method indicates whether a column at a specific ordinal position contains DBNull.

For strongly typed access to fields, the data reader exposes a seemingly endless number of
data-returning methods with names that indicate the format of the resulting value. For ex-
ample, the SqlDataReader.GetDecimal method returns a System.Decimal value from one of
the row’s fields. These methods accept only an ordinal position; if you want to use them with
a field name, you must convert the name to its position using the GetOrdinal method.

C#
rowID = scanCustomer.GetInt64(scanCustomer.GetOrdinal("ID"));

Visual Basic
rowID = scanCustomer.GetInt64(scanCustomer.GetOrdinal("ID"))

Dwonloaded from: iDATA.ws

	 Chapter 9  Querying Databases	 145

Naturally, you must use the appropriate function for a specific column. For example, us-
ing the GetInt32 method on a non-numeric text column will fail. Table 9-1 lists these typed
methods and the data types they return.

Table 9-1  Typed Data Access Methods on SqlDataReader Class

Method Name Returned Data Type

GetBoolean System.Boolean

GetByte System.Byte

GetBytes Array of System.Byte. This method reads a specified portion of
a field into a preallocated Byte array. Arguments to the method
indicate the starting positions in both the source and target
buffers, and the length of the data to copy. This method is use-
ful for retrieving binary large objects (BLOBs) from a database.

GetChar System.Char

GetChars Array of System.Char. This method is similar to the GetBytes
method, but it copies data as Char instead of Byte.

GetDateTime System.DateTime

GetDateTimeOffset System.DateTimeOffset

GetDouble System.Double

GetFloat System.Single

GetGuid System.Guid

GetInt16 System.Int16

GetInt32 System.Int32

GetInt64 System.Int64

GetString System.String

GetTimeSpan System.TimeSpan

In addition to these standard data types, SqlDataReader also includes methods that re-
turn data fields in a format more in line with their true SQL Server counterparts. All these
methods return data for types found in the System.Data.SqlTypes namespace. For example,
SqlDataReader.GetSqlMoney returns a value of type System.Data.SqlTypes.SqlMoney. These
types are similar to the standard .NET types, but support NULL values as well. The methods
include GetSqlBinary, GetSqlBoolean, GetSqlByte, GetSqlBytes, GetSqlChars, GetSqlDateTime,
GetSqlDecimal, GetSqlDouble, GetSqlGuid, GetSqlInt16, GetSqlInt32, GetSqlInt64, GetSqlMoney,
GetSqlSingle, GetSqlString, and GetSqlXml.

A few additional methods including GetName, GetDataTypeName, GetFieldType, GetValue
(and others), and the FieldCount property provide more generic access to the fields in a read-
er row. These features are handy for retrieving data from a query for which the code does
not expect any specific set of fields. A test program that displays the tabular results of any
user-supplied query might use these methods.

Dwonloaded from: iDATA.ws

146	 Microsoft ADO.NET 4 Step by Step

Along those same generic lines, the SqlDataReader object’s GetSchemaTable method returns
a DataTable instance that describes the structure of the queried data. The new table’s content
includes columns such as ColumnName, IsKey, and DataTypeName, plus about two dozen
more that you can use to understand the makeup of the incoming data. See the Visual Studio
online help entry for “SqlDataReader.GetSchemaTable Method” for more information about
this method.

Processing More Complicated Results
SQL Server supports returning multiple record sets in a single query. You can generate them
by sending a batch of two or more semicolon-delimited SELECT statements within a single
SqlCommand object’s command text, or by executing a stored procedure that generates
multiple selections.

When retrieving multiple record sets, the returned SqlDataReader initially refers to the first
set of records. To access the second set, call the reader’s NextResult method. The method
returns False after it passes the final results set. Just as with the reader’s view of individual
data rows, SqlDataReader cannot return to an earlier results set.

Note  The OLE DB and ODBC providers also support nested results, where a single row might
contain subordinate data rows. The SQL Server provider does not support nested sets.

If you prefer to process the data returned from the query as XML, use the SqlCommand
object’s ExecuteXmlReader method (or the asynchronous BeginExecuteXmlReader and
EndExecuteXmlReader methods), which returns a System.Xml.XmlReader instance. Your query
must include the appropriate XML-specific keywords (such as FOR XML), or it must return
valid XML content, such as from a table field.

Processing Database Queries: C#

1.	 Open the “Chapter 9 CSharp” project from the installed samples folder. The project in-
cludes a Windows.Forms class named StateBuilder and a sealed class named General.

2.	 Open the code for the General class. This class centralizes much of the database func-
tionality for the sample application. Locate the GetConnectionString function, a routine
that uses a SqlConnectionStringBuilder to create a valid connection string to the sample
database. It currently includes the following statements:

builder.DataSource = @"(local)\SQLExpress";

builder.InitialCatalog = "StepSample";

builder.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

Dwonloaded from: iDATA.ws

	 Chapter 9  Querying Databases	 147

3.	 Locate the ExecuteSQL method. This routine processes a SQL statement (sqlText) on a
connected database (linkToDB), expecting no returned results. Within the try block, add
the following code:

SqlCommand commandWrapper = new SqlCommand(sqlText, linkToDB);

commandWrapper.ExecuteNonQuery();

4.	 Locate the ExecuteSQLReturn method. This routine processes a SQL statement (sqlText)
on a connected database (linkToDB), collecting a single return value from the database
and returning it to the calling code. Within the try block, add the following statements:

SqlCommand commandWrapper = new SqlCommand(sqlText, linkToDB);

return commandWrapper.ExecuteScalar();

5.	 Locate the OpenReader method. This function processes a SQL statement (sqlText) on
a connected database (linkToDB), creating a SqlDataReader object to process the re-
turned data rows. Within the try block, add the following lines:

SqlCommand commandWrapper = new SqlCommand(sqlText, linkToDB);

return commandWrapper.ExecuteReader();

6.	 Open the source code view for the StateBuilder form. Locate the RefreshEverything
routine. Just after the “See if a custom state already exists” comment, add the following
code:

sqlText = "SELECT * FROM StateRegion WHERE RegionType = 99";

stateReader = General.OpenReader(sqlText, linkToDB);

if ((stateReader != null) && (stateReader.HasRows == true))

{

 // ----- Existing custom state record.

 stateReader.Read();

 ActiveStateID = (long)(int)stateReader["ID"];

 AddName.Text = (string)stateReader["FullName"];

 AddAbbreviation.Text = (string)stateReader["Abbreviation"];

}

else

{

 // ----- No custom state record.

 AddName.Clear();

 AddAbbreviation.Clear();

}

if (stateReader != null) stateReader.Close();

This code uses the General.OpenReader function from step 5 to obtain a SqlDataReader
instance built from a SQL statement (sqlText) and a connection (linkToDB). If the reader
contains at least one row, the code accesses specific fields in that first row to populate
various internal and onscreen values.

Dwonloaded from: iDATA.ws

148	 Microsoft ADO.NET 4 Step by Step

7.	 Run the program, a simple database application that lets you create, modify, and re-
move a single “state” record. On the Add A State tab, enter New C Sharp in the New
State Name field and add CS in the New Abbreviation field. The SQL statement that will
add the new record to the StateRegion table appears just below the edit fields. Click
Add to create the record.

8.	 Use the Rename A State tab to make changes to the test record. When you are finished
with the record, use the Delete A State tab to remove the test record.

Processing Database Queries: Visual Basic

1.	 Open the “Chapter 9 VB” project from the installed samples folder. The project includes
a Windows.Forms class named StateBuilder and a module named General.

2.	 Open the code for the General module. This file centralizes much of the database func-
tionality for the sample application. Locate the GetConnectionString function, a routine
that uses a SqlConnectionStringBuilder to create a valid connection string to the sample
database. It currently includes the following statements:

builder.DataSource = "(local)\SQLExpress"

builder.InitialCatalog = "StepSample"

builder.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

3.	 Locate the ExecuteSQL method. This routine processes a SQL statement (sqlText) on a
connected database (linkToDB), expecting no returned results. Within the Try block, add
the following code:

Dim commandWrapper As New SqlCommand(sqlText, linkToDB)

commandWrapper.ExecuteNonQuery()

Dwonloaded from: iDATA.ws

	 Chapter 9  Querying Databases	 149

4.	 Locate the ExecuteSQLReturn method. This routine processes a SQL statement (sqlText)
on a connected database (linkToDB), collecting a single return value from the database
and returning it to the calling code. Within the Try block, add the following statements:

Dim commandWrapper As New SqlCommand(sqlText, linkToDB)

Return commandWrapper.ExecuteScalar()

5.	 Locate the OpenReader method. This function processes a SQL statement (sqlText) on
a connected database (linkToDB), creating a SqlDataReader object to process the re-
turned data rows. Within the Try block, add the following lines:

Dim commandWrapper As New SqlCommand(sqlText, linkToDB)

Return commandWrapper.ExecuteReader()

6.	 Open the source code view for the StateBuilder form. Locate the RefreshEverything
routine. Just after the “See if a custom state already exists” comment, add the following
code:

sqlText = "SELECT * FROM StateRegion WHERE RegionType = 99"

stateReader = OpenReader(sqlText, linkToDB)

If (stateReader IsNot Nothing) AndAlso (stateReader.HasRows = True) Then

 ' ----- Existing custom state record.

 stateReader.Read()

 ActiveStateID = CLng(stateReader!ID)

 AddName.Text = CStr(stateReader!FullName)

 AddAbbreviation.Text = CStr(stateReader!Abbreviation)

Else

 ' ----- No custom state record.

 AddName.Clear()

 AddAbbreviation.Clear()

End If

If (stateReader IsNot Nothing) Then stateReader.Close()

This code uses the OpenReader function from step 5 to obtain a SqlDataReader instance
built from a SQL statement (sqlText) and a connection (linkToDB). If the reader contains
at least one row, the code accesses specific fields in that first row to populate various
internal and onscreen values.

7.	 Run the program, a simple database application that lets you create, modify, and re-
move a single “state” record. On the Add A State tab, enter North Visual Basic in the
New State Name field and add VB in the New Abbreviation field. The SQL statement
that will add the new record to the StateRegion table appears just below the edit fields.
Click Add to create the record.

Dwonloaded from: iDATA.ws

150	 Microsoft ADO.NET 4 Step by Step

8.	 Use the Rename A State tab to make changes to the test record. When you are finished
with the record, use the Delete A State tab to remove the test record.

Summary
This chapter introduced methods for issuing commands to an ADO.NET connected database,
and using those commands to retrieve individual or tabular results. The core of this function-
ality is the SqlClient.SqlCommand class, a wrapper for SQL Server queries. It includes a variety
of methods that process the contained query, optionally returning either a single value or a
set of data rows.

The SqlDataReader class provides the row-scanning functionality for results retrieved as a
data reader. Use the reader’s various Get... methods or the default Item property to retrieve
field values on each scanned row. When finished with a SqlDataReader, always call its Close or
Dispose method.

Dwonloaded from: iDATA.ws

	 Chapter 9  Querying Databases	 151

Chapter 9 Quick Reference
To Do This

Run a SQL query over an ADO.NET connection Create a SqlCommand instance.

Set its CommandText property to the SQL statement.

Set its Connection property to a valid SqlConnection
instance.

Call the command object’s ExecuteNonQuery method.

Call a SQL Server stored procedure that returns a
single static result

Create a SqlCommand instance.

Set its CommandText property to the stored procedure
name, followed by space-delimited arguments if needed.

Set its Connection property to a valid SqlConnection
instance.

Call the command object’s ExecuteScalar method,
capturing the return value.

Retrieve two sets of data rows from a SQL Server
batch query

Create a SqlCommand instance.

Set its CommandText property to the semicolon-delimited
SQL statements.

Set its Connection property to a valid SqlConnection
instance.

Call the command object’s ExecuteReader method,
assigning the return value to a SqlDataReader variable.

Use the reader’s Read method to access rows in the
batch’s first set of rows.

Call the reader’s NextResult method to access additional
results sets.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 153

Chapter 10

Adding Standards to Queries
After completing this chapter, you will be able to:

■■ Understand why parameters are important in queries

■■ Add parameters to standard selection and data update queries

■■ Call stored procedures that include both in and out parameters

In ADO.NET, queries pass to external data sources as strings. These strings include not only
essential command keywords and syntactical elements but also the data values used to limit
and fulfill each query. Building command strings is an art long practiced by developers in
many programming languages, but it’s quite different from .NET’s promise of strongly typed
data management. Why store values as distinct data types at all if you are eventually going
to convert everything to ASCII text?

To push aside these and other deficiencies that stem from inserting all types of data values
into SQL statements, ADO.NET includes the parameter, an object that bridges the gap be-
tween the text-based needs of the external data source’s command processing system and
the intelligent data type system that epitomizes .NET development. This chapter demon-
strates query parameters and their uses in SQL Server database queries.

Note  This chapter focuses on parameters as implemented in the SQL Server provider. Although
the OLE DB and ODBC providers also implement parameters, there are some minor differences
that will be pointed out within the chapter.

The exercises in this chapter all use the same sample project, a tool that uses parameters to re-
trieve and update database values. Although you can run the application after each exercise,
the expected results for the full application might not appear until you complete all exercises in
the chapter.

Developing Parameterized Queries
In the SQL Server provider, parameters appear as the System.Data.SqlClient.SqlParameter
class. By creating relevant parameters and attaching them to SqlCommand instances, ordi-
nary text queries become parameterized queries.

Dwonloaded from: iDATA.ws

154	 Microsoft ADO.NET 4 Step by Step

Note  In the OLE DB provider, the parameter class appears as System.Data.OleDb.
OleDbParameter. The ODBC equivalent is System.Data.Odbc.OdbcParameter. Both of these
classes and the SqlParameter class in the SQL Server provider derive from System.Data.Common.
DbParameter.

Understanding the Need for Parameters
As mentioned in the “Connection String Builders” section on page 124 of Chapter 8,
“Establishing External Connections,” there are certain risks involved in building SQL state-
ments and related string elements. A key risk is the SQL injection attack, in which a user
can inadvertently or deliberately alter the intent of a SQL statement by supplying corrupted
content. Consider the following statement, which modifies the Employee.Salary value for a
specific employee record:

UPDATE Employee SET Salary = XXX WHERE ID = 5;

It works well if the user provides 50000 or a similar number as the value of XXX. But what if
resourceful employee John Doe replaces XXX with the following SQL fragments?

150000 WHERE FirstName = 'John' AND LastName = 'Doe';

 UPDATE Employee SET Salary = 50000

The user-supplied content includes a semicolon, effectively turning one statement into a
batch of two statements. Most programmers design their code to avoid such scenarios, but
this type of situation still manages to show up from time to time. Parameters help reduce
such issues by using typed substitution placeholders instead of unchecked plain-text gaps
in SQL strings. Parameters understand how to properly format their replacement values so
that SQL injection attacks and other mishaps don’t occur.

Parameters solve these problems by making changes to both the SQL statement and the
data destined for that statement. Instead of piecing together workable SQL statements from
a combination of programmer and user-supplied parts, parameterized query statements ex-
ist in a standardized form, free of unknown and unsafe user data. Portions of the statement
that require user input exist as named placeholders, @name elements that get replaced
with the final type-specific data values after they have been transmitted to the database.

Dwonloaded from: iDATA.ws

	 Chapter 10  Adding Standards to Queries	 155

This process provides for a more generic command text, and a logical separation between
the command and its data.

Removing ever-changing data values from SQL statements also increases performance within
SQL Server. Like many advanced relational database systems, SQL Server compiles each state-
ment into an internal format, one that doesn’t require it to constantly parse a text string
to determine its actions. If SQL Server encounters the same SQL statement twice, it doesn’t
need to go through the time-consuming compilation process again. For example, the follow-
ing three SQL statements are different in the compiler’s view:

UPDATE Employee SET Salary = 50000 WHERE ID = 5;

UPDATE Employee SET Salary = 56000 WHERE ID = 12;

UPDATE Employee SET Salary = 52000 WHERE ID = 8;

Parameterized queries replace these three instance-specific versions with a generic version of
the statement, free of the varying data portions. Removing dynamic data values from what
would otherwise be standard SQL command structures allows applications to send a much
more limited number of queries to SQL Server, queries that show up again and again, and
that don’t need to be recompiled every time.

Implementing Standard Queries
The UPDATE statement shown previously modifies the salary for an employee record based
on that record’s primary key.

UPDATE Employee SET Salary = 50000 WHERE ID = 25;

To prepare the statement for parameters, all elements destined for substitution by the
parameter values get replaced with “@” identifiers.

UPDATE Employee SET Salary = @NewSalary WHERE ID = @EmployeeID;

In standard SQL statements (all statements other than stored procedures), the names you
provide are up to you, so being descriptive is best. Each placeholder must begin with the @
sign followed by a unique name. Parameter names are not case-sensitive.

Dwonloaded from: iDATA.ws

156	 Microsoft ADO.NET 4 Step by Step

As with nonparameterized queries, this enhanced statement gets wrapped up in a
SqlCommand object:

C#
string sqlText = @"UPDATE Employee SET Salary = @NewSalary

 WHERE ID = @EmployeeID";

SqlCommand salaryUpdate = new SqlCommand(sqlText, linkToDB);

Visual Basic
Dim sqlText As String =

 "UPDATE Employee SET Salary = @NewSalary WHERE ID = @EmployeeID"

Dim salaryUpdate = New SqlCommand(sqlText, linkToDB)

The SqlCommand class includes a Parameters collection to which you add the specific re-
placement values for each placeholder. You wrap up each parameter in an instance of
SqlParameter, setting its properties as needed, and adding it to the SqlCommand.Parameters
collection. When you execute the command, ADO.NET passes both the placeholder-laden
SQL text and the parameter collection to the database for evaluation.

Each parameter includes the elements you would expect: the parameter name (which must
match a placeholder name in the SQL statement), the data type along with any data type-
specific settings (such as the length of string parameters), the actual data content to be
included in the processed command, and a few other generic settings. To add a parameter to
a command, create a SqlParameter instance and add it to the SqlCommand object.

C#
SqlParameter paramValue = new SqlParameter("@NewSalary", SqlDbType.Money);

paramValue.Value = 50000m;

salaryUpdate.Parameters.Add(paramValue);

paramValue = new SqlParameter("@EmployeeID", SqlDbType.BigInt);

paramValue.Value = 25L;

salaryUpdate.Parameters.Add(paramValue);

Visual Basic
Dim paramValue As New SqlParameter("@NewSalary", SqlDbType.Money)

paramValue.Value = 50000@

salaryUpdate.Parameters.Add(paramValue)

paramValue = New SqlParameter("@EmployeeID", SqlDbType.BigInt)

paramValue.Value = 25&

salaryUpdate.Parameters.Add(paramValue)

Dwonloaded from: iDATA.ws

	 Chapter 10  Adding Standards to Queries	 157

SqlParameter includes lots of constructor options for setting the data type of the passed
data, plus other settings. Or you can go the traditional route and update the object’s indi-
vidual properties directly, including the following:

■■ ParameterName  The name of the parameter; that is, the placeholder. Don’t forget to
include the @ sign at the start of the name.

■■ DbType or SqlDbType  One of the System.Data.SqlDbType enumeration values, which
all parallel the available data types in SQL Server. For example, SqlDbType.VarChar maps
to SQL Server’s varchar column type. Both DbType and SqlDbType refer to the same
property; update either one as needed.

■■ IsNullable  Indicates whether the parameter accepts NULL values.

■■ Precision and Scale  Some of SQL Server’s numeric data types require specific preci-
sion and scale values. Use these properties to configure the data from ADO.NET’s point
of view.

■■ Size  Similar to Precision and Scale, Size is commonly used for text and binary data
types. It affects only the amount of data sent to SQL Server with a query. If your query
sends data back through a parameter (described below), it ignores this Size setting.

■■ Value and SqlValue  The actual value that will replace the placeholder in the SQL
statement. Use Value to work with data defined using the standard .NET data types.
Use the SqlValue property instead to work with data in a format that more closely re-
sembles SQL Server’s data types, and as expressed through the classes in the System.
Data.SqlTypes namespace.

If your data needs are simple, you can let the SqlCommand.Parameters collection define the
data type of your parameters for you. The collection’s AddWithValue method accepts the
parameter name and the intended value and adds a new SqlParameter instance to the com-
mand using the specified settings.

C#
salaryUpdate.Parameters.AddWithValue("@NewSalary", 50000m);

salaryUpdate.Parameters.AddWithValue("@EmployeeID", 25L);

Visual Basic
salaryUpdate.Parameters.AddWithValue("@NewSalary", 50000@)

salaryUpdate.Parameters.AddWithValue("@EmployeeID", 25&)

Once the parameters are all in place, calling one of the command’s Execute methods processes
the command on the database, and returns any results as with nonparameterized queries.

Dwonloaded from: iDATA.ws

158	 Microsoft ADO.NET 4 Step by Step

C#
salaryUpdate.ExecuteNonQuery();

Visual Basic
salaryUpdate.ExecuteNonQuery()

Updating Data with Parameters: C#

1.	 Open the “Chapter 10 CSharp” project from the installed samples folder. The project
includes multiple Windows.Forms classes and a sealed class named General.

2.	 Open the code for the General class. This class centralizes much of the database func-
tionality for the sample application. Locate the GetConnectionString function, a routine
that uses a SqlConnectionStringBuilder to create a valid connection string to the sample
database. It currently includes the following statements:

builder.DataSource = @"(local)\SQLExpress";

builder.InitialCatalog = "StepSample";

builder.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

3.	 Open the code for the RenameCustomer form. This form lets the user modify the
FullName value for a single record in the Customer database table. Locate the ActOK_
Click event handler. This routine does the actual update of the record. Just after the
“Save the new name” comment, add the following code:

sqlText = "UPDATE Customer SET FullName = @NewName WHERE ID = @CustID";

commandWrapper = new SqlCommand(sqlText);

commandWrapper.Parameters.AddWithValue("@NewName", NewName.Text.Trim());

commandWrapper.Parameters.AddWithValue("@CustID", ActiveCustomerID);

try

{

 General.ExecuteSQL(commandWrapper);

}

catch (Exception ex)

{

 MessageBox.Show("Error occurred updating customer name: " +

 ex.Message);

 return;

}

These statements create a SqlCommand object with a SQL statement that includes two
placeholders: @NewName and @CustID. The code then adds two matching parameters
to the command and sends it to the database for processing.

4.	 Run the program. On the Customer Management form, select a customer from the list
of customers and then click Rename Customer. When the Rename Customer form ap-
pears, enter a new value in the New Name field and then click OK. This process updates
the database using the newly added code.

Dwonloaded from: iDATA.ws

	 Chapter 10  Adding Standards to Queries	 159

Updating Data with Parameters: Visual Basic

1.	 Open the “Chapter 10 VB” project from the installed samples folder. The project in-
cludes multiple Windows.Forms classes and a module named General.

2.	 Open the code for the General module. This file centralizes much of the database func-
tionality for the sample application. Locate the GetConnectionString function, a routine
that uses a SqlConnectionStringBuilder to create a valid connection string to the sample
database. It currently includes the following statements:

builder.DataSource = "(local)\SQLExpress"

builder.InitialCatalog = "StepSample"

builder.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

3.	 Open the code for the RenameCustomer form. This form lets the user modify the
FullName value for a single record in the Customer database table. Locate the ActOK_
Click event handler. This routine does the actual update of the record. Just after the
“Save the new name” comment, add the following code:

sqlText = "UPDATE Customer SET FullName = @NewName WHERE ID = @CustID"

commandWrapper = New SqlCommand(sqlText)

commandWrapper.Parameters.AddWithValue("@NewName", NewName.Text.Trim)

commandWrapper.Parameters.AddWithValue("@CustID", ActiveCustomerID)

Try

 ExecuteSQL(commandWrapper)

Catch ex As Exception

 MessageBox.Show("Error occurred updating customer name: " &

 ex.Message)

 Return

End Try

These statements create a SqlCommand object with a SQL statement that includes two
placeholders: @NewName and @CustID. The code then adds two matching parameters
to the command and sends it to the database for processing.

Dwonloaded from: iDATA.ws

160	 Microsoft ADO.NET 4 Step by Step

4.	 Run the program. On the Customer Management form, select a customer from the list
of customers and then click Rename Customer. When the Rename Customer form ap-
pears, enter a new value in the New Name field and then click OK. This process updates
the database using the newly added code.

Using Parameters with Other Providers
The OLE DB and ODBC providers also include support for parameterized queries. However,
the definitions of both the command text and the associated parameters vary somewhat
from the SQL Server implementation. Instead of including placeholder names prefixed with
@ signs, each replaceable element appears as a nameless question mark (?) in the command
text. Parameters added to the associated OleDbCommand or OdbcCommand instance must
be added in the order indicated by the placeholders. Although the command text does not
include parameter names, each added OleDbParameter or OdbcParameter instance should
still include @-prefixed names.

C#
string sqlText = @"UPDATE Employee SET Salary = ? WHERE ID = ?";

SqlCommand salaryUpdate = new SqlCommand(sqlText, linkToDB);

salaryUpdate.Parameters.AddWithValue("@NewSalary", 50000m);

salaryUpdate.Parameters.AddWithValue("@EmployeeID", 25L);

Visual Basic
Dim sqlText As String = "UPDATE Employee SET Salary = ? WHERE ID = ?"

Dim salaryUpdate = New SqlCommand(sqlText, linkToDB)

salaryUpdate.Parameters.AddWithValue("@NewSalary", 50000@)

salaryUpdate.Parameters.AddWithValue("@EmployeeID", 25&)

Dwonloaded from: iDATA.ws

	 Chapter 10  Adding Standards to Queries	 161

Using Parameters in Stored Procedures
Calls to stored procedures with parameterized queries vary only slightly from those to
standard statements. There are four main differences you need to consider when access-
ing stored procedures. The first is simple: Make sure you set the SqlCommand object’s
CommandType property to CommandType.StoredProcedure.

The second difference is equally simple: The command object’s CommandText property
should include only the name of the stored procedure. Exclude any arguments or query
elements.

The third difference is in how you name the parameters. As with standard queries, each
parameter includes an @-prefixed name and a data type, plus other optional settings you
might want to configure. Unlike standard queries, you have no flexibility in how you define
the parameter names. They must match precisely the parameter names used when the stored
procedure was defined within SQL Server.

The last difference has to do with the direction of a parameter. The SqlParameter class in-
cludes a Direction property that tells ADO.NET which way data flows from your query’s data
value to the stored procedure. There are four available System.Data.ParameterDirection
options:

■■ ParameterDirection.Input  The parameter value is considered input, flowing from
the application to the stored procedure. This is the default for all parameters.

■■ ParameterDirection.Output  The parameter is used to retrieve data back from the
stored procedure, much like a ByRef (Visual Basic) or out (C#) function argument.

■■ ParameterDirection.InputOutput  A combination of the input and output directions.
Your application provides an input value that can be modified and returned by the
stored procedure.

■■ ParameterDirection.ReturnValue  For stored procedures or other database features
that sport a return value, this parameter type lets you collect that value.

Parameters added to standard query commands also support the Direction property, but in
most cases the default of ParameterDirection.Input is the right choice.

The following SQL Server stored procedure includes an input value (@locationName), an out-
put value (@newID), and a return value (@@ROWCOUNT):

CREATE PROCEDURE AddLocation (@locationName varchar(50), @newID bigint OUT)

AS

BEGIN

 INSERT INTO BuildingLocation (Name) VALUES (@locationName);

 SET @newID = SCOPE_IDENTITY();

 RETURN @@ROWCOUNT;

END

Dwonloaded from: iDATA.ws

162	 Microsoft ADO.NET 4 Step by Step

The following code calls the AddLocation stored procedure, passing it the name of a new lo-
cation and returning the new ID value:

C#
// ----- Use a stored procedure to add a new building location.

string sqlText = "dbo.AddLocation";

SqlCommand locationCommand = new SqlCommand(sqlText, linkToDB);

locationCommand.CommandType = CommandType.StoredProcedure;

// ----- Add the input parameter: locationName.

SqlParameter workParameter = locationCommand.Parameters.AddWithValue(

 "@locationName", LocationNameField.Text.Trim());

workParameter.Size = 50;

// ----- Add the output parameter: newID.

workParameter = locationCommand.Parameters.Add("@newID", SqlDbType.BigInt);

workParameter.Direction = ParameterDirection.Output;

// ----- Add the return value parameter. The name is not important.

workParameter = locationCommand.Parameters.Add("@returnValue", SqlDbType.Int);

workParameter.Direction = ParameterDirection.ReturnValue;

// ----- Add the location.

locationCommand.ExecuteNonQuery();

// ----- Access returned values as:

// locationCommand.Parameters["@newID"].Value

// locationCommand.Parameters["@returnValue"].Value

Visual Basic
' ----- Use a stored procedure to add a new building location.

Dim sqlText As String = "dbo.AddLocation"

Dim locationCommand As New SqlCommand(sqlText, linkToDB)

locationCommand.CommandType = CommandType.StoredProcedure

' ----- Add the input parameter: locationName.

Dim workParameter As SqlParameter =

 locationCommand.Parameters.AddWithValue(

 "@locationName", LocationNameField.Text.Trim)

workParameter.Size = 50

Dwonloaded from: iDATA.ws

	 Chapter 10  Adding Standards to Queries	 163

' ----- Add the output parameter: newID.

workParameter = locationCommand.Parameters.Add("@newID", SqlDbType.BigInt)

workParameter.Direction = ParameterDirection.Output

' ----- Add the return value parameter. The name is not important.

workParameter = locationCommand.Parameters.Add("@returnValue", SqlDbType.Int)

workParameter.Direction = ParameterDirection.ReturnValue

' ----- Add the location.

locationCommand.ExecuteNonQuery()

' ----- Access returned values as:

' locationCommand.Parameters("@newID").Value

' locationCommand.Parameters("@returnValue").Value

The return value will be 1 if the code was successful, or 0 if the insert failed (along with a
thrown error).

Calling a Stored Procedure with Parameters: C#

Note  This exercise uses the “Chapter 10 CSharp” sample project and continues from where the
previous exercise in this chapter left off.

1.	 Open the code for the ViewOrders form. This form processes data from a stored proce-
dure that returns two distinct sets of records. The stored procedure GetCustomerOrders
has the following definition:

CREATE PROCEDURE dbo.GetCustomerOrders(@customerID bigint) AS

BEGIN

 SELECT * FROM Customer WHERE ID = @customerID;

 SELECT * FROM OrderEntry WHERE Customer = @customerID

 ORDER BY OrderDate;

END;

2.	 Locate the ViewOrders_Load event handler. This routine calls the stored procedure and
processes the returned records. In the try block, just after the “Process the query...”
comment, add the following statements:

sqlText = "dbo.GetCustomerOrders";

commandWrapper = new SqlCommand(sqlText, linkToDB);

commandWrapper.CommandType = CommandType.StoredProcedure;

commandWrapper.Parameters.AddWithValue("@customerID", ActiveCustomerID);

customerReader = commandWrapper.ExecuteReader();

Dwonloaded from: iDATA.ws

164	 Microsoft ADO.NET 4 Step by Step

These lines add the @customerID parameter to the stored procedure command. The
@customerID parameter name must match the @customerID parameter as defined in
the original stored procedure.

3.	 Just after the “First read the customer record” comment, add the following code:

customerReader.Read();

CustomerName.Text = (string)customerReader["FullName"];

AnnualFee.Text = string.Format("{0:c}",

 (decimal)customerReader["AnnualFee"]);

These statements process the first set of results from the stored procedure, the SELECT
statement for the Customer table.

4.	 Just after the “Read the next set, which contains the orders” comment, add the follow-
ing code:

customerReader.NextResult();

while (customerReader.Read())

{

 oneOrder = new OrderInfo();

 oneOrder.ID = (long)customerReader["ID"];

 oneOrder.OrderDate = (DateTime)customerReader["OrderDate"];

 oneOrder.OrderTotal = (decimal)customerReader["Total"];

 AllOrders.Items.Add(oneOrder);

}

This code accesses the records in the second set of results, the SELECT statement for the
OrderEntry table, via the NextResult method call.

5.	 Run the program. On the Customer Management form, select a customer from the list
of customers and then click View Orders. When the View Orders form appears, it in-
cludes content from both SELECT statements as returned by the stored procedure.

Dwonloaded from: iDATA.ws

	 Chapter 10  Adding Standards to Queries	 165

Calling a Stored Procedure with Parameters: Visual Basic

Note  This exercise uses the “Chapter 10 VB” sample project and continues from where the pre-
vious exercise in this chapter left off.

1.	 Open the code for the ViewOrders form. This form processes data from a stored proce-
dure that returns two distinct sets of records. The stored procedure GetCustomerOrders
has the following definition:

CREATE PROCEDURE dbo.GetCustomerOrders(@customerID bigint) AS

BEGIN

 SELECT * FROM Customer WHERE ID = @customerID;

 SELECT * FROM OrderEntry WHERE Customer = @customerID

 ORDER BY OrderDate;

END;

2.	 Locate the ViewOrders_Load event handler. This routine calls the stored procedure and
processes the returned records. In the Try block, just after the “Process the query...”
comment, add the following statements:

sqlText = "dbo.GetCustomerOrders"

commandWrapper = New SqlCommand(sqlText, linkToDB)

commandWrapper.CommandType = CommandType.StoredProcedure

commandWrapper.Parameters.AddWithValue("@customerID", ActiveCustomerID)

customerReader = commandWrapper.ExecuteReader()

These lines add the @customerID parameter to the stored procedure command. The
@customerID parameter name must match the @customerID parameter as defined in
the original stored procedure.

3.	 Just after the “First read the customer record” comment, add the following code:

customerReader.Read()

CustomerName.Text = CStr(customerReader!FullName)

AnnualFee.Text = Format(CDec(customerReader!AnnualFee), "Currency")

These statements process the first set of results from the stored procedure, the SELECT
statement for the Customer table.

Dwonloaded from: iDATA.ws

166	 Microsoft ADO.NET 4 Step by Step

4.	 Just after the “Read the next set, which contains the orders” comment, add the follow-
ing code:

customerReader.NextResult()

Do While (customerReader.Read = True)

 oneOrder = New OrderInfo

 oneOrder.ID = CLng(customerReader!ID)

 oneOrder.OrderDate = CDate(customerReader!OrderDate)

 oneOrder.OrderTotal = CDec(customerReader!Total)

 AllOrders.Items.Add(oneOrder)

Loop

This code accesses the records in the second set of results, the SELECT statement for the
OrderEntry table, via the NextResult method call.

5.	 Run the program. On the Customer Management form, select a customer from the list
of customers and then click View Orders. When the View Orders form appears, it in-
cludes content from both SELECT statements returned by the stored procedure.

Summary
This chapter discussed parameters, which are data value objects that help ensure the accuracy
and safety of the data being sent to and returned from external data sources. Parameterized
queries use special SQL statements that include placeholders for each parameter. Each
SqlParameter instance defines the name of the parameter, its data type, and its value.

Parameters work with either standard SQL commands or with stored procedures. When using
them with stored procedures, you can create both input and output stored procedures, sup-
porting two-way communications with these custom database functions.

Dwonloaded from: iDATA.ws

	 Chapter 10  Adding Standards to Queries	 167

Chapter 10 Quick Reference
To Do This

Create a parameterized query for SQL Server Create a SQL query string that includes @-prefixed
placeholders.

Create a SqlCommand instance.

Assign the SQL query to the SqlCommand object’s
CommandText property.

Create SqlParameter objects, one for each placeholder
in the query, and add them to the command object’s
Parameters collection.

Set the SqlCommand.Connection property.

Call one of the command object’s Execute methods.

Create a parameterized query for an OLE DB
data source

Create a SQL query string that includes question marks
(?) for placeholders.

Create an OleDbCommand instance.

Assign the SQL query to the OleDbCommand object’s
CommandText property.

Create OleDbParameter objects, one for each placehold-
er in the query, and add them to the command object’s
Parameters collection.

Set the OleDbCommand.Connection property.

Call one of the command object’s Execute methods.

Create an “out” parameter for a stored procedure Create a SqlParameter instance, setting its fields as
needed.

Set the SqlParameter.Direction property to
ParameterDirection.Output.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 169

Chapter 11

Making External Data Available
Locally

After completing this chapter, you will be able to:

■■ Load external data into a DataTable or DataSet

■■ Return updated DataSet content to an external source

■■ Use SQL statements and stored procedures to manage DataSet content

The disconnected data experience provided by ADO.NET revolves around the DataSet class
and its supporting objects. The last few chapters have introduced ways to access external
data with ADO.NET, but none of those features took advantage of the disconnected aspects
of the framework. Still, part of the promise of ADO.NET is its ability to manage external data
in a disconnected and table-focused way.

This chapter introduces the DataAdapter class—the class that fulfills that core data promise.
The DataAdapter bridges the simple data connectedness exhibited by the DataReader and
joins it with the advanced data management features found in the DataSet. By creating a few
simple objects and crafting a minimum number of SQL statements, you can safely give your
DataSet the tools needed to keep it and its associated external data source in sync.

Understanding Data Adapters
Data adapters link your external database tables and your local DataSet-managed tables by
issuing SQL statements. Anytime you need to get data from the database into a DataSet, the
adapter must perform a “Fill” operation, issuing a SELECT statement and moving the results
into local DataTable instances. You can then update the values in those DataTable instances.
When it’s time to return changes stored in the DataSet to the database, the data adapter’s
“Update” operation sends the relevant INSERT, UPDATE, and DELETE statements to the da-
tabase to bring the external data store into line with local changes. Figure 11-1 shows these
components working on a single database table, Customer.

Dwonloaded from: iDATA.ws

170	 Microsoft ADO.NET 4 Step by Step

Database ADO.NET

Customer DataAdapter

SELECT

Fill
Update

INSERT

UPDATE

DELETE

DataReader Original Data

User Updates

Changed Data

M
ap

p
in

g

Command
Objects

DataSet / DataTable
ID

FullName
Address
Phone
…

Figure 11-1  The data adapter in action.

As Figure 11-1 makes clear, the DataAdapter manages a lot of complex activity between
the database and a DataSet or DataTable. It is no exaggeration to say that the DataAdapter
is possibly the most complex part of ADO.NET, especially when you take advantage of all
the flexibility it provides. All the classes introduced so far in this book—from DataSet to
SqlParameter, from DataRow to DataReader—come into play when creating instances of a
data adapter class.

The System.Data.SqlClient.SqlDataAdapter class exposes the SQL Server provider implemen-
tation of the adapter. You can also find OLE DB and ODBC variations of the data adapter in
the classes System.Data.OleDb.OleDbDataAdapter and System.Data.Odbc.OdbcDataAdapter,
respectively. All these classes derive from System.Data.Common.DbDataAdapter, which in
turn derives from System.Data.Common.DataAdapter.

Note  Although the information in this chapter applies generally to all data adapter implemen-
tations, this chapter’s code samples and examples focus specifically on the SQL Server provider
version.

SqlDataAdapter provides three general support features in your application:

■■ Record retrieval  Populating a DataTable with database records represents the mini-
mal functionality of the data adapter. Internally, the SqlDataAdapter uses a DataReader
instance to retrieve records out of the database, so you must provide it with a SELECT
statement and a connection string. Stored procedures that return data rows also work;
the adapter will correctly process multiple record sets returned by the query.

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 171

■■ Record updating  Moving modified data back to external storage is a little more in-
volved. Although the “fill” from the database requires only a basic SELECT statement,
the “update” operation requires distinct INSERT, UPDATE, and DELETE statements to
complete its work. You can write these by hand or use a “command builder” to auto-
matically generate these statements based on the original SELECT query.

■■ Table and column name mapping  The naming needs of your database tables and
columns may not always mesh with the needs of your application. Each data adapter
includes a mapping layer that automatically renames tables and columns as needed
while data is passed between local and remote storage areas.

The remainder of this chapter elaborates on these three data adapter features.

Moving Data from Source to Memory
The SqlDataAdapter.Fill method requests data from SQL Server using a valid SELECT state-
ment or a data-selection stored procedure. After it accesses the data through an internal
SqlDataReader, it moves the records into the DataTable or DataSet of your choice.

Moving Data into a DataTable
To move data from a database table into a DataTable instance, set up a new SqlDataAdapter
object and call its Fill method, passing it the instance of the DataTable.

C#
DataTable targetTable = new DataTable();

SqlDataAdapter workAdapter = new SqlDataAdapter(

 "SELECT * FROM Customer ORDER BY LastName", connectionString);

workAdapter.Fill(targetTable);

Visual Basic
Dim targetTable As New DataTable

Dim workAdapter As New SqlDataAdapter(

 "SELECT * FROM Customer ORDER BY LastName", connectionString)

workAdapter.Fill(targetTable)

The data adapter uses the constructor arguments to create a new SqlCommand instance. It
then assigns this instance to its SelectCommand property, a property that must be set before
the SqlDataAdapter can do its data retrieval work.

Dwonloaded from: iDATA.ws

172	 Microsoft ADO.NET 4 Step by Step

In addition to the two-string constructor variation shown previously, overloaded versions
let you pass in a configured SqlCommand instance, pass in a SQL string and SqlConnection
pair, or just leave off the arguments altogether. The SqlDataAdapter class has no connec-
tion string or connection properties, so if you don’t provide them with the constructor, you
need to include them with a SqlCommand instance that you assign to the SqlDataAdapter.
SelectCommand property directly, as shown here:

C#
DataTable targetTable = new DataTable();

using (SqlConnection linkToDB = new SqlConnection(connectionString))

{

 SqlDataAdapter workAdapter = new SqlDataAdapter();

 workAdapter.SelectCommand = new SqlCommand(

 "SELECT * FROM Customer ORDER BY LastName", linkToDB);

 workAdapter.Fill(targetTable);

}

Visual Basic
Dim targetTable As New DataTable

Using linkToDB As New SqlConnection(builder.ConnectionString)

 Dim workAdapter As New SqlDataAdapter

 workAdapter.SelectCommand = New SqlCommand(

 "SELECT * FROM Customer ORDER BY LastName", linkToDB)

 workAdapter.Fill(targetTable)

End Using

Neither of the preceding examples opened the connection explicitly. If the command’s con-
nection isn’t open yet, the Fill method opens it for you—and closes it when the operation
completes.

As the data adapter reads the incoming data, it examines the schema of that data and builds
the columns and properties of the DataTable instance as needed. If the DataTable already has
matching columns (names and data types), they are used as is. Any new columns are created
alongside the preexisting columns.

Note  You can alter this default behavior, as described in this chapter’s “Table and Column
Mapping” section on page 186.

The DataTable.TableName property will be set to “Table,” even if you selected records from
a specific table with a different name. To alter the target table’s name, modify its TableName
property after the data load or use the table mapping features discussed later in this chapter.

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 173

Because the SqlDataAdapter.SelectCommand property is a standard SqlCommand instance,
you can use any of that command object’s features to access the remote data. This includes
adding one or more SqlParameter objects for @-prefixed placeholders embedded in the SQL
statement. Configuring the SqlCommand instance as a stored procedure with associated pa-
rameters also works.

C#
// ----- Call the GetCustomerOrders stored procedure with a

// single 'customer ID' argument.

string sqlText = "dbo.GetOrdersForCustomer";

SqlCommand commandWrapper = new SqlCommand(sqlText, linkToDB);

commandWrapper.CommandType = CommandType.StoredProcedure;

commandWrapper.Parameters.AddWithValue("@customerID", ActiveCustomerID);

// ----- Retrieve the data.

SqlDataAdapter workAdapter = new SqlDataAdapter(commandWrapper);

DataTable orders = new DataTable();

workAdapter.Fill(orders);

Visual Basic
' ----- Call the GetCustomerOrders stored procedure with a

' single 'customer ID' argument.

Dim sqlText As String = "dbo.GetOrdersForCustomer"

Dim commandWrapper As New SqlCommand(sqlText, linkToDB)

commandWrapper.CommandType = CommandType.StoredProcedure

commandWrapper.Parameters.AddWithValue("@customerID", ActiveCustomerID)

' ----- Retrieve the data.

Dim workAdapter As New SqlDataAdapter(commandWrapper)

Dim orders As New DataTable

workAdapter.Fill(orders)

Moving Data into a DataSet
Moving external data into a waiting DataSet instance is as easy as filling a DataTable. To im-
port the data into a DataSet, call the SqlDataAdapter.Fill method, passing it an instance of
DataSet.

Dwonloaded from: iDATA.ws

174	 Microsoft ADO.NET 4 Step by Step

C#
DataSet targetSet = new DataSet();

SqlDataAdapter workAdapter = new SqlDataAdapter(

 "SELECT * FROM Customer ORDER BY LastName", connectionString);

workAdapter.Fill(targetSet);

Visual Basic
Dim targetSet As New DataSet

Dim workAdapter As New SqlDataAdapter(

 "SELECT * FROM Customer ORDER BY LastName", connectionString)

workAdapter.Fill(targetSet)

As with a DataTable load, the DataSet version of Fill will auto-build the schema for you. If
you want to preconfigure the DataSet schema, you can build its table by hand or call the
SqlDataAdapter.FillSchema method just before you call the Fill method.

C#
// ----- First build the schema using the structure defined

// in the data source.

workAdapter.FillSchema(targetSet, SchemaType.Source);

// ----- Then load the data.

workAdapter.Fill(targetSet);

Visual Basic
' ----- First build the schema using the structure defined

' in the data source.

workAdapter.FillSchema(targetSet, SchemaType.Source)

' ----- Then load the data.

workAdapter.Fill(targetSet)

Note  Passing SchemaType.Mapped as the second argument to FillSchema enables a “mapped”
schema build. Schema mapping is discussed on page 186 in the “Table and Column Mapping”
section of this chapter.

Fill names the first created table in the data set “Table,” as is done when filling a DataTable
directly. To alter this default name, specify the new name as a second argument to the Fill
method.

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 175

C#
workAdapter.Fill(targetSet, "Customer");

Visual Basic
workAdapter.Fill(targetSet, "Customer")

The Fill(DataSet) method will import multiple tables if its SelectCommand includes a batch
of SELECT statements or a stored procedure that returns multiple result sets. The first table
created is still named “Table” (by default). Subsequent tables are named numerically, with the
second table given the name “Table1,” the third table “Table2,” and so on. Duplicate column
names found in any table are treated the same way. The first duplicate column is given a “1”
suffix, the second has a “2” suffix, and so on.

Note  When retrieving multiple tables of data, a call to SqlDataAdapter.FillSchema examines only
the schema of the first result set. The schemas of subsequent sets can be imported only as a side
effect of the Fill method.

Moving Data from Memory to Source
After imported data has been modified within a DataTable (with or without a surrounding
DataSet), the same SqlDataAdapter that brought the data in can move the changes back out
to the source. Setting up the adapter to accomplish that feat is a little more involved than
just crafting a SELECT statement but still not overwhelmingly difficult. Configuring the data
adapter for the return data trip requires setting up the appropriate data manipulation state-
ments and calling the SqlDataAdapter.Update method.

Configuring the Update Commands
The SqlDataAdapter.SelectCommand property manages the movement of data only from
the external source to the local DataSet or DataTable. To move data in the other direction or
delete data, you need to set up three distinct properties: InsertCommand, UpdateCommand,
and DeleteCommand. Like SelectCommand, these three properties are SqlCommand instances,
each containing a SQL statement (or stored procedure), a SqlConnection reference, and
parameters. Although parameters are optional in the SelectCommand instance, they are an
essential part of the three update commands.

The following code sets up selection and data modification properties for a simple table,
UnitOfMeasure, which includes an identity field, ID; and two text fields, ShortName and
FullName:

Dwonloaded from: iDATA.ws

176	 Microsoft ADO.NET 4 Step by Step

C#
// ----- Build the selection query.

SqlDataAdapter unitAdapter = new SqlDataAdapter();

SqlCommand unitCommand = new SqlCommand(

 "SELECT * FROM UnitOfMeasure", linkToDB);

unitAdapter.SelectCommand = unitCommand;

// ----- Build the insertion query.

unitCommand = new SqlCommand(

 @"INSERT INTO UnitOfMeasure (ShortName, FullName)

 VALUES (@ShortName, @FullName); SET @ID = @@IDENTITY;", linkToDB);

unitCommand.Parameters.Add("@ShortName", SqlDbType.VarChar, 15, "ShortName");

unitCommand.Parameters.Add("@FullName", SqlDbType.VarChar, 50, "FullName");

SqlParameter param =

 unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID");

param.Direction = ParameterDirection.Output;

unitAdapter.InsertCommand = unitCommand;

// ----- Build the revision query.

unitCommand = new SqlCommand(

 @"UPDATE UnitOfMeasure SET ShortName = @ShortName,

 FullName = @FullName WHERE ID = @ID", linkToDB);

unitCommand.Parameters.Add("@ShortName", SqlDbType.VarChar, 15, "ShortName");

unitCommand.Parameters.Add("@FullName", SqlDbType.VarChar, 50, "FullName");

param = unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID");

param.SourceVersion = DataRowVersion.Original;

unitAdapter.UpdateCommand = unitCommand;

// ----- Build the deletion query.

unitCommand = new SqlCommand(

 "DELETE FROM UnitOfMeasure WHERE ID = @ID", linkToDB);

param = unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID");

param.SourceVersion = DataRowVersion.Original;

unitAdapter.DeleteCommand = unitCommand;

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 177

Visual Basic
' ----- Build the selection query.

Dim unitAdapter As New SqlDataAdapter

Dim unitCommand As New SqlCommand(

 "SELECT * FROM UnitOfMeasure", linkToDB)

unitAdapter.SelectCommand = unitCommand

' ----- Build the insertion query.

unitCommand = New SqlCommand(

 "INSERT INTO UnitOfMeasure (ShortName, FullName) " &

 "VALUES (@ShortName, @FullName); SET @ID = @@IDENTITY;", linkToDB)

unitCommand.Parameters.Add("@ShortName", SqlDbType.VarChar, 15, "ShortName")

unitCommand.Parameters.Add("@FullName", SqlDbType.VarChar, 50, "FullName")

With unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID")

 .Direction = ParameterDirection.Output

End With

unitAdapter.InsertCommand = unitCommand

' ----- Build the revision query.

unitCommand = New SqlCommand(

 "UPDATE UnitOfMeasure SET ShortName = @ShortName, " &

 "FullName = @FullName WHERE ID = @ID", linkToDB)

unitCommand.Parameters.Add("@ShortName", SqlDbType.VarChar, 15, "ShortName")

unitCommand.Parameters.Add("@FullName", SqlDbType.VarChar, 50, "FullName")

With unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID")

 .SourceVersion = DataRowVersion.Original

End With

unitAdapter.UpdateCommand = unitCommand

' ----- Build the deletion query.

unitCommand = New SqlCommand(

 "DELETE FROM UnitOfMeasure WHERE ID = @ID", linkToDB)

With unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID")

 .SourceVersion = DataRowVersion.Original

End With

unitAdapter.DeleteCommand = unitCommand

Dwonloaded from: iDATA.ws

178	 Microsoft ADO.NET 4 Step by Step

This code is more complex than the earlier retrieval code, which makes sense given its in-
creased responsibilities. Besides the increase in the quantity of code, there are three main
enhancements that make this code different from the retrieval-only use of the data adapter.

■■ Parameter column designation  You might have noticed a final column-name argu-
ment added to each of the SqlParameter instances created for use with the @-prefixed
placeholders. For example, in the insertion portion of the Visual Basic sample code, the
@ShortName placeholder uses this parameter definition.

unitCommand.Parameters.Add("@ShortName", SqlDbType.VarChar, 15, "ShortName")

The ending “ShortName” argument indicates the name of the column as referenced in
an associated DataTable. This allows the three data update commands to associate the
parameter with specific columns in the local DataTable version of the content. ADO.NET
needs to know this to make data updates at the source possible.

■■ Key retrieval on insertion  In the example code shown previously, the SQL statement
for the InsertCommand portion of the data adapter is actually a two-statement batch.

INSERT INTO UnitOfMeasure (ShortName, FullName)

 VALUES (@ShortName, @FullName);

SET @ID = @@IDENTITY;

The first statement performs the insert of a new record; the second statement retrieves
the primary key of the new record, a column tied to a SQL Server IDENTITY constraint.
The goal is to retrieve the new record identifier so that the local DataTable copy of the
record can be properly refreshed with this ID. The associated SqlParameter instance for
the @ID placeholder has its Direction property set to Output, as shown in the following
C# code line:

param.Direction = ParameterDirection.Output;

As long as the parameter is configured to retrieve the key value, the data adapter will
correctly propagate the new ID value to the DataTable record. If you plan to update the
data source only once and then immediately destroy the associated DataTable, retriev-
ing the key value is not strictly required. But if there is any chance that your code will
allow further update and delete operations on the newly inserted record, you will need
that ID.

■■ Use of original image on update and delete  The SQL statement for the
DeleteCommand portion of the code references the record ID as a parameter.

DELETE FROM UnitOfMeasure WHERE ID = @ID

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 179

The code adds a SqlParameter instance for the @ID placeholder, shown here as Visual
Basic code:

unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID")

The problem is that by the time the update occurs, the “current” view of the record
in the DataTable has already been deleted. There is no current record from which
the adapter can obtain the ID column value. To locate the ID, the code must tell the
adapter to access the “original” version of the deleted record, using the ID as it existed
when the table was imported or since the last AcceptChanges method call. Setting the
SqlParameter.SourceVersion property to DataRowVersion.Original provides that instruc-
tion to the SqlDataAdapter, as shown in this Visual Basic code:

With unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID")

 .SourceVersion = DataRowVersion.Original

End With

The UpdateCommand portion includes similar code for cases where the identifying
fields may have been modified in the DataTable.

The code shown previously defines the actions the data adapter will perform to move modi-
fied data from the local DataSet or DataTable to the external data store. Note that instead
of specific SQL statements, you can define some or all of the four SqlCommand objects
tied to the SqlDataAdapter using parameterized stored procedures. Whether you use SQL
statements or SQL Server stored procedures to modify the external data is up to you. The
SqlDataAdapter will work as long as the statements and the linked SqlParameter objects
match up correctly.

Performing the Update
With the data modification statements in place, after you have updated records in the local
DataTable copy of your SqlDataAdapter-linked content, you simply call the adapter’s Update
method to move those changes into the external database. You must identify which local
source the Update method is to use for the update, which can be either a DataSet (which
updates all tables included in that set), a DataTable, or an array of DataRow objects. This lets
you manage the granularity of the data you want to send back to external storage.

C#
workAdapter.Update(localTable);

Visual Basic
workAdapter.Update(localTable)

Dwonloaded from: iDATA.ws

180	 Microsoft ADO.NET 4 Step by Step

The Update method examines each row in the specified DataSet, DataTable, or array of
DataRow objects, deciding which rows require an INSERT, UPDATE, or DELETE action; or no
action at all. For each row that needs updating, the adapter raises its own OnRowUpdating
event just before issuing the SQL command; then raises the related OnRowUpdated event
after the row has been changed in the database. These events give you an opportunity
to monitor each row as update processing occurs, or even skip or modify the update plan
for specific rows. For instance, in the OnRowUpdating event handler, the event argument
passed into the handler exposes a Status property. Setting this property to UpdateStatus.
SkipCurrentRow abandons the update for a given row.

Normally, any errors that occur during the update process cause an exception to be thrown.
You can tell the adapter to suppress such exceptions by setting the SqlDataAdapter.
ContinueUpdateOnError property to True. When doing this, be sure to monitor the
OnRowUpdated event to manually handle any errors reported by the database.

Generating Update Commands Automatically
Normally, you will provide each of the four selection and data modification commands to
the SqlDataAdapter. However, there may be instances, such as when the selection command
is generated by an automated process, where supplying the INSERT, UPDATE, and DELETE
commands may be difficult or impossible. For such situations, ADO.NET includes a command
builder, a provider-specific class that will write the data modification commands on your
behalf.

The command builder for SQL Server is located at System.Data.SqlClient.SqlCommandBuilder.
To use it, create your data adapter, providing at least the SelectCommand. Then create a new
instance of SqlCommandBuilder, passing the data adapter to it.

C#
SqlDataAdapter workAdapter = new SqlDataAdapter(

 "SELECT * FROM Customer ORDER BY LastName", connectionString);

SqlCommandBuilder customerBuilder = new SqlCommandBuilder(workAdapter);

Visual Basic
Dim workAdapter As New SqlDataAdapter(

 "SELECT * FROM Customer ORDER BY LastName", connectionString)

Dim customerBuilder As New SqlCommandBuilder(workAdapter)

The builder generates the appropriate INSERT, UPDATE, and DELETE statements to parallel
the content of the SELECT statement. It does this by running the SELECT query and examin-
ing the schema of the records that come back from the data source. (This occurs in addition
to running the query during the Fill operation.) If your SELECT query takes a long time to run,
this may not be the most efficient way of creating the data modification statements.

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 181

After you associate the builder with a SqlDataAdapter, if you examine the adapter,
you’ll see no new SqlCommand instances for the InsertCommand, UpdateCommand, or
DeleteCommand properties. Instead, SqlCommandBuilder monitors the update phase of the
adapter, and volunteers to hand-craft data modification statements as needed for each row.

There are a few limitations when using command builders:

■■ SqlCommandBuilder can be used only with single-table queries. You should not use it
with joined-table queries.

■■ The schema of the selected records must include at least one primary key or unique-
value column. Tables defined without primary keys or unique columns will not work
with command builders.

■■ If for any reason you modify the SelectCommand associated with the data adapter,
you must call the SqlCommandBuilder.RefreshSchema method to adjust the generated
queries.

■■ The command builder will generate commands only for those actions that do not al-
ready have defined actions in the SqlDataAdapter. For example, if your adapter defines
both a SelectCommand and an InsertCommand but not the other two commands, the
builder will manage only UpdateCommand and DeleteCommand processing.

■■ The command builder doesn’t work well with external tables or columns that have non-
standard names. If your field names include space characters, you will need to craft the
update statements yourself.

Syncing Data with a SqlDataAdapter : C#

1.	 Open the “Chapter 11 CSharp” project from the installed samples folder. The project
includes a Windows.Forms class named UnitEditor, a simple database table editor.

2.	 Open the source code view for the UnitEditor form. Locate the GetConnectionString
function, a routine that uses a SqlConnectionStringBuilder to create a valid connection
string to the sample database. It currently includes the following statements:

builder.DataSource = @"(local)\SQLExpress";

builder.InitialCatalog = "StepSample";

builder.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

3.	 Locate the UnitEditor_Load event handler. This routine configures the main
SqlDataAdapter used by the program to edit the UnitOfMeasure table from the sam-
ple database. Just after the “Build the selection query” comment, add the following
statements:

unitCommand = new SqlCommand(

 "SELECT * FROM UnitOfMeasure ORDER BY ID", linkToDB);

UnitAdapter.SelectCommand = unitCommand;

Dwonloaded from: iDATA.ws

182	 Microsoft ADO.NET 4 Step by Step

This code adds the required SELECT command to the adapter, extracting records (and
indirectly, the schema) from the UnitOfMeasure table.

4.	 Just after the “Build the insertion query” comment, add the following code:

unitCommand = new SqlCommand(

 @"INSERT INTO UnitOfMeasure (ShortName, FullName)

 VALUES (@ShortName, @FullName); SET @ID = @@IDENTITY;", linkToDB);

unitCommand.Parameters.Add(

 "@ShortName", SqlDbType.VarChar, 15, "ShortName");

unitCommand.Parameters.Add(

 "@FullName", SqlDbType.VarChar, 50, "FullName");

SqlParameter param = unitCommand.Parameters.Add(

 "@ID", SqlDbType.BigInt, 0, "ID");

param.Direction = ParameterDirection.Output;

UnitAdapter.InsertCommand = unitCommand;

This block adds the INSERT portion of the query set. The three parameters transfer the
table content, with two parameters (@ShortName and @FullName) included for data
returning to the database, and the third parameter (@ID) coming back.

5.	 Just after the “Build the revision query” comment, add the following lines:

unitCommand = new SqlCommand(

 @"UPDATE UnitOfMeasure SET ShortName = @ShortName,

 FullName = @FullName WHERE ID = @ID", linkToDB);

unitCommand.Parameters.Add(

 "@ShortName", SqlDbType.VarChar, 15, "ShortName");

unitCommand.Parameters.Add(

 "@FullName", SqlDbType.VarChar, 50, "FullName");

param = unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID");

param.SourceVersion = DataRowVersion.Original;

UnitAdapter.UpdateCommand = unitCommand;

This UPDATE query is much like the INSERT query added in the previous step, but it also
uses data from the original version of the edited DataSet row to help locate the match-
ing record in the database.

6.	 Just after the “Build the deletion query” comment, add the following code:

unitCommand = new SqlCommand(

 "DELETE FROM UnitOfMeasure WHERE ID = @ID", linkToDB);

param = unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID");

param.SourceVersion = DataRowVersion.Original;

UnitAdapter.DeleteCommand = unitCommand;

These statements define the DELETE query used to remove database records.

7.	 Just after the “Load the data from the database into the local editor” comment, within
the try block, add the following two lines:

UnitAdapter.Fill(UnitTable);

UnitGrid.DataSource = UnitTable;

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 183

These statements perform the actual movement of data from the external database
to the local DataTable copy. The Fill method also builds the basic schema within the
UnitTable instance so that the incoming records have a place to reside.

8.	 Locate the ActUpdate_Click event handler. Within the try block, add the following
statement:

UnitAdapter.Update(UnitTable);

This single line completes the round trip, moving changed data in the UnitTable in-
stance back to the external data source.

9.	 Run the program. The form that appears displays all existing records from the
UnitOfMeasure table in the sample database. Add a new sample record by entering ml
in the ShortName column of the last (empty) row and milliliter in the FullName column
of the same row. Click Update to move these changes to the database. When you per-
form that update, the data adapter retrieves the ID for the new record and displays it in
the editor to the left of the values you entered.

Syncing Data with a SqlDataAdapter: Visual Basic

1.	 Open the “Chapter 11 VB” project from the installed samples folder. The project in-
cludes a Windows.Forms class named UnitEditor, a simple database table editor.

2.	 Open the source code view for the UnitEditor form. Locate the GetConnectionString
function, a routine that uses a SqlConnectionStringBuilder to create a valid connection
string to the sample database. It currently includes the following statements:

builder.DataSource = "(local)\SQLExpress"

builder.InitialCatalog = "StepSample"

builder.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

Dwonloaded from: iDATA.ws

184	 Microsoft ADO.NET 4 Step by Step

3.	 Locate the UnitEditor_Load event handler. This routine configures the main
SqlDataAdapter used by the program to edit the UnitOfMeasure table from the sam-
ple database. Just after the “Build the selection query” comment, add the following
statements:

unitCommand = New SqlCommand(

 "SELECT * FROM UnitOfMeasure ORDER BY ID", linkToDB)

UnitAdapter.SelectCommand = unitCommand

This code adds the required SELECT command to the adapter, extracting records (and
indirectly, the schema) from the UnitOfMeasure table.

4.	 Just after the “Build the insertion query” comment, add the following code:

unitCommand = New SqlCommand(

 "INSERT INTO UnitOfMeasure (ShortName, FullName) " &

 "VALUES (@ShortName, @FullName); SET @ID = @@IDENTITY;", linkToDB)

unitCommand.Parameters.Add(

 "@ShortName", SqlDbType.VarChar, 15, "ShortName")

unitCommand.Parameters.Add(

 "@FullName", SqlDbType.VarChar, 50, "FullName")

With unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID")

 .Direction = ParameterDirection.Output

End With

UnitAdapter.InsertCommand = unitCommand

This block adds the INSERT portion of the query set. The three parameters transfer the
table content, with two parameters (@ShortName and @FullName) included for data
returning to the database, and the third parameter (@ID) coming back.

5.	 Just after the “Build the revision query” comment, add the following lines:

unitCommand = New SqlCommand(

 "UPDATE UnitOfMeasure SET ShortName = @ShortName, " &

 "FullName = @FullName WHERE ID = @ID", linkToDB)

unitCommand.Parameters.Add(

 "@ShortName", SqlDbType.VarChar, 15, "ShortName")

unitCommand.Parameters.Add(

 "@FullName", SqlDbType.VarChar, 50, "FullName")

With unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID")

 .SourceVersion = DataRowVersion.Original

End With

UnitAdapter.UpdateCommand = unitCommand

This UPDATE query is much like the INSERT query added in the previous step, but it also
uses data from the original version of the edited DataSet row to help locate the match-
ing record in the database.

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 185

6.	 Just after the “Build the deletion query” comment, add the following code:

unitCommand = New SqlCommand(

 "DELETE FROM UnitOfMeasure WHERE ID = @ID", linkToDB)

With unitCommand.Parameters.Add("@ID", SqlDbType.BigInt, 0, "ID")

 .SourceVersion = DataRowVersion.Original

End With

UnitAdapter.DeleteCommand = unitCommand

These statements define the DELETE query used to remove database records.

7.	 Just after the “Load the data from the database into the local editor” comment, within
the Try block, add the following two lines:

UnitAdapter.Fill(UnitTable)

UnitGrid.DataSource = UnitTable

These statements perform the actual movement of data from the external database
to the local DataTable copy. The Fill method also builds the basic schema within the
UnitTable instance so that the incoming records have a place to reside.

8.	 Locate the ActUpdate_Click event handler. Within the Try block, add the following
statement:

UnitAdapter.Update(UnitTable)

This single line completes the round trip, moving changed data in the UnitTable in-
stance back to the external data source.

9.	 Run the program. The form that appears displays all existing records from the
UnitOfMeasure table in the sample database. Add a new sample record by entering ml
in the ShortName column of the last (empty) row and milliliter in the FullName column
of the same row. Click Update to move these changes to the database. When you per-
form that update, the data adapter retrieves the ID for the new record and displays it in
the editor to the left of the values you entered.

Dwonloaded from: iDATA.ws

186	 Microsoft ADO.NET 4 Step by Step

Table and Column Mapping
Sometimes it isn’t convenient or even possible to use the same table and column names
between your local DataTable and the external database table, view, or generated results it
represents. In such situations, use the SqlDataAdapter.TableMappings collection to define the
naming changes between the external and internal versions of your table structures.

This system is especially useful when importing data into a DataSet in which named tables
already exist. Remember that when SqlDataAdapter retrieves result sets from the database, it
names the first set “Table,” the second set “Table1,” and so on. For example, suppose you use
the DataSet / String syntax in the Fill method:

workAdapter.Fill(targetSet, "Grid") ' Visual Basic version

The first table in targetSet is “Grid,” the second is “Grid1,” and so on. If the DataSet includes
names that vary from these defaults, Fill will add new tables with the default names and
schemas.

To coerce the data adapter into moving the incoming records into the correct table, add new
System.Data.Common.DataTableMapping objects to the table mapping collection before call-
ing the Fill method.

C#
// ----- Using the basic external-internal syntax is quick.

workAdapter.TableMappings.Add("Table", "Employee");

// ----- Adding a DataTableMapping instance works also.

DataTableMapping nameChange = new DataTableMapping();

nameChange.SourceTable = "Table1";

nameChange.DataSetTable = "Customer";

workAdapter.TableMappings.Add(nameChange);

Visual Basic
' ----- Using the basic external-internal syntax is quick.

workAdapter.TableMappings.Add("Table", "Employee")

' ----- Adding a DataTableMapping instance works also.

Dim nameChange As New DataTableMapping

nameChange.SourceTable = "Table1"

nameChange.DataSetTable = "Customer"

workAdapter.TableMappings.Add(nameChange)

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 187

It’s not just table names that can be mapped; the data adapter supports column name map-
pings as well.

C#
// ----- Start with the table name.

DataTableMapping employeeMap =

 workAdapter.TableMappings.Add("Table", "Employee");

// ----- Then add the columns. Columns not mentioned here

// import using the source column names.

employeeMap.ColumnMappings.Add("Employee ID", "ID");

employeeMap.ColumnMappings.Add("Current Department", "DeptID");

Visual Basic
' ----- Start with the table name.

Dim employeeMap As DataTableMapping =

 workAdapter.TableMappings.Add("Table", "Employee")

' ----- Then add the columns. Columns not mentioned here

' import using the source column names.

employeeMap.ColumnMappings.Add("Employee ID", "ID")

employeeMap.ColumnMappings.Add("Current Department", "DeptID")

You are not required to set up a mapping for every incoming table or column. The data
adapter includes two properties that establish the rules for handling missing targets. The
SqlDataAdapter.MissingMappingAction property determines what should be done when the
table and column mapping rules do not include one of the incoming tables or columns (or
any of them). It is set to one of the MissingMappingAction enumerated values.

■■ MissingMappingAction.Passthrough  Even though there is no mapping, the table
or column is added to the target schema using the default incoming name. This is the
default setting.

■■ MissingMappingAction.Ignore  The missing table or column is ignored, and its in-
coming data for that table or column is discarded.

■■ MissingMappingAction.Error  The mapping process generates an exception when it
finds an unmapped table or column.

Dwonloaded from: iDATA.ws

188	 Microsoft ADO.NET 4 Step by Step

The second property for managing mapping exceptions is the SqlDataAdapter.Missing
SchemaAction. This property indicates what should be done when the target DataSet or
DataTable does not already include the incoming mapped or unmapped table or column
name. Its options somewhat parallel those used for the missing mapping action.

■■ MissingSchemaAction.Add  Any table or column names missing from the target
schema are added automatically. This is the default setting.

■■ MissingSchemaAction.AddWithKey  The same as the MissingSchemaAction.Add
option, but primary key and other constraint settings are imported along with the basic
schema.

■■ MissingSchemaAction.Ignore  Any incoming table or column names not already
found in the target schema are discarded, and the data values associated with those
elements are excluded from import.

■■ MissingSchemaAction.Error  The import process generates an exception on any
missing table or column in the schema. The target schema is not modified at all.

Summary
This chapter was a culmination of all that you gained through the earlier chapters. In the
SqlDataAdapter (and its siblings for other providers), the data sets, tables, connections, com-
mands, and parameters come together to provide a flexible and consistent method for im-
porting data easily from an external data source and migrating modifications to that data
back out to the database.

The SqlDataAdapter class enables this data communication through a set of four platform-
specific statements: SELECT, INSERT, UPDATE, and DELETE, or their stored procedure equiva-
lents. ADO.NET includes the SqlCommandBuilder tool to assist you in developing at least
some of these statements. For more advanced implementations, the data adapter’s table
mappings feature lets you control how data comes into memory-resident storage.

Dwonloaded from: iDATA.ws

	 Chapter 11  Making External Data Available Locally	 189

Chapter 11 Quick Reference
To Do This

Import a database table into a DataTable through
an adapter

Create the DataTable instance.

Create a SqlDataAdapter, supplying both a record selec-
tion query and a valid connection.

Call the adapter’s Fill method, passing it the DataTable
instance.

Return modified records to a database through an
adapter

Create a SqlDataAdapter, supplying both a record selec-
tion query and valid connection.

Provide the adapter’s InsertCommand, UpdateCommand,
and DeleteCommand, either directly or by using a
SqlCommandBuilder.

Call the adapter’s Fill method, passing it the DataTable or
DataSet instance as needed.

Make changes to the data.

Call the adapter’s Update method, passing it the
DataTable or DataSet instance.

Prevent incoming data from modifying the existing
DataSet schema

Set the SqlDataAdapter instance’s MissingSchemaAction
property to MissingSchemaAction.Ignore.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 191

Chapter 12

Guaranteeing Data Integrity
After completing this chapter, you will be able to:

■■ Understand ADO.NET’s use of optimistic concurrency

■■ Perform transactions that include multiple record updates

■■ Spread transactions across multiple databases

Database programming would be a meaningless task if there were no way to guarantee the
integrity of the data. Having a single user update a single record with no one else to interrupt
the process is one thing. But what happens when you have dozens—or hundreds—of users
all trying to update records in the same tables, or even the same records, at the same time?

Welcome to the world of transactions—database operations that enable multiple record
updates to be treated as a single unit. This chapter introduces ADO.NET’s take on the trans-
action and how your code can work with the database to ensure safe and sound data.

Note  The exercises in this chapter all use the same sample project: a program that simulates the
transfer of funds between bank accounts. Although you will be able to run the application after
each exercise, the expected results for the full application might not appear until you complete
all exercises in the chapter.

Transactions and Concurrency
In today’s Web-based, highly-scalable 24/7/365 world, it’s a given that multiple users will
attempt to simultaneously modify the content in your database. As long as each user is up-
dating different records, concerns about data conflicts occurring between those users are
minimal. But when two users start competing for the same records, the safety of the data
itself becomes a serious issue.

Consider two users, Alice and Bob, who are using the same event reservations system to pur-
chase tickets for an upcoming concert. Because the seats for the concert are numbered, only
a single user can purchase a numbered ticket for a specific seat. The sales system sells tickets
in two steps: (1) it reads the reservations table to locate the next empty seat, and (2) it up-
dates the record to assign a user to the previously looked-up seat.

Dwonloaded from: iDATA.ws

192	 Microsoft ADO.NET 4 Step by Step

Figure 12-1 shows three possible scenarios when Alice and Bob use the system at approxi-
mately the same time.

Alice: Read

Scenario #1

Alice: Read

Scenario #2

Alice: Read

Alice: Write Bob: Read Bob: Read

Bob: Read Alice: Write Bob: Write

Bob: Write Bob: Write Alice: Write

Scenario #3

Figure 12-1  The risks of multiuser access to data.

Assume that seats 100 and 101 are available and will be reserved in that order. In Scenario
#1, Alice completes her transaction for seat 100 before Bob even begins requesting an open
seat, so there aren’t any data conflicts. But Scenarios #2 and #3 show potential problems.
Depending on how the system is designed, it’s possible that either Bob or Alice will be with-
out a reservation. In Scenario #3, if the system tells both Alice and Bob that 100 is the next
seat available, Alice will get the reservation even through Bob updated the system first. This
“last one wins” situation is a common difficulty to be overcome in database development.

Another potential problem occurs when a database update takes place in multiple parts.
When you transfer money from your savings account to your checking account, the database
records (at least) two distinct updates: (1) the debit of funds from the savings account, and
(2) the credit of those same funds into the checking account. As long as both operations oc-
cur, the record of the transfer is sound. But what happens if the database crashes after the
withdrawal of funds from the savings account, but before those funds make it into the check-
ing account?

Databases attempt to resolve all these conflicts and more by employing transactions. A
transaction is a single unit of database work that is guaranteed to maintain the integrity and
reliability of the data. It does this by adhering to ACID, the four rules that define the transac-
tion, which are as follows:

■■ Atomicity  The transaction is all or nothing. If any part of the transaction cannot com-
plete, whether due to invalid data, constraint limitations, or even a hardware failure, the
entire transaction is cancelled and undone. After this reversal completes, the state of
the involved records is the same as if the transaction never occurred.

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 193

■■ Consistency  The transaction, when complete, will leave the database in a valid state.
This aspect of transactions often details with constraints. For example, when deleting
a parent record, child records bound by a foreign key constraint must be modified to
remove the parent reference, deleted from the database, or if they remain, the transac-
tion must be canceled.

■■ Isolation  This property has to do with multiuser scenarios. When a transaction is
active, other users or processes that attempt to access the involved records are not al-
lowed to see those records in a semicomplete state. The database must either provide
those other processes with the pretransaction content of the records, or force those
processes to block, or wait, until the transaction is complete.

■■ Durability  Durable transactions are robust enough to overcome any type of database
failure, and if they are damaged so that they cannot be recovered, they are ultimately
reversed. Modern databases achieve this using transaction logs, a secondary repository
of all database modifications that can be “played back” to recover damaged data if
needed.

Robust databases such as SQL Server ensure that updates made to individual records meet all
these ACID requirements. For updates made to multiple records, especially those that involve
different tables, ACID applies only if you specifically wrap the updates within the database’s
platform-specific implementation of a transaction.

A transaction begins when you specifically tell the database that you need one, and it ends
when you either commit the transaction—making all changes that took place within the
transaction permanent—or issue a rollback—a cancelling or reversal of the entire transaction.

Database systems also employ record locking: the temporary protection of records, record
blocks, or entire tables from use by other processes during the lifetime of a transaction or
other data operation. The isolation property of ACID is a typical record-locking function, al-
though there are other manual and automated actions in which a database will lock records.
Record locking allows programmers to resolve the seat reservation issues previously posed
by Alice and Bob. If Alice locks seat 100 pending completion of the reservation process, Bob
will not have access to that record. Instead, he must either wait until the reservation system
makes a seat number available or reserve a seat that is not currently locked.

Note  Although record locking is a traditional method of protecting records, it is often not ef-
ficient, and sometimes not even possible, when dealing with disconnected, highly-scalable sys-
tems such as busy web sites. Such systems must use other methods of protecting records that
must be restricted to a single user or session. Some of these alternatives are described in this
chapter, on page 194.

Dwonloaded from: iDATA.ws

194	 Microsoft ADO.NET 4 Step by Step

Concurrency is the art of when to apply a record lock. There are two main flavors of
concurrency:

■■ Pessimistic concurrency  Records destined to be updated are locked when they are
first accessed and read. Only the user holding the lock has full access to the record,
including the ability to modify it. At some point, the record must be released, either
through a formal release of the lock or through an update-and-commit process that
completes the update. Pessimistic concurrency is useful when allowing two users up-
date access to the same record could prove problematic.

■■ Optimistic concurrency  Records are left unlocked during the read-write interval and
are locked by the database only at the moment of update. This type of record locking
is good for those times when records are rarely or never accessed by two users at once,
or when the risks associated with having two users update those records in parallel are
small. Limited locks allow for high scalability, although with the increased potential for
data conflicts.

ADO.NET, with its focus on disconnected data processing, uses optimistic concurrency.
Unfortunately, this method leaves some applications open to data conflicts of the type expe-
rienced by Alice and Bob. There are data-specific methods that help avoid, or even eliminate,
these problems, even when pessimistic concurrency is not available. The SqlCommandBuilder
class uses one such method when it builds data modification statements for the target data-
base table. Consider an update statement that modifies several fields in a customer table:

UPDATE Customer SET FullName = @NewName,

 Address = @NewAddress, Phone = @NewPhone

 WHERE ID = @OriginalID

If User A and User B are both updating the record at the same time, with User A modifying
Address and User B correcting Phone, the “last one wins” rule will apply in the absence of
pessimistic concurrency. SqlCommandBuilder attempts to reduce such issues by including all
the original data values in the update query’s WHERE clause.

UPDATE Customer SET FullName = @NewName,

 Address = @NewAddress, Phone = @NewPhone

 WHERE ID = @OriginalID

 AND FullName = @OriginalName

 AND Address = @OriginalAddress

 AND Phone = @OriginalPhone

This changes the update system to “first one wins” because any changes made to the record
will fail to match some of the “original” values submitted by the second user—one that still
has the original premodified image of the record—and thus prevent the update request from

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 195

making additional changes without first obtaining the “new original” version of the record. In
SQL Server table updates, a rowversion column can be used in the same way because interim
updates to the record change that column’s value automatically.

/* ----- versiontrack column is of type rowversion. */

UPDATE Customer SET FullName = @NewName,

 Address = @NewAddress, Phone = @NewPhone

 WHERE ID = @OriginalID

 AND versiontrack = @OriginalRowVersion

Note  Some database platforms support statements that let you sidestep ADO.NET’s preference
for optimistic concurrency. The Oracle SELECT statement, for example, includes a FOR UPDATE
clause that applies a persistent lock to the record until it is modified in a subsequent statement
or is otherwise released.

Depending on how you manage your ADO.NET database connections and connection-pooling
options, such SQL statements might provide access to true pessimistic concurrency. If you choose
to use such features, be sure to fully test your implementation, and be aware of changes to ADO.NET
in future releases that might affect your use of such statements.

Using Local Transactions
ADO.NET includes support for transactions with a single database through the System.
Data.Common.DbTransaction class. In the SQL Server provider, this base class is overridden
by the System.Data.SqlClient.SqlTransaction class. The OLE DB and ODBC providers imple-
ment transactions through the System.Data.OleDb.OleDbTransaction and System.Data.
Odbc.OdbcTransaction classes, respectively.

Note  The remaining discussion of transactions focuses on the SQL Server provider’s imple-
mentation. The OLE DB and ODBC implementations are identical, although some of the internal
aspects vary by target database. Some OLE DB or ODBC-accessible databases might not support
transactions.

Using a transaction to enclose multiple update statements is simple:

1.	 Open a connection to the database with a SqlConnection object.

2.	 Create a SqlTransaction instance on that connection.

3.	 Issue SQL statements within the context of the transaction.

4.	 Either commit or roll back the transaction.

5.	 Close the database connection.

Dwonloaded from: iDATA.ws

196	 Microsoft ADO.NET 4 Step by Step

Instead of creating instances of SqlTransaction directly, you generate connection-specific
transactions using the SqlConnection object’s BeginTransaction method. Transactions work
only on open database connections, so you must call the connection object’s Open method
first.

C#
using (SqlConnection linkToDB = new SqlConnection(connectionString))

{

 linkToDB.Open();

 SqlTransaction envelope = linkToDB.BeginTransaction();

Visual Basic
Using linkToDB As SqlConnection = New SqlConnection(connectionString)

 linkToDB.Open()

 Dim envelope As SqlTransaction = linkToDB.BeginTransaction()

After obtaining a transaction object, add it to any SqlCommand objects that should be part
of the transaction.

C#
// ----- Include the transaction in the SqlCommand constructor.

SqlCommand updateCommand = new SqlCommand(sqlText, linkToDB, envelope);

// ----- Or add it to an existing SqlCommand object.

SqlCommand updateCommand = new SqlCommand(sqlText, linkToDB);

updateCommand.Transaction = envelope;

Visual Basic
' ----- Include the transaction in the SqlCommand constructor.

Dim updateCommand As New SqlCommand(sqlText, linkToDB, envelope)

' ----- Or add it to an existing SqlCommand object.

Dim updateCommand As New SqlCommand(sqlText, linkToDB)

updateCommand.Transaction = envelope

After you’ve issued all the transaction-specific commands, you can commit or roll back the
entire transaction by calling the SqlTransaction object’s Commit or Rollback method.

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 197

C#
// ----- Commit the transaction.

envelope.Commit();

// ----- Rollback the transaction.

envelope.Rollback();

Visual Basic
' ----- Commit the transaction.

envelope.Commit()

' ----- Rollback the transaction.

envelope.Rollback()

You should always call Commit or Rollback explicitly. If you dispose of the object or allow it
to go out of scope without calling one of these two methods, the transaction will be rolled
back, but at a time determined by the .NET garbage collection system.

Both Commit and Rollback—and the initial BeginTransaction call as well—generate excep-
tions if there is a database or local failure in the transaction. Always surround these calls with
exception handling statements.

C#
try

{

 envelope.Commit();

}

catch (Exception ex)

{

 MessageBox.Show("Error saving data: " + ex.Message);

 try

 {

 envelope.Rollback();

 }

 catch (Exception ex2)

 {

 // ----- Although the rollback generated an error, the

 // transaction will still be rolled back by the

 // database because it did not get a commit order.

 MessageBox.Show("Error undoing the changes: " + ex2.Message);

 }

}

Dwonloaded from: iDATA.ws

198	 Microsoft ADO.NET 4 Step by Step

Visual Basic
Try

 envelope.Commit()

Catch ex As Exception

 MessageBox.Show("Error saving data: " & ex.Message)

 Try

 envelope.Rollback()

 Catch ex2 As Exception

 ' ----- Although the rollback generated an error, the

 ' transaction will still be rolled back by the

 ' database because it did not get a commit order.

 MessageBox.Show("Error undoing the changes: " & ex2.Message)

 End Try

End Try

If you include SELECT statements in your transactions, especially on records that will not be
modified as part of the transaction, there is a chance that these selected records might
become locked during the transaction, preventing other users from making modifications to
them, or even reading them. Depending on the configuration of your SQL Server instance,
SELECT statements might apply “read locks” on the returned records by default. To avoid
such locks, exclude SELECT statements from your transactions or use the WITH (NOLOCK)
hint in your SQL Server SELECT statements.

SELECT * FROM OrderEntry WITH (NOLOCK)

WHERE OrderDate >= DATEADD(day, -3, GETDATE())

Processing with a Local Transaction: C#

1.	 Open the “Chapter 12 CSharp” project from the installed samples folder. The project
includes a Windows.Forms class named AccountTransfer, which simulates the transfer of
funds between two bank accounts.

2.	 Open the code for the AccountTransfer class. Locate the GetConnectionString function,
which is a routine that uses a SqlConnectionStringBuilder to create a valid connection
string to the sample database. It currently includes the following statements:

builder.DataSource = @"(local)\SQLExpress";

builder.InitialCatalog = "StepSample";

builder.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 199

3.	 Locate the TransferLocal routine. This code performs a transfer between two bank ac-
count records using a local SqlTransaction instance. A using block fills most of the
procedure’s body. Just inside this using statement, immediately after the comment
“The database must be opened to create the transaction,” add the following code:

linkToDB.Open();

// ----- Prepare a transaction to surround the transfer.

envelope = linkToDB.BeginTransaction();

These statements open the database connection (a requirement for using transactions)
and start the transfer’s transaction.

4.	 Just after the “Prepare and perform the withdrawal” comment, add the following
statements:

sqlText = @"UPDATE BankAccount SET Balance = Balance - @ToTransfer

 WHERE AccountNumber = @FromAccount";

withdrawal = new SqlCommand(sqlText, linkToDB, envelope);

withdrawal.Parameters.AddWithValue("@ToTransfer", toTransfer);

if (OptFromChecking.Checked)

 withdrawal.Parameters.AddWithValue("@FromAccount", CheckingAccountID);

else

 withdrawal.Parameters.AddWithValue("@FromAccount", SavingsAccountID);

These lines create a parameterized UPDATE query within the context of the envelope
transaction. The presence of envelope as the final argument to the SqlCommand con-
structor provides this context.

5.	 Just after the “Prepare and perform the deposit” comment, add the following lines:

sqlText = @"UPDATE BankAccount SET Balance = Balance + @ToTransfer

 WHERE AccountNumber = @ToAccount";

deposit = new SqlCommand(sqlText, linkToDB, envelope);

deposit.Parameters.AddWithValue("@ToTransfer", toTransfer);

if (OptFromChecking.Checked)

 deposit.Parameters.AddWithValue("@ToAccount", SavingsAccountID);

else

 deposit.Parameters.AddWithValue("@ToAccount", CheckingAccountID);

This block is the same as in the previous step, but it performs the second half of the
two-statement transaction.

6.	 Just after the “Perform the transfer” comment within the try block, add these three
statements:

withdrawal.ExecuteNonQuery();

deposit.ExecuteNonQuery();

envelope.Commit();

This set of lines performs the actual transaction, issuing distinct UPDATE queries for
the withdrawal and deposit halves of the atomic transaction. The third method call,
Commit, makes the transaction permanent. Any failure on any of these three lines raises
an exception in the subsequent catch block.

Dwonloaded from: iDATA.ws

200	 Microsoft ADO.NET 4 Step by Step

7.	 Just after the “Do a rollback instead” comment, within the inner try block, add the fol-
lowing line:

envelope.Rollback();

This line undoes the transaction in case of failure in the previous step.

8.	 Run the program. The form that appears lets you transfer funds between a checking
and a savings account. If you try to transfer an amount greater than the amount in
the source account, the transaction fails due to “check constraints” defined on the SQL
Server table that prevent negative values. Select From Checking To Savings as the trans-
fer type and enter 1000 in the Transfer Amount field (or any value that exceeds the bal-
ance in the checking account). Click Transfer. The error that occurs triggers a rollback of
the transaction. In contrast, operations that transfer funds within the limits of the source
account’s balance result in a successful, committed transfer.

Processing with a Local Transaction: Visual Basic

1.	 Open the “Chapter 12 VB” project from the installed samples folder. The project in-
cludes a Windows.Forms class named AccountTransfer, which simulates the transfer of
funds between two bank accounts.

2.	 Open the code for the AccountTransfer class. Locate the GetConnectionString function,
which is a routine that uses a SqlConnectionStringBuilder to create a valid connection
string to the sample database. It currently includes the following statements:

builder.DataSource = "(local)\SQLExpress"

builder.InitialCatalog = "StepSample"

builder.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

3.	 Locate the TransferLocal routine. This code performs a transfer between two bank ac-
count records using a local SqlTransaction instance. A Using block fills most of the
procedure’s body. Just inside this Using statement, immediately after the comment
“The database must be opened to create the transaction,” add the following code:

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 201

linkToDB.Open()

' ----- Prepare a transaction to surround the transfer.

envelope = linkToDB.BeginTransaction()

These statements open the database connection (a requirement for using transactions)
and start the transfer’s transaction.

4.	 Just after the “Prepare and perform the withdrawal” comment, add the following
statements:

sqlText = "UPDATE BankAccount SET Balance = Balance - @ToTransfer " &

 "WHERE AccountNumber = @FromAccount"

withdrawal = New SqlCommand(sqlText, linkToDB, envelope)

withdrawal.Parameters.AddWithValue("@ToTransfer", toTransfer)

If (OptFromChecking.Checked = True) Then

 withdrawal.Parameters.AddWithValue("@FromAccount", CheckingAccountID)

Else

 withdrawal.Parameters.AddWithValue("@FromAccount", SavingsAccountID)

End If

These lines create a parameterized UPDATE query within the context of the envelope
transaction. The presence of envelope as the final argument to the SqlCommand con-
structor provides this context.

5.	 Just after the “Prepare and perform the deposit” comment, add the following lines:

sqlText = "UPDATE BankAccount SET Balance = Balance + @ToTransfer " &

 "WHERE AccountNumber = @ToAccount"

deposit = New SqlCommand(sqlText, linkToDB, envelope)

deposit.Parameters.AddWithValue("@ToTransfer", toTransfer)

If (OptFromChecking.Checked = True) Then

 deposit.Parameters.AddWithValue("@ToAccount", SavingsAccountID)

Else

 deposit.Parameters.AddWithValue("@ToAccount", CheckingAccountID)

End If

This block is the same as in the previous step, but it performs the second half of the
two-statement transaction.

6.	 Just after the “Perform the transfer” comment within the Try block, add these three
statements:

withdrawal.ExecuteNonQuery()

deposit.ExecuteNonQuery()

envelope.Commit()

This set of lines performs the actual transaction, issuing distinct UPDATE queries for
the withdrawal and deposit halves of the atomic transaction. The third method call,
Commit, makes the transaction permanent. Any failure on any of these three lines raises
an exception in the subsequent Catch block.

Dwonloaded from: iDATA.ws

202	 Microsoft ADO.NET 4 Step by Step

7.	 Just after the “Do a rollback instead” comment, within the inner Try block, add the fol-
lowing line:

envelope.Rollback()

This line undoes the transaction in case of failure in the previous step.

8.	 Run the program. The form that appears lets you transfer funds between a checking
and a savings account. If you try to transfer an amount greater than the amount in
the source account, the transaction fails due to “check constraints” defined on the SQL
Server table that prevent negative values. Select From Checking To Savings as the trans-
fer type and enter 1000 in the Transfer Amount field (or any value that exceeds the bal-
ance in the checking account). Click Transfer. The error that occurs triggers a rollback of
the transaction. In contrast, operations that transfer funds within the limits of the source
account’s balance result in a successful, committed transfer.

Employing Savepoints
Normally a transaction is an all-or-nothing operation. However, the SQL Server provider also
includes support for savepoints, which are named partial transactions that can be indepen-
dently rolled back.

Note  Savepoints are available only with the SQL Server provider. The OLE DB and ODBC providers
do not support this feature.

To add a savepoint to a transaction, call the SqlTransaction object’s Save method, passing it
the name of the new savepoint.

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 203

C#
// ----- Run the pre-savepoint transaction statements.

SqlCommand firstCommand = new SqlCommand(sqlText1, linkToDB, envelope);

firstCommand.ExecuteNonQuery();

// ----- Mark this place for possible partial rollback.

envelope.Save("HalfwayPoint");

// ----- Run the post-savepoint transaction statements.

SqlCommand secondCommand = new SqlCommand(sqlText2, linkToDB, envelope);

secondCommand.ExecuteNonQuery();

Visual Basic
' ----- Run the pre-savepoint transaction statements.

Dim firstCommand As New SqlCommand(sqlText1, linkToDB, envelope)

firstCommand.ExecuteNonQuery()

' ----- Mark this place for possible partial rollback.

envelope.Save("HalfwayPoint")

' ----- Run the pre-savepoint transaction statements.

Dim secondCommand As New SqlCommand(sqlText2, linkToDB, envelope)

secondCommand.ExecuteNonQuery()

Calling the Rollback method will roll the transaction back to the very beginning, undoing all
statements issued in the context of the transaction. Calling Rollback and passing it a save-
point name argument also rolls back the transaction, but only to the state at which the
indicated savepoint occurred. In the previous code block, the following statement will roll
back the transaction to just after the processing of firstCommand, undoing the effects of
secondCommand:

C#
envelope.Rollback("HalfwayPoint");

Visual Basic
envelope.Rollback("HalfwayPoint")

You can issue as many savepoints as you need within a transaction. You must still issue a final
Commit or Rollback on the transaction to save or cancel the transaction’s overall changes.

Dwonloaded from: iDATA.ws

204	 Microsoft ADO.NET 4 Step by Step

Using Distributed Transactions
The .NET Framework includes support for distributed transactions through the Microsoft
Distributed Transaction Coordinator (MSDTC). This system allows an ACID-enabled trans-
action to span multiple databases on different servers. Platforms beyond standard relational
databases can also participate in MSDTC-distributed transactions as long as they provide full
commit/rollback support for included operations.

Distributed transactions occur through the System.Transactions.TransactionScope class. This
class is not part of ADO.NET, but ADO.NET does include automatic support for it when
you use it in your application. To access this class, you must add a reference to the System.
Transactions.dll library in your application through the Project | Add Reference menu com-
mand in Visual Studio.

To begin a distributed transaction, create an instance of TransactionScope.

C#
using System.Transactions;

// ----- Later...

using (TransactionScope envelope = new TransactionScope())

{

 // ----- Include all relevant ADO.NET commands here.

Visual Basic
Imports System.Transactions

' ----- Later...

Using envelope As TransactionScope = New TransactionScope()

 ' ----- Include all relevant ADO.NET commands here.

That’s it. As long as the TransactionScope object is valid (not disposed), all new ADO.NET
database connections become part of the distributed transaction. You don’t need to use
SqlTransaction objects or provide support for distributed transactions; it’s automatic.

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 205

The TransactionScope instance monitors all relevant activity until it is disposed (by calling
Dispose or letting the object go out of scope), at which time the entire transaction is either
committed or rolled back. By default, the transaction is rolled back. To ensure that the trans-
action is committed, call the TransactionScope object’s Complete method.

C#
using (TransactionScope envelope = new TransactionScope())

{

 // ----- Include all relevant ADO.NET commands here, then...

 envelope.Complete();

}

Visual Basic
Using envelope As TransactionScope = New TransactionScope()

 ' ----- Include all relevant ADO.NET commands here, then...

 envelope.Complete()

End Using

For those times when you want to specifically exclude a connection (and its associated com-
mands) from the active TransactionScope, add “Enlist=False” to the connection string.

Data Source=MyServer;Integrated Security=True;

 Initial Catalog=MyDatabase;Enlist=False

If you have a connection that is not enlisted in the overall transaction, you can move it into
the transaction scope using the connection’s EnlistTransaction method. After a connection is
part of a transaction scope, it cannot be delisted.

Note  When running an application that creates a distributed transaction, you might receive
the following error: "MSDTC on server 'servername' is unavailable". This typically indicates that
the Distributed Transaction Controller service is not running. Start the service through either
the Services applet or the Component Services applet, both of which can be found in the
Administrative Tools section of the Windows Control Panel.

Dwonloaded from: iDATA.ws

206	 Microsoft ADO.NET 4 Step by Step

Processing with a Distributed Transaction: C#

Note  This exercise uses the “Chapter 12 CSharp” sample project and continues from where the
previous exercise in this chapter left off.

1.	 Open the code for the AccountTransfer class. Locate the TransferDistributed function.
This code performs a transfer between two bank account records using a distributed
transaction. The body of the routine hosts two nested using blocks.

// ----- Create the withdrawal and deposit connections.

using (SqlConnection sourceLink =

 new SqlConnection(GetConnectionString()))

{

 using (SqlConnection destLink =

 new SqlConnection(GetConnectionString()))

 {

 // ----- Lots of database-related code here...

 }

}

2.	 Surround the two nested using blocks with a third outer using block.

using (TransactionScope envelope = new TransactionScope())

{

 // ----- The two original nested using blocks appear here...

}

This statement block creates the TransactionScope, which is the object responsible for
managing the distributed transaction.

3.	 Just after the “Transfer complete. Commit the transaction” comment, add the following
line:

envelope.Complete();

This method call commits the entire transaction.

4.	 Run the program. In the local-transaction sample earlier in this chapter, attempting to
overdraw funds caused the transaction to fail in the first half of the two-part update:
the withdrawal portion. You can force a failure in the second half of the transaction by
selecting a transfer in the opposite direction and entering a negative value (with an ab-
solute value that exceeds the target account) in the Transfer Amount field.

Select From Savings To Checking as the transfer type and enter -1000 (negative 1000)
in the Transfer Amount field—or any value that, if positive, would exceed the balance
in the checking account. Select the Use A Distributed Transaction field and then click
Transfer. The error that occurs triggers a rollback of the distributed transaction due to a
check constraint failure in the deposit portion (the second half) of the transaction.

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 207

Processing with a Distributed Transaction: Visual Basic

Note  This exercise uses the “Chapter 12 VB” sample project and continues from where the pre-
vious exercise in this chapter left off.

1.	 Open the code for the AccountTransfer class. Locate the TransferDistributed function.
This code performs a transfer between two bank account records using a distributed
transaction. The body of the routine hosts two nested Using blocks.

' ----- Create the withdrawal and deposit connections.

Using sourceLink As SqlConnection =

 New SqlConnection(GetConnectionString())

 Using destLink As SqlConnection =

 New SqlConnection(GetConnectionString())

 ' ----- Lots of database-related code here...

 End Using

End Using

2.	 Surround the two nested Using blocks with a third outer Using block.

Using envelope As TransactionScope = New TransactionScope()

 ' ----- The two original nested using blocks appear here...

End Using

This statement block creates the TransactionScope, which is the object responsible for
managing the distributed transaction.

3.	 Just after the “Transfer complete. Commit the transaction” comment, add the following
line:

envelope.Complete()

This method call commits the entire transaction.

Dwonloaded from: iDATA.ws

208	 Microsoft ADO.NET 4 Step by Step

4.	 Run the program. In the local-transaction sample earlier in this chapter, attempting to
overdraw funds caused the transaction to fail in the first half of the two-part update:
the withdrawal portion. You can force a failure in the second half of the transaction by
selecting a transfer in the opposite direction and entering a negative value (with an ab-
solute value that exceeds the target account) in the Transfer Amount field.

Select From Savings To Checking as the transfer type and enter -1000 (negative 1000)
in the Transfer Amount field—or any value that, if positive, would exceed the balance
in the checking account. Select the Use A Distributed Transaction field, and then click
Transfer. The error that occurs triggers a rollback of the distributed transaction due to a
check constraint failure in the deposit portion (the second half) of the transaction.

Summary
This chapter introduced the SqlTransaction class and its distributed counterpart, TransactionScope.
Both tools allow you to treat multiple discrete database updates as a single, undivided whole.
This provides a greater level of data reliability when the risks associated with a partial data
update are high.

ADO.NET’s disconnected model lends itself well to the optimistic concurrency data locking
model. It’s a common scenario for systems where the chance of simultaneous updates to a
single record is very low. For situations where pessimistic concurrency and a more preemp-
tive record locking strategy have been the norm, ADO.NET might require you to try different
ways of accomplishing the same tasks.

Dwonloaded from: iDATA.ws

	 Chapter 12  Guaranteeing Data Integrity	 209

Chapter 12 Quick Reference
To Do This

Process statements using a local transaction Open a connection to a database using SqlConnection.

Call the connection object’s BeginTransaction method to
obtain the transaction object.

Call the necessary SQL statements for data modification,
including the transaction object in each SqlCommand.

Call the transaction object’s Commit method to save the
changes.

Roll back a local transaction Create a valid SqlConnection and process data modifica-
tion statements as needed.

Call the transaction object’s Rollback method.

Process statements using a distributed transaction Start the MSDTC if not already running.

Create an instance of TransactionScope.

Process your SQL statements as needed, excluding the
use of SqlTransaction.

If the transaction is successful, call the TransactionScope
object’s Complete method.

Call the TransactionScope object’s Dispose method.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Microsoft ADO.NET 4 Step by Step

	 	 211

Part III

Entity Framework

	 Chapter 13: Introducing the Entity Framework

	 Chapter 14: Visualizing Data Models

	 Chapter 15: Querying Data in the Framework

	 Chapter 16: Understanding Entities Through Objects

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Chapter 13

Introducing the Entity Framework
After completing this chapter, you will be able to:

■■ Understand the high-level concepts of the ADO.NET Entity Framework

■■ Distinguish between the three main Entity Framework modeling layers

■■ Identify the general relationships between database elements and parallel elements in
the Entity Framework

ADO.NET has been included with the .NET Framework since its initial release in 2002. As the
primary data layer of the Framework, it provides great general-purpose access to external
data sources. Starting with Service Pack 1 of Visual Studio 2008 (and the associated .NET
Framework version 3.5), Microsoft enhanced ADO.NET with a library of additional function-
ality known as the Entity Framework (EF). The question is this: Why? Why would Microsoft
augment a system that already provided sufficient features to work with both internal and
external data in a generic, convenient format?

This chapter answers that question by introducing the Entity Framework and its major con-
ceptual components. It focuses on the two primary benefits of using the Framework on top
of ADO.NET’s core data functionality: (1) the ability to focus on the conceptual view of how
data fits together instead of on the physical view of how it is stored in the database; and (2)
the move away from the database-centric reality of independent tables joined in relation-
ship toward a true object-oriented model in which related data values are treated as integral
members of each other’s data worldviews.

Note  The four EF-related chapters in this book offer only a brief introduction to the flexible
and extensive Entity Framework. For expanded coverage of the Framework and how to use it
in your projects, review the Visual Studio online help. The Microsoft Press book Programming
the Microsoft® ADO.NET Entity Framework provides a more detailed exploration of EF and its
components.

Understanding the Entity Framework
ADO.NET provides convenient programmer access to content located in an external data
source or crafted within the application. One of the data layer’s core strengths is its capabil-
ity to simulate the logical implementation of the underlying data source. Database tables

Dwonloaded from: iDATA.ws

214

stored in a relational database such as SQL Server can be brought into an application, com-
plete with constructs that emulate the join relationships and columnar data types of each
imported table. Foreign keys play an important role in bringing data together, both in the
database and in the DataSet representation.

By processing the data that comes into your program through a DataReader or by adjusting
the TableMapping rules associated with a DataAdapter, you can modify the presentation of
the incoming data structures from the way they appear in the underlying database. Yet even
with such modifications, many DataSet and DataTable representations of external data tend
to resemble the logical view of the source data.

When working with tables of customers and orders, an associated DataSet will often con-
tain Customer and Order DataTable objects that are little more than local copies of the true
tables. Although this benefit is very useful for developers focused on a specific database
schema, it is also a disadvantage, especially when changes to the external schema must be
constantly reflected in code. The table-specific focus of the DataSet also forces applications
to work with data according to the dictates and limitations of the database, instead of on the
enhanced features that languages such as C# and Visual Basic bring to the data processing
table. Additionally, ADO.NET’s use of generic object collections for row values removes the
strongly typed benefits of programming in .NET.

Note  Visual Studio 2005 and version 2.0 of the .NET Framework introduced strongly typed
DataSets. These wizard-generated classes, derived from DataSet and ADO.NET’s other discon-
nected table classes, added imported table and column definitions as true class members.
Strongly typed data sets are still available in Visual Studio 2010. However, the Entity Framework
provides enhanced database interaction capabilities and additional features that often make it a
better option for defining strongly typed views of external data. Strongly typed data sets are not
discussed further in this book.

The Entity Framework helps resolve such issues by putting the focus on the conceptual
implementation of the data; a class-based view of how all the data works together. Instead
of working with distinct table records that refer to each other’s records indirectly through
foreign key values, EF objects expose these relationships as true object-oriented class mem-
berships. Where a DataSet may contain separate Customer and Order tables that need to
have their records joined manually in code, a Customer entity class generated by the Entity
Framework includes an OrderEntries member, with each customer instance already aware of
its associated orders. Foreign keys are still important, but the Framework figures out how to
use them, leaving code free to access the results in a true instance-based environment.

Dwonloaded from: iDATA.ws

	 Chapter 13  Introducing the Entity Framework	 215

Defining the Entity Framework’s Terms
The Entity Framework works with different types of flat, relational, and hierarchical data
sources—not just traditional databases such as SQL Server—so the names used for the dif-
ferent components of the Framework were selected to reflect those different usage options.
Still, in light of its standard ADO.NET underpinnings and its excellent support for SQL Server
and similar databases, it is helpful to understand its features as they relate to relational data-
base concepts.

■■ Model  The Entity Framework is, above all, a system for designing conceptual mod-
els of your data. These models are saved in an XML format from which the Framework
generates the specific source code classes. All terms defined here (entity, association,
and so on) are primarily model-based, although the Framework generates classes and
code that makes them more than just items in a model diagram.

■■ Entity  The core of the Entity Framework is, naturally, the Entity. With its ADO.NET
core, you might think, incorrectly, that an entity finds its parallel in the DataSet or
DataTable. Instead, the parallel for an entity is a single table row, a record, a DataRow.
A customer entity is a single customer, with a distinct name, address, set of orders, and
so on. The Framework generates the custom classes (known as Entity Types) from which
specific entity objects are instantiated.

■■ Entities  The plural form of an entity has a separate existence in the Entity Framework,
implemented as a generic collection of a specific entity. Similar in concept to a table
or a DataTable, entities are created by the Framework to expose enumerable instances
of a specific custom entity. This parent-child relationship smoothes the transition from
table-row-style database content to inheritable class-based data management.

■■ Property  The field or column members of an entity (similar to DataColumn instances
in a DataTable) are known as properties. This makes sense because they are imple-
mented as standard class properties, complete with configurable getters and setters.
One or more properties in an entity are designated as the entity key, which uniquely
defines each entity. All entities require an entity key. Multiple properties can be defined
together as a complex type, sort of a user-defined data type for entities.

■■ Association  A relationship established between two entities is known as an associa-
tion, and is defined through an association type. Similar to a database-level table join
or a DataRelation in standard ADO.NET, associations define the single or multicolumn
connections between different entities. The properties on either end of the relation-
ship are known as association ends. The cardinality of an association (or in EF parlance,
the multiplicity of its association endpoints; whether the association is one-to-one,
one-to-many, and so on) helps determine how the association exposes data. Unlike the
DataRelation implementation, associations are true bidirectional access points between
entity instances. An entity can exist even if the tables that provide the content for asso-
ciated entities lack a database-level join specification.

Dwonloaded from: iDATA.ws

216	 Microsoft ADO.NET 4 Step by Step

■■ Association set  All association instances for a defined association type appear as a
distinct collection called an association set. On the model side of the Framework, an
association set contains the field definitions that describe a single association between
two tables.

■■ Navigation property  A navigation property exposes the available data at the other
end of an association. For instance, in a customer-order association, the Orders naviga-
tion property on a Customer entity object provides access to the zero or more Order
entity instances associated with the specific customer. When viewed from the order side
of that same relationship, a customer-targeted navigation property on an Order entity
instance links to the Customer object to which that order belongs. An entity can also
contain foreign keys to an associated entity, but these keys provide less direct access to
related data.

■■ Entity set  An entity set is the logical container for an entity and any other entities de-
rived from that first entity. For example, a PastDueOrder entity definition and the Order
definition from which it derives would appear together in a single entity set. The closest
parallel in a relational database might be a table and any views created that use only
content from that base table.

■■ Entity container  One or more entity sets appear within the context of an entity con-
tainer, the outermost conceptual construct within the Entity Framework. When writing
code that interacts with entities, you will always start by creating an instance of an entity
container, known as a context. The entity container is a lot like a database or DataSet,
each with its collection of tables (entities).

Entity Framework models define an entity container, which in turn includes entity sets and as-
sociation sets. An entity set contains one or more (derived) entity types. Entities are defined
by their properties, both simple and complex. The definition of an association always includes
the two endpoints that join related entities. Classes generated by the Framework implement
in code the entities, properties, and associations defined in the model.

Understanding the Entity Framework’s Layers
In the Entity Framework, you define all the entities, associations, entity sets, and so on
through XML schema dialects. The Framework uses the XML-defined model to generate
classes in Visual Basic or C#. These classes implement the data environment described by
the model. Each model includes three main layers that help isolate the programmatic access
to the data from the database-managed storage of the raw data. The three layers are the
conceptual model (or conceptual layer), the storage model (storage layer), and the mappings
(mapping layer).

Dwonloaded from: iDATA.ws

	 Chapter 13  Introducing the Entity Framework	 217

Understanding the Conceptual Model
For developers, the conceptual model is frequently the primary focus in setting up an Entity
Framework experience. This layer defines the Entity Data Model (EDM), the data organiza-
tion concepts that will find their way into generated application-side instantiated classes. The
conceptual model is defined with the Conceptual Schema Definition Language (CSDL), which
is an XML schema definition. In your project, CSDL files have a .csdl extension.

Note  As discussed in the following text and in the next chapter, models generated using Visual
Studio design tools store the resulting XML content in a file with an .edmx file extension. The
XML specifications for the three model layers all appear in this single file instead of in separate
files with their own file extensions.

Whenever the model changes, the Framework can generate a new set of implementation
classes, simplifying the process of propagating database-level changes into your application’s
source code.

Each model defines a namespace in which its entities, associations, and other key compo-
nents appear. Like standard .NET namespaces, EF namespaces help group related entities
under a common name and allow for differentiation between otherwise identically named
entities.

Note  Visual Studio includes a Generate Database Wizard that can use a valid CSDL model to
generate a SQL Server database with all needed tables and supporting elements. Use of the wiz-
ard is beyond the scope of this book. For information on this tool, search for “Generate Database
Wizard” in the Visual Studio 2010 online help.

Understanding the Storage Model
The storage model identifies the underlying database-level elements that support the
conceptual model. Sometimes called the logical model, the storage model layer defines
the application-side experience of a database-side logical (and ultimately, physical)
implementation.

Like the conceptual model, the storage model includes entity and association definitions in a
model-language syntax, independent of any specific database. But it also contains database-
specific commands (queries and stored procedures) that will eventually find their way to
ADO.NET connection and command objects.

Your code defines the storage model using the Store Schema Definition Language (SSDL),
another XML schema definition. SSDL files use the extension .ssdl.

Dwonloaded from: iDATA.ws

218	 Microsoft ADO.NET 4 Step by Step

Understanding the Model Mappings
The model mapping layer provides the glue between the conceptual model and the storage
model. Using the Mapping Specification Language (MSL), the mapping indicates how enti-
ties, properties, and associations in the conceptual model tie to specific items in the storage
model, which in turn defines the path to the database home for each piece of data. Mapping
files use an .msl file extension.

Using the Entity Framework
Using a model in the Entity Framework requires four essential steps:

1.	 Build the model.

2.	 Generate the objects.

3.	 Instantiate a context.

4.	 Run queries within the context.

Building the Model
As mentioned previously, an Entity Framework model appears as XML content using three
distinct XML schemas. The Visual Studio online help includes full documentation for these
schema languages, so it is possible to handcraft your schema design. However, most devel-
opers will likely appreciate a more visual approach to crafting conceptual and logical models,
and the map that links them. For this reason, Microsoft included in Visual Studio the ADO.NET
Entity Data Model Designer, a drag-and-drop entity design experience that manages an EF
model’s conceptual, storage, and mapping layer options.

The Designer’s generated XML content (stored with an .edmx file extension in your project)
encapsulates all three portions of the schema definition using CSDL, SSDL, and MSL. When
designing an entity model based on an existing database, the Designer’s Entity Data Model
Wizard imports tables, views, and stored procedure definitions from any supported database
format. Chapter 14, “Visualizing Data Models,” shows the Entity Data Model Designer and its
associated wizard in action.

The following CSDL content presents an Entity Framework conceptual model of two related
tables: Customer (with ID and FullName fields) and Order (with ID, OrderDate, and Total, plus
a Customer foreign key):

Dwonloaded from: iDATA.ws

	 Chapter 13  Introducing the Entity Framework	 219

<EntityContainer Name="StepSampleConnection" LazyLoadingEnabled="true">

 <EntitySet Name="Customers" EntityType="StepByStep.Customer" />

 <EntitySet Name="OrderEntries" EntityType="StepByStep.OrderEntry" />

 <AssociationSet Name="CustOrderLinkSet" Association="CustOrderLink">

 <End Role="Customer" EntitySet="Customers" />

 <End Role="OrderEntry" EntitySet="OrderEntries" />

 </AssociationSet>

</EntityContainer>

<EntityType Name="Customer">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Int64" Nullable="false" />

 <Property Name="FullName" Type="String" Nullable="false"

 MaxLength="50" FixedLength="false" />

 <Property Name="PhoneNumber" Type="String" MaxLength="15"

 FixedLength="false" />

 <NavigationProperty Name="OrderEntries" Relationship="CustOrderLink"

 FromRole="Customer" ToRole="OrderEntry" />

</EntityType>

<EntityType Name="OrderEntry">

 <Key>

 <PropertyRef Name="ID" />

 </Key>

 <Property Name="ID" Type="Int64" Nullable="false" />

 Property Name="Customer" Type="Int64" Nullable="false" />

 <Property Name="OrderDate" Type="DateTime" Nullable="false" />

 <Property Name="Total" Type="Decimal" Nullable="false"

 Precision="19" Scale="4" />

 <NavigationProperty Name="OrderCustomer" Relationship="CustOrderLink"

 FromRole="OrderEntry" ToRole="Customer" />

</EntityType>

<Association Name="CustOrderLink">

 <End Role="Customer" Type="StepByStep.Customer" Multiplicity="1" />

 <End Role="OrderEntry" Type="StepByStep.OrderEntry" Multiplicity="*" />

 <ReferentialConstraint>

 <Principal Role="Customer">

 <PropertyRef Name="ID" />

 </Principal>

 <Dependent Role="OrderEntry">

 <PropertyRef Name="Customer" />

 </Dependent>

 </ReferentialConstraint>

</Association>

The <EntityContainer> entry defines the core of the model, with its listing of <EntitySet>
and <AssociationSet> tags. Entity sets are fully defined down to the column level in separate
<EntityType> blocks. Likewise, <AssociationSet> entries depend on <Association> definitions
found elsewhere in the XML.

The storage model and mapping XML sections provide equivalent definition experiences us-
ing their respective SSDL and MSL design languages.

Dwonloaded from: iDATA.ws

220	 Microsoft ADO.NET 4 Step by Step

Generating the Objects
The XML content for an Entity Framework model is not immediately usable in your code to
manage data. Instead, a set of data objects must be generated from the conceptual and stor-
age models and from the mapping layer.

When you add models to a project using the ADO.NET Entity Data Model Designer, this data
object generation happens automatically. Saved changes to the model trigger a generation
of Visual Basic or C# code-behind in a separate .vb (Visual Basic) or .cs (C#) source code
“designer” file.

When designing entity models manually, after creating the distinct conceptual model, stor-
age model, and mapping layer files in your project, you must generate the object layer using
edmgen.exe, which is a command-line tool included with Visual Studio.

Note  Use of the edmgen.exe tool is beyond the scope of this chapter. See the Visual Studio on-
line help for details on using this tool.

The generated object layer builds classes for each entity; classes that derive from the
EntityObject base class found in the System.Data.Objects namespace (along with many EF-
related class definitions). Much of this class’ content defines ordinary public properties that
are based on the property definitions in the conceptual model. As an example, here is the
definition for the Customer.FullName property, as generated by Visual Studio:

C#
[EdmScalarPropertyAttribute(EntityKeyProperty=false, IsNullable=false)]

[DataMemberAttribute()]

public global::System.String FullName

{

 get

 {

 Return _FullName;

 }

 set

 {

 OnFullNameChanging(value);

 ReportPropertyChanging("FullName");

 _FullName = StructuralObject.SetValidValue(value, false);

 ReportPropertyChanged("FullName");

 OnFullNameChanged();

 }

}

Private global::System.String _FullName;

Dwonloaded from: iDATA.ws

	 Chapter 13  Introducing the Entity Framework	 221

Visual Basic
<EdmScalarPropertyAttribute(EntityKeyProperty:=false, IsNullable:=false)>

<DataMemberAttribute()>

Public Property FullName() As Global.System.String

 Get

 Return _FullName

 End Get

 Set

 OnFullNameChanging(value)

 ReportPropertyChanging("FullName")

 _FullName = StructuralObject.SetValidValue(value, False)

 ReportPropertyChanged("FullName")

 OnFullNameChanged()

 End Set

End Property

Private _FullName As Global.System.String

Other class elements allow the Entity Framework to manage the entire lifetime of an entity,
from its initial retrieval from the database to its concurrency-aware update of that same
database with modified entity content.

Instantiating the Context
All access to live content as represented by the model is through a context, an in-
stance of System.Data.Objects.ObjectContext. A context is an instantiated version of the
<EntityContainer> that exposes all entities and associations defined in the model.

To create a context, instantiate a new ObjectContext object, passing it a connection
string, which typically contains the name given to the entity container (stored in the
<EntityContainer> tag’s name attribute).

C#
// ----- The default name of an entity container in visually designed

// models always ends in "Entities."

ObjectContext context = new ObjectContext("name=SalesOrderEntities");

Visual Basic
' ----- The default name of an entity container in visually designed

' models always ends in "Entities."

Dim context As New ObjectContext("name=SalesOrderEntities")

The context object provides access to all available data in the entities, plus general informa-
tion about the model-made-real.

Dwonloaded from: iDATA.ws

222	 Microsoft ADO.NET 4 Step by Step

Running Framework Queries
The Entity Framework provides four key methods for querying data exposed by the entity
model.

■■ Write SQL-like queries using the Entity SQL language. Chapter 15, “Querying Data in the
Framework,” discusses these queries and their syntax.

■■ Use query builder methods, a system that employs query-like class methods, such
as Where and OrderBy, on entity collections to obtain the desired results. (Internally,
the Entity SQL language converts its queries to query builder format for processing.)
Chapter 16, “Understanding Entities Through Objects,” introduces the core concepts
and methods involved in these queries.

■■ Use the C# and Visual Basic LINQ sublanguages to query the entity objects directly.
Chapters 17 through 20 focus on the LINQ aspects of querying ADO.NET data. Chapter
19, “Using LINQ to Entities,” demonstrates using LINQ to query model-generated
entities.

■■ Allow queries via HTTP requests using WCF Data Services. Chapter 22, “Providing
RESTful Services with WCF Data Services,” provides a brief description of this somewhat
indirect way of accessing EF content.

The simplest possible query involves asking the context for all instances of a particular entity.
The following statements use the context object’s CreateObjectSet method to generate a col-
lection of Customer (entity) instances:

C#
ObjectSet<Customer> query =

 context.CreateObjectSet<Customer>();

foreach (Customer oneCustomer in query)

{

 // ----- Take action on each Customer instance, such as...

 AddCustomerToReport(oneCustomer.FullName);

}

Visual Basic
Dim query As ObjectSet(Of Customer) =

 context.CreateObjectSet(Of Customer)()

For Each oneCustomer As Customer In query

 ' ----- Take action on each Customer instance, such as...

 AddCustomerToReport(oneCustomer.FullName)

Next oneCustomer

Dwonloaded from: iDATA.ws

	 Chapter 13  Introducing the Entity Framework	 223

Summary
This chapter provided an overview of the major concepts in ADO.NET’s new Entity
Framework functionality. Although much more complex than the ADO.NET class library that
enables it, EF is also much more flexible in its ability to provide an object-oriented develop-
ment experience when interacting with externally stored data. With its supporting visual
designer, its XML definition layers, and its query capabilities, the Entity Framework provides
a formalized method of interacting with raw data in a way that best matches the conceptual
model that the data was designed to represent.

The next three chapters delve even deeper into the usability features of the Entity
Framework. Chapter 14 focuses on the visual design environment that most programmers
will use to create EF-centric applications. Chapters 15 and 16 introduce specifics on working
with data through the objects of a generated conceptual model.

Chapter 13 Quick Reference
To Do This

Define a model for business objects or similar
programmatic elements

Design a conceptual model using the Conceptual Schema
Definition Language (CSDL), either manually or through
Visual Studio’s entity design features.

Access EF-modeled data at runtime Create an instance of ObjectContext, passing it the name
of the entity container.

Use the methods and properties of the context to re-
trieve the data.

Optionally, use one of EF’s query tools to access and
modify data.

Generate an object layer manually Use the edmgen.exe command-line tool.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 225

Chapter 14

Visualizing Data Models
After completing this chapter, you will be able to:

■■ Design an entity model using drag-and-drop techniques

■■ Describe how Visual Studio converts Entity Framework models to source code

■■ Import objects from an existing database into the Entity Framework

ADO.NET’s Entity Framework (EF) rests on a foundation of XML schema files. From the con-
ceptual model used in your applications to the mapping links between your code and an
external database, EF stores its core modeling data using three different XML schema languages.
If you already understand XML, using these schema variants is not overwhelming. But trying
to handcraft three layers of modeling data for the dozens or even hundreds of database ob-
jects that support a complex enterprise application is a considerable undertaking.

Fortunately, Visual Studio includes the ADO.NET Entity Data Model Designer, a visual design
tool that makes model design as simple as adding controls to a Windows Forms application.
This chapter shows you how to use the Designer and its various design elements. Whether
you are importing an existing database schema into an application or creating custom enti-
ties for an application’s internal use, the Entity Data Model Designer will help you move from
the model design phase to actual software development quickly and easily.

Designing an Entity Framework Model
Given the complexity of the Entity Framework, the Entity Data Model Designer included with
Visual Studio is surprisingly simple. All you need to use it is an existing Visual Studio project.

Using the Entity Data Model Wizard
You can build a model using the Entity Data Model Designer starting from a blank slate, let-
ting you model new entities as needed within your application. For many projects, though,
you’ll create the base model from the logical objects stored in an existing database. When
you add a new Entity Data Model (EDM) to your project, Visual Studio prompts you to
import tables, stored procedures, and other objects from an existing database using the
ADO.NET Entity Data Model Wizard.

Dwonloaded from: iDATA.ws

226	 Microsoft ADO.NET 4 Step by Step

Note  The wizard’s capability to build a model from an existing database can be limited by se-
curity rights and restrictions imposed on your database account. Make sure you have sufficient
rights to the database tables and elements that you will model in your application.

Similar to the Data Source Configuration Wizard demonstrated in Chapter 1, “Introducing
ADO.NET 4,” the Entity Data Model Wizard guides you through the database selection and
connection process, which serves four main purposes:

■■ To build the connection string for both the model and the target database.  Built
upon standard ADO.NET connection strings, this wizard adds EF-specific metadata key-
value pairs that help the Framework access the three XML-based modeling layers.

metadata=res://*/Model1.csdl|res://*/Model1.ssdl|res://*/Model1.msl;

provider=System.Data.SqlClient;

provider connection string='Data Source=(local)\SQLExpress;

Initial Catalog=StepSample;Integrated Security=True;

Connect Timeout=30;User Instance=True'

In this sample, the expected SQL Server connection string comes after three resource
references that identify the Conceptual Schema Definition Language (CSDL), Store
Schema Definition Language (SSDL), and Mapping Specification Language (MSL) mod-
eling documents.

■■ To build an application-side storage layer that parallels the database-side tables,
views, and stored procedures specified in the wizard.  This layer appears within
your application using the SSDL schema language, a layer that is only indirectly acces-
sible through the model designer.

■■ To create a conceptual model of the imported storage items.  At first, this model
will be nearly identical to the logical organization of the storage layer. You will have
the opportunity to adjust this model to meet the needs of your application. This layer
is created using the CSDL schema and is presented in the visual designer as a series of
database modeling objects on a design surface.

■■ To link the storage and conceptual models with mappings using the MSL schema
language.  An additional Visual Studio panel called the Mapping Details panel lets
you modify the mapping relationships for all entities and associations included in the
conceptual model.

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 227

That’s a lot of activity. Fortunately, the wizard performs most of it through a few point-and-
click actions.

Importing Database Tables as Entities

1.	 Create a new Windows Forms application (or almost any standard Visual Studio applica-
tion) using either C# or Visual Basic.

2.	 In the Visual Studio development environment, select the Project | Add New Item menu
command. When the Add New Item dialog box appears, select ADO.NET Entity Data
Model from the list of template items. Change the default item name to SalesOrder.
edmx. Click Add.

3.	 The Entity Data Model Wizard appears. On the Choose Model Contents panel, select
Generate From Database; then click Next.

Dwonloaded from: iDATA.ws

228	 Microsoft ADO.NET 4 Step by Step

4.	 On the Choose Your Data Connection panel, either select an existing connection to
the book’s sample database from the drop-down list of connections or click New
Connection to locate the sample database.

Note  The Visual Studio 2010 Entity Framework tools do not support SQL Server 2000 or earlier.
When importing objects from a SQL Server database, you must use SQL Server 2005 or higher.

The EF-modified connection string appears in the middle of the panel. If you use SQL
Server security with a plain-text password, the wizard will ask you to indicate whether
to store this unsecured connection string. For this example, select Yes if prompted. The
Save Entity Connection Settings In App.Config As option near the bottom of the panel
should already be selected. Under this field, enter SalesOrderEntities as the configura-
tion name. Click Next.

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 229

5.	 The Choose Your Database Objects panel appears.

In this hierarchical list of objects, select the Customer and OrderEntry tables, plus the
CancelOrder stored procedure. The Include Foreign Key Columns In The Model field is
already selected, which in this case will add the OrderEntry.Customer database field as a
distinct conceptual property. Maintaining this setting also limits your ability to modify
the mapping details between the two tables. Clear this field. Enter SalesOrderModel as
the Model Namespace. Click Finish to close the wizard and generate the model.

Note  Imported views and table-valued stored procedures are read-only in the model. You can
modify the model to add support for updates if you provide the relevant SQL commands or
stored procedures yourself.

6.	 The model appears in the main Visual Studio window as SalesOrder.edmx. The design
surface includes distinct Customer and OrderEntry entities that are connected by a line.

Dwonloaded from: iDATA.ws

230	 Microsoft ADO.NET 4 Step by Step

Entity Data Model Designer
The design surface of the Entity Data Model Designer hosts visual representations of enti-
ties and associations. If you have worked with other third-party entity-relationship modeling
tools, the presentation should be familiar. Each entity appears as a collapsible rectangle with
the name of the entity in bold at the top. Below the name is a list of defined entity proper-
ties, followed by any navigation properties.

Entity Name

Properties

Navigation Properties

Associations appear as lines connecting related entities. Although the line does not indicate
which properties are joined by the association, the cardinality (that is, the multiplicity of the
association endpoints) does appear as indicators on either end of the line.

The bottom-right corner of the Designer includes four display controls that let you adjust
the view of the model. From top to bottom, the four controls are: Zoom In, Zoom To 100%,

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 231

Zoom Out, and Move Via A Thumbnail View. Right-click on the design surface to see addi-
tional view management options through a shortcut menu.

Zoom In

Zoom to 100%

Zoom Out

Move Via a Thumbnail View

The Designer’s main purpose is to simplify the creation and editing of entities and their asso-
ciations. You perform most of these editing activities by clicking entities, entity properties, or
associations. You then use the Visual Studio Properties panel to modify the various settings
of the selected entity, property, or association. Right-clicking entities, properties, associations,
or even on the design surface provides access to additional editing and model management
features.

A full listing of editing activities is available in the Visual Studio online help. The following list
shows some the main tasks you can accomplish using the Model Designer:

■■ Edit entities  To add a new entity, right-click the design surface and select Add | Entity
from the shortcut menu. The Add Entity dialog box that appears lets you specify the
new entity name, its primary key (if any), and any inheritance relationship it has to an
existing entity.

Dwonloaded from: iDATA.ws

232	 Microsoft ADO.NET 4 Step by Step

On the design surface, select an existing entity and use the Visual Studio Properties
panel to manage its basic settings. To remove an entity, click that entity in the Designer
and press Delete.

■■ Edit properties  To create a new property within an entity, right-click the entity and
select one of the Add | Property choices from the shortcut menu. The Designer supports
three types of properties: scalar properties, which are simple types such as strings and
numbers; navigation properties, which enable natural links between different entities;
and complex properties, a grouping of other simple types based on some conceptual
relationship. Complex types—such as an Address type that contains distinct street, city,
and postal code properties—can be defined independently by right-clicking the design
surface and selecting the Add | Complex Type shortcut command.

■■ Edit associations  Add a new association by right-clicking an entity and choosing
Add | Association from the shortcut menu. The Add Association dialog box that appears
lets you define the endpoints of the association, including the multiplicity of each end.

Select an association and use the Visual Studio Properties panel to manage its settings.
(Most of the settings are unavailable if the association is based on a storage layer for-
eign key relationship.) To remove an association, click its line in the Designer and press
Delete.

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 233

■■ Refactor complex types  The Designer can craft a new complex property (and its
underlying complex type) from an entity’s existing properties. To create such a complex
property, select all involved properties within the visual entity. Right-click the selected
group and choose Refactor Into New Complex Type from the shortcut menu.

■■ Edit function imports  Function imports are database-level stored procedures as
expressed through an entity container. Once defined, calling a stored procedure is as
simple as making a normal class-based method call. The Add Function Import dialog
box, available through the Designer’s Add | Function Import shortcut command, lets
you locate and define these new function calls.

The dialog box can auto-detect the procedure’s return type, although you might need
to make slight adjustments. Having an accurate return type allows you to use a defined
function with the different editing operations of an entity or entity component.

■■ Auto-update the model  If the underlying database objects change in a way that af-
fects the model, you can refresh the model by using the Update Model From Database
shortcut command through a right-click on the design surface.

Each time you save changes to your model (or allow it to be auto-saved as configured
through your Visual Studio preferences), Visual Studio regenerates the Visual Basic or C#
source code object layer representation of the model. To view this code, open the <model-
name>.Designer.cs or <modelname>.Designer.vb file from the Solution Explorer panel.

Dwonloaded from: iDATA.ws

234	 Microsoft ADO.NET 4 Step by Step

Note  Visual Basic hides this file by default. To access the file, click the Show All Files toolbar but-
ton within the Solution Explorer panel.

Any changes you make within this designer file will be lost the next time Visual Studio gener-
ates the model’s object layer. You should not make changes directly to this file! However, be-
cause the generated code consists of standard .NET classes, you can add a partial class file to
your project or use other language-specific or Entity Framework–specific features to enhance
the generated content.

Note  Visual Studio uses the “default code generator” when building a model’s object layer. You
can override this default, and even write your own object layer generation rules, by adjusting
some of the default model settings. See the “Managing the Object Layer” section on page 241 of
this chapter for information on controlling the code generation process.

Changes made to the model do not propagate back to the underlying database. The purpose
of the model is to provide a meaningful conceptual view of the data to your application, a
view that does not need to exactly match the logical structure of the database.

Creating a Complex Property from Scalar Properties

Note  This exercise continues the previous exercise in this chapter.

1.	 In the Customer entity on the Entity Data Model Designer’s design surface, use the
mouse along with the Shift or Control keys to select all the following properties at the
same time: Address1, Address2, City, StateRegion, and PostalCode.

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 235

2.	 Right-click the group and then select Refactor Into New Complex Type from the short-
cut menu.

The Designer will replace the previously selected properties with a single property
named ComplexProperty.

3.	 Right-click the ComplexProperty property and then choose Rename from the shortcut
menu. Change the name of the property to Address.

4.	 Save changes to the model or the project to regenerate the object layer.

Working with the Mapping Details Panel
The focus of the Designer’s visual design surface is on the conceptual model, the CSDL con-
tent as expressed through a convenient Visual Studio editor. The Entity Framework design
tools also include a Mapping Details panel that lets you modify the mapping layer (the MSL
content) as it relates to the conceptual model.

Note  Although you can build a storage layer manually using the SSDL schema language, and al-
though the Entity Data Model Wizard generates SSDL content based on an external data source,
the Entity Data Model Designer does not include features that let you directly modify the storage
layer.

Dwonloaded from: iDATA.ws

236	 Microsoft ADO.NET 4 Step by Step

If not already available in your Visual Studio Integrated Development Environment (IDE), access
the Mapping Details panel by right-clicking the model’s visual design surface and selecting
Mapping Details from the shortcut menu.

To use the Mapping Details panel, select an entity from the visual design surface. The panel
displays all column mappings already defined for the entity, with storage model properties
on the left half and conceptual model properties to their right. To modify the conceptual
property for a storage model property, click in the Value / Property column to the right of
the storage model property name and use its drop-down list to select a different conceptual
model property.

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 237

The Mapping Details panel lets you link properties from multiple storage layer entities (that
is, from multiple tables, views, or table-emitting stored procedures from the target database)
to a single conceptual model entity. With an entity still selected on the visual design surface,
click the ghosted <Add A Table Or View> row in the Mapping Details panel.

Select one of the available entities from the drop-down list. After the new storage layer
properties appear in the panel, modify each property as needed to define the proper data
relationships.

By selecting an association within the visual designer surface, the Mapping Details panel will
also let you modify the mapped settings for that association.

Note  This ability to edit the association mapping does not apply to associations tied to import-
ed foreign key relationships.

Another useful feature of the Mapping Details panel is the ability to define conditions for
mapped entities. For example, you might want to limit the loaded orders for a customer to
just those that have not yet been shipped. By adding a condition to the OrderEntry entity
that looks for non-NULL values in the ShipDate property, the Entity Framework will automati-
cally limit the orders managed by the model’s application.

Note  If a storage layer property is used as a condition, it cannot be used as a standard mapped
property within the conceptual model.

Adding a Mapping Condition to an Entity

Note  This exercise continues the previous exercise in this chapter.

1.	 If you haven’t yet displayed the Mapping Details panel, open it by right-clicking the
Entity Data Model Designer’s design surface and choosing Mapping Details from the
shortcut menu.

Dwonloaded from: iDATA.ws

238	 Microsoft ADO.NET 4 Step by Step

2.	 Select the OrderEntry entity on the visual design surface. The mapping details for that
entity should appear in the Mapping Details panel.

3.	 On the column mapping for the ShipDate : date storage layer property, click the
ShipDate : DateTime value in the Value / Property column. You’ll see a drop-down list of
options. Select <Delete> from this list to clear the mapping.

4.	 Near the top of the Mapping Details panel, just below the Maps To OrderEntry row,
click the ghosted <Add A Condition> item and select ShipDate from the drop-down
list.

5.	 In the Operator column of the new When ShipDate row, select Is.

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 239

6.	 In the Value / Property column of the When ShipDate row, select Not Null.

7.	 On the visual design surface, click the ShipDate property in the OrderEntry entity. Press
Delete to remove the ShipDate property.

8.	 Save changes to the model to generate the new object layer content.

The upper-left corner of the Mapping Details panel includes two toolbar buttons.

Map Entity to Tables / Views

Map Entity to Functions

The top button lets you update the mappings for an entity using the storage layer tables and
other similar storage items. The bottom button lets you specify database-level stored proce-
dures, exposed as entity functions, that manage the insert, update, or deletion of individual
entities within its entity set.

Use a Stored Procedure to Manage Entity Data

Note  This exercise continues the previous exercise in this chapter.

1.	 Select the OrderEntry entity on the visual design surface.

2.	 Click the Map Entity To Functions toolbar button (the lower button) on the Mapping
Details panel.

3.	 Select the <Select Delete Function> row and then select CancelOrder from the drop-
down list.

Dwonloaded from: iDATA.ws

240	 Microsoft ADO.NET 4 Step by Step

4.	 The Mapping Details panel detects the properties required for the selected function. In
this case, a single orderID integer must be mapped to an entity value. In the Property
column of the CancelOrder row, choose ID : Int64 for the parameter property. ID is the
primary key for the OrderEntry entity.

5.	 Save changes to the model to generate the new object layer content.

Using the Model Browser
Visual Studio’s Model Browser panel is a hierarchical item selection panel similar to the
Solution Explorer panel. When an Entity Framework visual model is active, the Model Browser
displays the various components of both the conceptual and storage layers. By browsing
and selecting the entities, properties, and other features of a model through this panel, you
can view and modify the settings of each selected item through the standard Visual Studio
Properties panel.

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 241

The Model Browser is an essential part of the visual model designer, because some features
can be created and managed only through the browser. For example, you can add, edit, and
delete individual properties from an existing complex type only by accessing that complex
type through the Model Browser panel.

Managing the Object Layer
Visual Studio generates the source code for an entity model in your project each time you
save changes to that model. The generated object layer is a set of Entity Framework-aware
classes that exist as standard C# or Visual Basic source code.

By default, Visual Studio generates the model source code using its “default code genera-
tor.” You can view this setting within the Entity Data Model Designer by selecting the design
surface of the visual model and then viewing the Code Generation Strategy property in the
Properties panel. For wizard-generated models, this is set to Default.

For advanced needs, Visual Studio allows you to fully manage the code generation process
by adding a code generation item to your project. These standard Visual Basic or C# language
files are also known as text templates and include a .tt file extension. Visual Studio provides
two types of code-generation items for use with Entity Framework models:

■■ ADO.NET EntityObject Generator  This is the default type, and the same type Visual
Studio uses internally by default to generate the object layer for a model.

■■ ADO.NET Self-Tracking EntityObject Generator  This advanced generator is useful
for n-tier projects in which the code that modifies EF-managed data exists in a differ-
ent layer from the code that manages the structural interactions between entities and
model layers.

To add a custom code generator to your project, use Visual Studio’s Project | Add New Item
menu command, and choose either ADO.NET EntityObject Generator or ADO.NET Self-
Tracking EntityObject Generator as the new item type. You can also add these items by right-
clicking the visual modeler design surface and selecting Add Code Generation Item from the
shortcut menu.

Dwonloaded from: iDATA.ws

242	 Microsoft ADO.NET 4 Step by Step

When you add a new code generation item to your project, Visual Studio makes two Entity
Framework-related changes:

1.	 The Code Generation Strategy property for your model changes from Default to None.

2.	 Within the new .tt file, a reference to the CSDL portion of your model appears near the
top of the code generation source code.

The modification of text templates is beyond the scope of this book. For details on the
content of code generation items and how to modify them, search for “Generated Code
Overview” within the Visual Studio online help.

Summary
This chapter continued the overview of the Entity Framework by introducing the ADO.NET
Entity Data Model Designer and its associated database import wizard. These tools simplify
one of the most common tasks performed when developing applications that use the Entity
Framework: importing existing database logical objects into a new Framework model.

Now that you have an accessible model, you can write code that queries the data managed
by that model. The next two chapters introduce two common methods of querying EF data:
retrieving entity data using Entity SQL and accessing objects directly through the Entity
Framework’s Object Services layer.

Dwonloaded from: iDATA.ws

	 Chapter 14  Visualizing Data Models	 243

Chapter 14 Quick Reference
To Do This

Add a new Entity Framework model to a project Open or create a Visual Studio project.

Select Project | Add New Item.

Select ADO.NET Entity Data Model as the new item type
then click Add.

When the wizard appears, select either Generate From
Database or Empty Model.

Complete the wizard steps and modify the model as
needed.

Use a stored procedure to update database-side
content from entity changes

Include the stored procedure in the model, either through
the initial wizard import or by using the Designer’s
Add | Function Import shortcut command.

Select the entity in the visual designer.

Open the Mapping Details panel.

Click the Map Entities To Functions toolbar button (the
lower button) within the panel.

In the panel’s list of functions, click the <Select Update
Function> row then select the stored procedure.

If needed, assign entity properties to the stored proce-
dure’s parameters.

Create a new complex type for later use in an
entity

Open the Model Browser panel.

Expand the conceptual model portion of the browser tree.

Right-click the Complex Types branch then select Create
Complex Type from the shortcut menu.

Rename the new complex type.

Right-click the complex type to add new properties using
the various Add | Property shortcut menus.

Refresh the model after making database-level
structural changes

Right-click the model’s design surface then select Update
Model From Database from the shortcut menu.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

	 	 245

Chapter 15

Querying Data in the Framework
After completing this chapter, you will be able to:

■■ Describe the Entity SQL language and its purpose

■■ Create basic queries using Entity SQL

■■ Use the Entity Provider to access data based in an entity model

The Entity Framework (EF) is a markedly different way of interacting with data traditionally
found in relational databases and similar external data stores. With its focus on coercing
everything into .NET objects, it brings a familiarity to the data management process. But for
those who are used to retrieving data through databases such as SQL Server and their SQL-
based data query languages, moving to an object-centric paradigm doesn’t necessarily feel
like an improvement.

Fortunately, the Entity Framework includes a tool that helps bridge the data query gap
between SQL-based systems and Framework model-based objects: Entity SQL. This query
language has all the flavor and feeling of SQL, but it runs its queries against the entities and
properties of an Entity Data Model (EDM).

This chapter provides a brief overview of Entity SQL, including examples of how to use it in
your code. Visual Studio’s online help includes full documentation on the language. If you
are already comfortable with SQL, it should take you no time at all to retrieve model data us-
ing this new yet familiar language.

Note  This chapter assumes you have some familiarity with the SQL language, especially as ex-
pressed in SQL Server’s Transact-SQL (T-SQL) language.

The exercises in this chapter all use the same sample project, a tool that queries Entity
Framework data using Entity SQL. Although you will be able to run the application after each
exercise, the expected results for the full application might not appear until you complete all
exercises in the chapter.

Dwonloaded from: iDATA.ws

246	 Microsoft ADO.NET 4 Step by Step

Getting to Know Entity SQL
Entity SQL is based in part on the T-SQL imperative query language found in Microsoft’s SQL
Server product. Despite this lineage, there are some significant differences between T-SQL
and Entity SQL:

■■ Entity SQL is a selection-only language.  Whereas T-SQL includes support for data
manipulation language (DML) and data definition language (DDL), Entity SQL supports
only data retrieval. The focus is on the SELECT statement; INSERT, UPDATE, and DELETE
are not available. When updates are needed, the standard Entity Framework tools take
over.

■■ None of the batch query or stored procedure functionality found in T-SQL is
available in Entity SQL.  Entity SQL does include support for custom functions, but
they exist only to augment a related SELECT statement.

■■ T-SQL focuses on the logical tables and rows in the database.  Even when an
Entity Framework model targets a SQL Server database, Entity SQL queries focus on the
data as expressed through the conceptual model.

Writing Basic Queries
Entity SQL selection queries follow the same general syntax as those of standard SQL: with
SELECT, FROM, WHERE, GROUP BY, and ORDER BY clauses.

SELECT list-of-fields

FROM one-or-more-tables

WHERE Boolean-expression

GROUP BY aggregate-grouping-fields

ORDER BY sort-by-fields

As with standard SQL, all fields included anywhere within the query must tie back to a table
or entity that is specified in the FROM clause or in a subquery. The FROM clause usually lists
its sources from the available entities in the model—that is, to the entity collections that
themselves contain individual entities. These entity collections commonly use pluralized
names.

-- This is probably not correct

SELECT ... FROM Customer

-- But this is valid with its pluralized name

SELECT ... FROM Customers

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 247

The SELECT clause is a comma-delimited list of the values to be returned in each result row.
In Entity SQL, every reference to a field value or property must include its associated en-
tity name or an alias to that name. In T-SQL, you can create a simple query without such
references.

SELECT ID, FullName FROM Customers

In Entity SQL, table references are required.

SELECT Customers.ID, Customers.FullName FROM Customers

It is more common to use table aliases.

SELECT c.ID, c.FullName FROM Customers AS c

Entity SQL does not support the * symbol used in SQL to specify all columns in a table. To
return the entire content of each matching row, use the table alias by itself in the SELECT
clause, or list the columns and properties individually.

SELECT c FROM Customers AS c

In this statement, the values returned are instances of Customer, which is the entity from the
application’s data model. Each data value returned from an Entity SQL query is, naturally,
expressed through a .NET object instance of some primitive or custom type. When relevant,
a query will return instances of an entity type or custom type from the model. If your SELECT
clause doesn’t correlate to a modeled data type, the query engine will return the data as a
collection of an anonymous type, a sort of impromptu nameless class that contains properties
that match the fields in the SELECT list.

To include more than a single entity in the FROM clause, use the JOIN keyword.

SELECT c.FullName, o.OrderDate, o.Total

FROM Customers AS c

JOIN OrderEntry AS o ON c.ID = o.Customer

Dwonloaded from: iDATA.ws

248	 Microsoft ADO.NET 4 Step by Step

JOIN is a shortcut for INNER JOIN, which is the default type of inter-entity join. Entity SQL
also supports outer joins (LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN) and
cross joins (CROSS JOIN). The FROM clause also supports “applies,” which was introduced
in SQL Server 2005 (CROSS APPLY and OUTER APPLY) and can be used with dependent or
correlated entities. In all cases, the ON keyword specifies the fields on which to establish the
join.

The ORDER BY clause allows for a comma-delimited list of the fields by which the results
should be sorted, from left to right. The ASC and DESC modifiers from SQL are available in
Entity SQL.

SELECT c.ID, c.FullName

FROM Customers AS c

ORDER BY c.FullName DESC

By default, the data returned from an Entity SQL query is in the form of a table of rows—ac-
tually, a collection of object instances that all use the same named or anonymous type. This
is true even when the SELECT clause includes only a single value and the query returns only a
single row.

-- This single-row, single-column query still returns a row.

SELECT c.FullName FROM Customers AS c WHERE c.ID = 1

You can force the query to return the result (in each returned record) as a distinct value in-
stead of as a row containing one distinct value. To accomplish this, use the VALUE keyword
before the field specification.

-- This query returns a value, not a row of values.

SELECT VALUE c.FullName FROM Customers AS c WHERE c.ID = 1

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 249

Using Literals, Operators, and Expressions
Entity SQL includes a wide variety of literal types that can be included in your queries.
Table 15-1 lists these literal types.

Table 15-1  Literals Available in Entity SQL

Literal Type Triggering Action

Integer By default, integer literals are 32-bit signed integers (Int32). You
can change the sign or size of the integer by appending literal
codes to the value: U for 32-bit unsigned literals (UInt32), L for
64-bit signed values (Int64), and UL for 64-bit unsigned numbers
(UInt64). For instance, the literal 123UL is a 64-bit unsigned value.

If you need to include other integer types in your results, the CAST
function lets you coerce a value into another data type:

SELECT CAST(123 AS System.Int16) AS ServiceCode, ...

Floating-point Value Any numeric literal that includes a decimal point is considered a
double-precision floating-point value (Double). To create a single-
precision floating-point value (Single), append the letter f to the
literal, as in 123.45f. Literals of type Decimal appear with a trailing
M, as in 123.45M.

String Strings can appear between either single or double quotes and are
non-Unicode by default. To treat a literal as a Unicode string, attach
an N to the start of the literal, as in N'abc'.

Boolean Entity SQL supports the true and false keywords for use as Boolean
values.

Date and Time All date values must include the time component; time values can
be used without an associated date portion. Dates (or dates with
times) use the DATETIME keyword followed by a specially format-
ted date and time in single quotes:

DATETIME 'YYYY-MM-DD hh:mm[:ss[.fffffff]]'

That is, a full year-month-day date followed by military-format
time with optional seconds, with or without a fractional seconds
portion.

Time values use the TIME keyword and omit the date portion:

TIME 'hh:mm[:ss[.fffffff]]'

The date-time-offset literal, a variation of DATETIME, includes
an offset of hours and minutes, plus or minus, from the specified
base date and time. This is useful for time zone offsets and other
purposes that require times and dates managed from a reference
clock:

DATETIMEOFFSET 'YYYY-MM-DD hh:mm[:ss[.fffffff]] {+|-}hh:mm'

Dwonloaded from: iDATA.ws

250	 Microsoft ADO.NET 4 Step by Step

Literal Type Triggering Action

GUID To include a literal GUID, use the GUID keyword followed by the
dash-embedded GUID within single quotes:

GUID '28CA0BAE-27C9-446E-8DEB-C32E071C4B1A'

Binary Content Create binary content (for graphics and similar non-text data) us-
ing the BINARY keyword, followed by the hex-formatted binary
content in single quotes (attaching X to the start of the quoted
binary content also works):

BINARY 'A2AAE82303FF...'

-- or...

X'A2AAE82303FF...'

Null Value The keyword null represents a NULL value in any data type. Using
NULL values in some types of calculations always produces a NULL
result.

Entity SQL supports most of the common operators available in other SQL variants. The math
operators (+, -, *, /, and %, which represent addition, subtraction or negation, multiplication,
division, and modulo operations, respectively) work on either integer or floating point values.
The + operator also doubles as a string concatenation tool.

The comparison operators (=, <> or !=, <, >, <=, >=) can be used with numeric, string, date,
or other relevant data types, typically within the WHERE clause of a statement. The IN operator
matches one from a parenthesized set of options or subquery results. Similarly, the EXISTS
keyword returns true if a subquery includes any valid results.

The logical operators AND, OR, and NOT combine different logical expressions, and can be
replaced with the C-like synonyms &&, ||, and !, respectively. The special IS and IS NOT opera-
tors enable comparisons with the null literal.

As in SQL, simple field references can be replaced with expressions that include or exclude
any specific field. Parentheses can be included for grouping within complex expressions. The
following statement includes an expression in the SELECT clause, as well as both logical and
comparison operators in the WHERE clause:

-- Get the post-tax total for each unshipped, chargeable order.

SELECT o.OrderID, o.SubTotal * o.TaxRate AS OrderTotal

FROM AllOrders AS o

WHERE o.ShipDate IS NULL AND o.SubTotal > 0

As shown in the preceding code block, comment lines begin with two hyphens.

In addition to operator-induced data manipulation, Entity SQL includes several canonical
functions that accept expressions and properties as arguments and return a calculated result.

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 251

■■ Math functions  Abs returns the absolute value of its integer or decimal argument.
The Power function raises a base to an exponent. The three functions Ceiling, Floor, and
Round truncate and round decimal values.

■■ String functions  The available string functions are closely tied with those used for
.NET strings. Concat joins two strings together just like the + operator. LTrim, RTrim, and
Trim remove excess whitespace. Left, Right, and Substring return a portion of a string
with an identified location and length. ToLower and ToUpper return a new case-altered
string. StartsWith, EndsWith, and Contains are Boolean functions that return true if a
partial string match is found. IndexOf is similar to those three functions, but returns a
numeric position for the match. Length returns the character length of a string. Replace
and Reverse both return new strings after applying the relevant changes to the content.

■■ Date and time functions  Entity SQL includes several Add... functions (such as
AddMinutes) that add (or subtract when negative) time value to a date/time base.
Similarly named Diff... functions (such as DiffYears) report the differences between
two source date/time arguments. Distinct Year, Month, Day, Hour, Minute, Second,
Millisecond, and DayOfYear functions return the specific component of a source date or
time. Truncate returns a date without its time portion. Other functions let you retrieve
the current date and time or build a new date and time from integer components.

■■ Bitwise functions  Instead of overloading the logical operators with bitwise function-
ality, Entity SQL includes distinct bitwise functions: BitWiseAnd, BitWiseNot, BitWiseOr,
and BitWiseXor.

■■ Other functions  The NewGuid function returns a newly generated and unique GUID
value. The CAST function lets you force a data value into another (allowed) type using
the syntax CAST(original-value AS new-data-type).

In addition to these built-in functions, Entity SQL includes a series of SQL Server-specific
functions. They are equivalent in functionality to their T-SQL counterparts, and they all begin
with the prefix “SqlServer.”

SELECT SqlServer.DATEPART("day", o.OrderDate) AS OrderDay

FROM OrderEntries AS o WHERE o.ID = 2932

The “SqlServer” component of this statement is actually a reference to a namespace named
“SqlServer.” Instead of attaching this prefix each time you need it in a query, you can also
apply the USING keyword to reference a namespace that you can then access throughout
the query.

USING SqlServer;

SELECT DATEPART("day", o.OrderDate) AS OrderDay

FROM OrderEntries AS o WHERE o.ID = 2932

Dwonloaded from: iDATA.ws

252	 Microsoft ADO.NET 4 Step by Step

T-SQL’s CASE keyword, the inline conditional switch statement, is available in Entity SQL as
well. The CASE block can include any number of WHEN clauses and a single optional ELSE
clause to return conditional results.

SELECT CASE

 WHEN o.OrderTotal > 0 THEN 'Standard Order'

 WHEN o.OrderTotal < 0 THEN 'Refund'

 ELSE 'No Charge'

END AS OrderType, ...

The UNION, INTERSECT, EXCEPT, and OVERLAPS keywords, as well as the SET function en-
able set operations on query results. UNION merges two result sets, whereas INTERSECT
returns only those rows that appear in both sets. EXCEPT returns the first set with any rows in
the second set removed. OVERLAPS returns true if any row appears in both sets being com-
pared. SET returns a subset that includes only unique rows.

Grouping and Aggregating Entity Data
Entity SQL includes several aggregate functions that allow your query to generate summa-
rized data across a range of included records. The following statement adds up all order
totals in the OrderEntry table:

SELECT SUM(o.Total) AS TotalOfAllOrders

FROM OrderEntry AS o

In addition to SUM, which totals up a column of numeric values, the language includes the
following aggregate functions:

■■ COUNT and BIGCOUNT  Counts the total number of records included in the query;
or when passed a column name or calculated expression, returns the number of non-
NULL results. Entity SQL does not support the COUNT(*) syntax typically used in other
SQL variants. Instead, use COUNT(0). BIGCOUNT is identical to COUNT, but returns a
64-bit integer instead of a 32-bit integer.

■■ MAX and MIN  These functions return the maximum or minimum value within the re-
sult set for the supplied column name or expression. Numbers, strings, dates, and other
data types that support ordering of items can be used as arguments.

■■ AVG  Returns the average for the supplied column or expression across all included
records. AVG supports numeric values only.

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 253

■■ STDEV and STDEVP  These functions calculate the standard deviation and the
population-specific standard deviation across all rows for the specific column or
expression.

■■ VAR and VARP  Related to the standard deviation, these two functions generate the
statistical variance and the population-specific variance across all rows for the specific
column or expression.

Entity SQL supports group-based aggregation with the GROUP BY clause.

-- Calculate last year's small monthly order totals.

SELECT WhichMonth, SUM(o.Total) AS TotalOfAllOrders

FROM OrderEntries AS o

WHERE Year(o.OrderDate) = Year(CurrentDateTime()) - 1

GROUP BY Month(o.OrderDate) AS WhichMonth

HAVING SUM(o.Total) < 1000

ORDER BY WhichMonth

As shown in the code, HAVING is also available, which acts like a WHERE clause on the
post-aggregated content. One formatting difference from T-SQL is the placement of the
aliased grouping field in the GROUP BY clause. In this sample code, Month(o.OrderDate) AS
WhichMonth defines the group and appears in GROUP BY instead of in the more traditional
SELECT location. Both the SELECT and ORDER BY clauses can reference this group by the
alias.

Paging support appears in Entity SQL via the SKIP and LIMIT keywords. This enables paged
results, commonly seen on web sites that split search results among multiple web pages. SKIP
indicates the number of results to skip from the start of the result set. LIMIT tells how many
rows to return from the top or from just after the skipped items.

-- Return page 2 from a list of matching products, 50 per page.

SELECT p.ID, p.ProductName, p.Description, p.Price

FROM Products AS p

ORDER BY ProductName SKIP 50 LIMIT 50

Similar to the LIMIT keyword, the TOP clause returns the first specified number of rows from
the query. You cannot use TOP and SKIP in the same query; use LIMIT when SKIP is specified.

-- Don’t return more than 200 matching products.

SELECT TOP 200 p.ID, p.ProductName, p.Description, p.Price

FROM Products AS p

WHERE p.ProductName LIKE @UserSearchValue

ORDER BY p.ProductName

Dwonloaded from: iDATA.ws

254	 Microsoft ADO.NET 4 Step by Step

The DISTINCT keyword removes any duplicate rows from a result set. This keyword is some-
times needed when too few columns exist to guarantee unique results, or when performing
certain types of joins.

SELECT DISTINCT p.ProductName

FROM Products AS p

Although not specifically a grouping feature, Entity SQL does include the ability to use sub-
queries. These nested SELECT statements can appear in the SELECT, FROM, or WHERE clauses
in the parent query. References to aliased entity names between the parent query and the
subquery are permitted.

-- List the past-due customers.

SELECT c.FullName

FROM Customers AS c

WHERE c.ID IN (

 SELECT o.Customer FROM OrderEntries AS o

 WHERE o.PastDue = true)

Using Features Unique to Entity SQL
Entity SQL includes a few tremendously useful features that don’t directly correspond to
T-SQL language elements. Most of these features stem from the object-based nature of the
data being queried: SQL Server doesn’t have true navigation properties and its records don’t
exist as collections of table-row instances. The custom Entity SQL features directly address
these and other Entity Framework enhancements.

In Entity SQL, the entities being queried and the results those queries produce are actu-
ally collections—generic collections hosting instances of a specific named or anonymous
class type. Although you normally use the entity-based collections in your queries, you can
also build your own collections within the query by using either a set of curly braces or the
MULTISET function. A collection of integers, for example, appears as a comma-delimited list
within curly braces.

{ 1, 2, 3 }

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 255

As interesting as this collection-building feature is, it becomes quite useful when combined
with the ROW function, which lets you generate ad hoc entity-like records within the query
text. The following query builds a pseudo-table of credit card types and joins it with the main
Payments entity:

-- NOTE: This code is not fully valid according to credit

-- card issuer standards.

SELECT p.AccountNumber, x.CardType

FROM Payments AS p

INNER JOIN { ROW("3" AS FirstDigit, "American Express" AS CardType),

 ROW("4" AS FirstDigit, "Visa" AS CardType),

 ROW("5" AS FirstDigit, "MasterCard" AS CardType),

 ROW("6" AS FirstDigit, "Discover" AS CardType) } AS x

ON Left(p.AccountNumber, 1) = x.FirstDigit

Although Entity SQL does not support true stored procedures, it does provide a limited user-
defined function capability. Using the FUNCTION keyword, you create user-defined functions
within the same statement as the SELECT query and then use the function in the clauses of
the query.

FUNCTION MonthHalf(whichDate System.DateTime) AS

(

 CASE WHEN Day(whichDate) < 16 THEN 'First Half'

 ELSE 'Second Half' END

)

SELECT o.OrderDate, MonthHalf(o.OrderDate)

FROM OrderEntries AS o

Entity SQL also includes native support for EF-modeled complex types and their relation-
ships. The project examples in Chapter 14, “Visualizing Data Models,” created a complex type
called Address that contained the address-related properties of the Customer entity. Instead
of accessing the city name of a customer as Customer.City, it became Customer.Address.City.
Entity SQL supports this “multiple-dot” notation for complex types.

Sometimes it is useful to get a reference (similar to pointers in C-like languages or a ByRef
parameter in Visual Basic) to persisted content. Entity SQL includes four functions that man-
age references. The REF function creates a reference for any entity or value; for example,
REF(Customer.FullName) creates a reference to a customer’s name. DEREF returns the original
content for previously REF’d objects. The CREATEREF function generates a reference to an
entity by supplying its entity type and its primary key value.

CREATEREF(SalesOrderEntities.Customer, 3)

The KEY function returns the primary key value used to create a reference with CREATEREF.

Dwonloaded from: iDATA.ws

256	 Microsoft ADO.NET 4 Step by Step

Running Entity SQL Queries
The Entity Framework includes two key ways of using Entity SQL queries to access entity-
managed data: using an ObjectQuery instance to query the entities within the context directly
or using a more traditional ADO.NET provider-like interface.

Running Queries Using an ObjectQuery
The System.Data.Objects.ObjectQuery(Of T) class-processes an Entity SQL statement against
an open EF context and returns the results as a collection of either named or anonymous
instances.

C#
// ----- SalesOrderEntities is an Entity Container.

using (SalesOrderEntities context =

 new SalesOrderEntities(GetConnectionString()))

{

 ObjectQuery<Customer> query =

 New ObjectQuery<Customer>(sqlText, context);

 // ... Other code as needed ...

}

Visual Basic
' ----- SalesOrderEntities is an Entity Container.

Using context As New SalesOrderEntities(GetConnectionString())

 Dim query As New ObjectQuery(Of Customer)(sqlText, context)

 ' ... Other code as needed ...

End Using

You must keep the context around as long as you need to access the ObjectQuery object’s
data, especially if the retrieved data includes content accessed through a navigation property.
The generic ObjectQuery type works like a typical generic collection object, but it’s not a true
collection. When you create the ObjectQuery instance, the Entity Framework delays process-
ing of the query until you specifically request data. Even then, it might decide to retrieve
only the requested portion of the data. Keeping the context around during the entire data-
retrieval process enables the ObjectQuery to fulfill any data requests you give it over time.

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 257

Note  The object context and its related entity container in the conceptual model expose
a LazyLoadingEnabled property. Changing this Boolean value alters the way that the Entity
Framework loads data at the other end of a navigation property. Models built with the visual de-
signer set this property to True by default, keeping unused navigation property data unloaded.
Setting this value to False (the default for manually created models) provides more proactive
loading of related data and might allow you to access such data even when the context is no
longer available. You can adjust this property’s value in the visual designer or within the context
instance.

The preceding code creates an instance of ObjectQuery with a generic focus of Customer,
presumably one of the entities in the Entity Data Model. The Entity SQL statement used to
retrieve the results must generate entities of that type. Your code can also generate data val-
ues not tied to any predefined entity or custom type. These anonymous-type queries use the
System.Data.Common.DbDataRecord class as the target generic type.

C#
ObjectQuery<Customer> query =

 New ObjectQuery<DbDataRecord>(sqlText, context);

Visual Basic
Dim query As New ObjectQuery(Of DbDataRecord)(sqlText, context)

Retrieving Entity Data Through an ObjectQuery: C#

1.	 Open the “Chapter 15 CSharp” project from the installed samples folder. The project
includes a Windows.Forms class named EntityQuery, which is a tool for trying out EF
queries.

2.	 Open the source code view for the EntityQuery form. Locate the GetConnectionString
function; this is a routine that uses a SqlConnectionStringBuilder to create a valid con-
nection string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = @"(local)\SQLExpress";

sqlPortion.InitialCatalog = "StepSample";

sqlPortion.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

Dwonloaded from: iDATA.ws

258	 Microsoft ADO.NET 4 Step by Step

3.	 Locate the ActSingleEntity_Click event handler. This routine creates an ObjectQuery to
retrieve Customer entities. Just after the “Retrieve the customer entities via a query”
comment, within the try block, add the following statements:

ActiveContext = new SalesOrderEntities(GetConnectionString());

sqlText = @"SELECT VALUE Customer FROM Customers

 AS Customer ORDER BY Customer.FullName DESC";

query = new ObjectQuery<Customer>(sqlText, ActiveContext);

This code creates a context (ActiveContext) and then creates an ObjectQuery pseudo-
collection for Customer entities. To guard against errors related to lazy loading of data,
the context remains open after this code completes.

4.	 Run the program. Click the Single Entity button to view the results of this example’s query.

Retrieving Entity Data Through an ObjectQuery: Visual Basic

1.	 Open the “Chapter 15 VB” project from the installed samples folder. The project in-
cludes a Windows.Forms class named EntityQuery, which is a tool for trying out EF
queries.

2.	 Open the source code view for the EntityQuery form. Locate the GetConnectionString
function; this is a routine that uses a SqlConnectionStringBuilder to create a valid con-
nection string to the sample database. It currently includes the following statements:

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 259

sqlPortion.DataSource = "(local)\SQLExpress"

sqlPortion.InitialCatalog = "StepSample"

sqlPortion.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

3.	 Locate the ActSingleEntity_Click event handler. This routine creates an ObjectQuery to
retrieve Customer entities. Just after the “Retrieve the customer entities via a query”
comment, within the Try block, add the following statements:

ActiveContext = New SalesOrderEntities(GetConnectionString())

sqlText = "SELECT VALUE Customer FROM Customers " &

 "AS Customer ORDER BY Customer.FullName DESC"

query = New ObjectQuery(Of Customer)(sqlText, ActiveContext)

This code creates a context (ActiveContext) and then creates an ObjectQuery pseudo-
collection for Customer entities. To guard against errors related to lazy loading of data,
the context remains open after this code completes.

4.	 Run the program. Click the Single Entity button to view the results of this example’s query.

Dwonloaded from: iDATA.ws

260	 Microsoft ADO.NET 4 Step by Step

Running Queries Using a Provider
In standard ADO.NET data processing, SQL-based queries make their way to the target data
through command and connection objects, and then ultimately through a provider such as
the SQL Server ADO.NET provider.

The Entity Framework hosts its own data provider: the EntityClient provider. This provider
exposes much of the same connection and command functionality available with the
SQL Server and other native providers, but with the ability to query against entities in an
Entity Data Model. The key classes for the EntityClient provider appear in the System.Data.
EntityClient namespace.

Using the EntityClient provider to query data covers the same general steps as are performed
with other providers:

1.	 Create and open a connection using the EntityConnection class and a connection string.

2.	 Create an EntityCommand instance and then add the connection and the Entity SQL
statement to it.

3.	 If the query contains @-prefixed parameters, add parameters objects as needed.

4.	 Call one of the command object’s Execute methods to process the query and return
data results.

The command object includes the ExecuteNonQuery method for running queries with no
return results; the ExecuteScalar method, which returns a single result; and ExecuteReader,
which returns a single-pass data reader, EntityDataReader. What is missing is the data adapter
with its capability to move incoming data into a DataTable or DataSet instance. Considering
all the other data-manipulation tools included with the Entity Framework, this is a small
omission. But if you need to push entity data into a standard ADO.NET structure, you will
have to do so manually.

When using the EntityCommand.ExecuteReader method to generate a data reader, you must
pass CommandBehavior.SequentialAccess as a behavior argument.

C#
results = query.ExecuteReader(CommandBehavior.SequentialAccess);

Visual Basic
results = query.ExecuteReader(CommandBehavior.SequentialAccess)

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 261

This option is normally used when retrieving binary large objects (BLOBs) and other large
content blocks from the database, but its use is required with the EntityClient provider, even
when returning minimal content. The side effect of using the sequential access option is that
each returned row’s data values must be retrieved in the same order in which they appear
in the SQL statement and can be accessed only once each. After you read a field, it’s time to
move on to the next one.

The following exercise shows the EntityClient provider in action, using a parameterized query
and a data reader to shuttle results into a DataTable instance.

Retrieving Entity Data Through a Provider: C#

Note  This exercise continues the previous exercise in this chapter.

1.	 Locate the ActDataTable_Click event handler; this is a routine that copies entity-based
data into a standard ADO.NET DataTable instance. Because the data will be shuttled
manually into an existing data table, the routine includes code to build the receiving
table.

resultsAsTable = new DataTable;

resultsAsTable.Columns.Add("CustomerID", typeof(long));

resultsAsTable.Columns.Add("CustomerName", typeof(string));

resultsAsTable.Columns.Add("AnnualFee", typeof(decimal));

Most of the routine is contained within a using block that manages the provider
connection.

using (EntityConnection linkToDB =

 new EntityConnection(GetConnectionString()))

{

 // ----- Most of the code appears here.

}

2.	 Just after the “Retrieve the data via a parameterized query” comment, add the follow-
ing statement:

sqlText = @"SELECT CU.ID, CU.FullName, CU.AnnualFee

 FROM SalesOrderEntities.Customers AS CU

 WHERE CU.AnnualFee >= @MinFee ORDER BY CU.FullName";

The EntityClient provider supports parameterized queries, as shown in these lines.

3.	 In the same section of code, within the try block that follows the newly added SQL
statement, add these lines:

query = new EntityCommand(sqlText, linkToDB);

query.Parameters.AddWithValue("MinFee", 200);

results = query.ExecuteReader(CommandBehavior.SequentialAccess);

As mentioned previously, the CommandBehavior.SequentialAccess option is required.

Dwonloaded from: iDATA.ws

262	 Microsoft ADO.NET 4 Step by Step

4.	 Just after the “Move each row into the DataTable” comment, within one of the later try
blocks, add the following code:

while (results.Read())

{

 oneRow = resultsAsTable.NewRow();

 oneRow["CustomerID"] = (long)results["ID"];

 oneRow["CustomerName"] = (string)results["FullName"];

 oneRow["AnnualFee"] = (decimal)results["AnnualFee"];

 resultsAsTable.Rows.Add(oneRow);

}

These lines move the data from the reader into the preconfigured DataTable instance.
As is required by the sequential access flag used when creating the reader, the incom-
ing fields are accessed in the order in which they appeared in the SQL query, and each
field is accessed only once.

5.	 Run the program. Click the Data Table button to view the results of this example’s
query.

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 263

Retrieving Entity Data Through a Provider: Visual Basic

Note  This exercise continues the previous exercise in this chapter.

1.	 Locate the ActDataTable_Click event handler; this is a routine that copies entity-based
data into a standard ADO.NET DataTable instance. Because the data will be shuttled
manually into an existing data table, the routine includes code to build the receiving
table.

resultsAsTable = New DataTable

resultsAsTable.Columns.Add("CustomerID", GetType(Long))

resultsAsTable.Columns.Add("CustomerName", GetType(String))

resultsAsTable.Columns.Add("AnnualFee", GetType(Decimal))

Most of the routine is contained within a Using block that manages the provider
connection.

Using linkToDB As New EntityConnection(GetConnectionString())

 ' ----- Most of the code appears here.

End Using

2.	 Just after the “Retrieve the data via a parameterized query” comment, add the follow-
ing statement:

sqlText = "SELECT CU.ID, CU.FullName, CU.AnnualFee " &

 "FROM SalesOrderEntities.Customers AS CU " &

 "WHERE CU.AnnualFee >= @MinFee ORDER BY CU.FullName"

The EntityClient provider supports parameterized queries, as shown in these lines.

3.	 In the same section of code, within the Try block that follows the newly added SQL
statement, add these lines:

query = New EntityCommand(sqlText, linkToDB)

query.Parameters.AddWithValue("MinFee", 200)

results = query.ExecuteReader(CommandBehavior.SequentialAccess)

As mentioned previously, the CommandBehavior.SequentialAccess option is required.

4.	 Just after the “Move each row into the DataTable” comment, within one of the later Try
blocks, add the following code:

Do While (results.Read() = True)

 oneRow = resultsAsTable.NewRow()

 oneRow!CustomerID = CLng(results!ID)

 oneRow!CustomerName = CStr(results!FullName)

 oneRow!AnnualFee = CDec(results!AnnualFee)

 resultsAsTable.Rows.Add(oneRow)

Loop

Dwonloaded from: iDATA.ws

264	 Microsoft ADO.NET 4 Step by Step

These lines move the data from the reader into the preconfigured DataTable instance.
As is required by the sequential access flag used when creating the reader, the incom-
ing fields are accessed in the order in which they appeared in the SQL query, and each
field is accessed only once.

5.	 Run the program. Click the Data Table button to view the results of this example’s
query.

Summary
This chapter reviewed the Entity SQL language and its usage within .NET applications. Entity
SQL is built with the same basic query language syntax found in SQL Server’s Transact-SQL
and in other variations of SQL. Although there are some differences when dealing with the
object nature of the Entity Framework, teams already working with SQL will have little trou-
ble integrating Entity SQL into their applications.

Although Entity SQL is great for organizations that have a large investment in SQL technolo-
gies, it might not be the most straightforward EF-query tool for your needs. The upcoming
chapters introduce additional ways that Entity Framework data can be accessed within your
software and your business logic.

Dwonloaded from: iDATA.ws

	 Chapter 15  Querying Data in the Framework	 265

Chapter 15 Quick Reference
To Do This

Select entity records using Entity SQL Write your query using the Entity SQL language.

Create an instance of the entity context.

Create an instance of ObjectQuery<class>, where class is
an entity type, EF custom type, or DbDataRecord.

Access the members of the ObjectQuery instance.

Select the ID of all Product entity instances Use a query similar to the following:

SELECT p.ID FROM Products AS p

If the collection of entities was designed with a plural
name, use that plural name in the query.

Select a single value as a data-type value instead
of as a row containing that value

Use the SELECT VALUE syntax.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Chapter 16

Understanding Entities Through
Objects

After completing this chapter, you will be able to:

■■ Access the properties of an entity through a standard object instance

■■ Add, update, and delete database content by modifying object properties

■■ Carry out query-like actions using standard method calls

One of the main advantages of the Entity Framework (EF) is that you can manage database
content using standard .NET objects that reflect the conceptual nature of the data. Behind
the scenes, various XML models, generated language code blocks, and provider interactions
make this possible. But the complexity exists solely to fulfill the promise of providing simplic-
ity in handling the main business logic of your application. Imagine being able to modify the
Name property of a Customer object in code and have that change propagate to the database—
all without having to write any of the code to make that happen.

This chapter introduces Object Services, the part of the Entity Framework that makes that
promise a reality. This Framework layer makes the transition from database to model to
objects—or vice versa—possible. In a way, the Entity Framework is the Object Services layer
because that layer is responsible for the core functionality of the Framework. Visual Studio
makes working with the Framework easy because access to its functionality is enhanced by
visual designers and Entity SQL scripts. This chapter focuses on the objects themselves; you’ll
see how to add, modify, and remove them in a way that directly affects the external data
store.

Note  The exercises in this chapter all use the same sample project, which is a tool that provides
editing features for a table of customers. While you will be able to run the application after each
exercise, the expected results for the full application might not appear until you complete all
exercises in the chapter.

Managing Entity Data Through Objects
Object Services manages the entire lifetime of data through the Entity Framework, from
determining how to translate the storage-layer model into the appropriate provider-level
actions, to shuttling data through the model and into usable .NET objects. Earlier chapters

Dwonloaded from: iDATA.ws

268

in this book introduced some of these modeling concepts. This time, the focus is on the last
part: exposing data through objects.

Accessing Entity Data Through Objects
The object layer source code that Object Services generates from the Conceptual Schema
Definition Language (CSDL)-based conceptual model consists of classes that derive from a set
of generic base classes. Each conceptual model element has some object-level counterpart
that appears as C# or Visual Basic source code in the ModelName.Designer.cs or ModelName.
Designer.vb file. The following base classes play key support roles in implementing the con-
ceptual model in code:

■■ System.Data.Objects.DataClasses.EntityObject  This is the base class for all enti-
ties. If your entity model includes a Customer entity, the generated code includes a
Customer class that derives from this EntityObject class. Individual entity properties ap-
pear as standard .NET properties within the derived class.

■■ System.Data.Objects.DataClasses.ComplexObject  When an entity includes a
complex type (such as the Address complex type crafted in the “Entity Data Model
Designer” section on page 230 of Chapter 14, “Visualizing Data Models”), that type de-
rives from the ComplexObject base class.

■■ System.Data.Objects.ObjectSet(Of TEntity)  Entities—the table-style collection of
individual entity instances—derive from this generic base class. ObjectSet implements
the IEnumerable interface for a collection-like experience.

■■ System.Data.Objects.ObjectQuery(Of T)  Although generated entity objects are not
based on this class, it still plays a key role in Entity Framework data activities. Any time
you query entity data—whether through an Entity SQL query, the LINQ tools discussed
later in this book, or the query builder methods introduced in the second half of this
chapter—the returned results exist as some form of ObjectQuery. It also serves as the
base class for ObjectSet(Of TEntity).

■■ System.Data.Objects.ObjectContext  This is the class-based embodiment of an en-
tire conceptual model, also called the entity container. The generated entity container
provides access to all entity and association instances within your application. You must
create an instance of a derived ObjectContext to interact with Entity Framework data.

Additional classes implement associations, association endpoints, and other class-based ex-
pressions of conceptual model elements. The derived classes also draw on the storage and
mapping layers to carry out the various data activities requested by your code.

The following code, already introduced in an earlier chapter, shows some typical statements
used to access external data through model-generated objects:

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 269

C#
// ----- Always start by creating an object context. Create an instance of

// either ObjectContext, or of the derived entity container class.

using (SalesOrderEntities context =

 new SalesOrderEntities(GetConnectionString()))

{

 // ----- Option 1: Derived entity collections expose contained

 // entity sets directly.

 results = context.Customers;

 // ----- Option 2: The CreateObjectSet method returns all entity

 // instances for the named entity type.

 results = context.CreateObjectSet<Customer>();

 // ----- Option 3: Run an Entity SQL query to retrieve some

 // or all entity instances.

 results = new ObjectQuery<Customer>(sqlText, context);

 // ----- Option 4: Use query builder methods, shown later.

 // ----- Option 5: Use LINQ, shown later.

}

Visual Basic
' ----- Always start by creating an object context. Create an instance of

' either ObjectContext, or of the derived entity container class.

Using context As New SalesOrderEntities(GetConnectionString())

 ' ----- Option 1: Derived entity collections expose contained

 ' entity sets directly.

 results = context.Customers

 ' ----- Option 2: The CreateObjectSet method returns all entity

 ' instances for the named entity type.

 results = context.CreateObjectSet(Of Customer)()

 ' ----- Option 3: Run an Entity SQL query to retrieve some

 ' or all entity instances.

 results = New ObjectQuery(Of Customer)(sqlText, context)

 ' ----- Option 4: Use query builder methods, shown later.

 ' ----- Option 5: Use LINQ, shown later.

End Using

Dwonloaded from: iDATA.ws

270	 Microsoft ADO.NET 4 Step by Step

Depending on how you configured your conceptual model, this code might not actually
retrieve any data from the database because by default the Entity Framework defers data ac-
cess until the data is needed. Therefore, in many cases, you must access individual entities or
their properties to initiate a true database query.

After you have a set of entity instances, you can scan through them as you do with any other
collection. The entity properties of each instance method appear as standard .NET class
properties, so you can access them from code just like any other strongly typed property.

C#
foreach (Customer oneCustomer in results)

{

 SendInvoicesToCustomer(oneCustomer.ID, oneCustomer.FullName);

}

Visual Basic
For Each oneCustomer As Customer In results

 SendInvoicesToCustomer(oneCustomer.ID, oneCustomer.FullName)

Next oneCustomer

Complex types use a multidotted property notation.

C#
VerifyPostalCode(oneCustomer.Address.PostalCode);

Visual Basic
VerifyPostalCode(oneCustomer.Address.PostalCode)

This same syntax also works for content at the other end of a navigation property.

C#
// ----- Assume that State is a navigation property.

location = oneCustomer.Address.City + ", " +

 oneCustomer.Address.State.Abbreviation;

Visual Basic
' ----- Assume that State is a navigation property.

location = oneCustomer.Address.City & ", " &

 oneCustomer.Address.State.Abbreviation

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 271

Modifying Entity Data Through Objects
Accessing data through properties is great, but if that is all the Entity Framework could do,
it wouldn’t be a tremendous improvement over standard ADO.NET. Fortunately, the Entity
Framework also supports data updates. Entities and properties you retrieve through the con-
text are fully editable—assuming that the underlying database elements are editable.

The entity container supports updates to existing entity properties, the addition of new en-
tity instances, and the removal of existing entity instances. All changes propagate back to the
database, and all take into account the constraints and business logic rules you impose on
the conceptual layer, the storage layer, the mapping layer, and the external data store.

Modifying existing properties is the easiest action to take. After retrieving an entity, you
modify it by simply setting one of its properties to the new value.

C#
oneCustomer.AnnualFee += 50;

Visual Basic
oneCustomer.AnnualFee += 50

Just as with ADO.NET, you must take one additional step that is needed to accept all pend-
ing changes. To accept changes in the Entity Framework, call the SaveChanges method of
the active context object. This completes the update process and persists all changes to the
underlying data source.

C#
context.SaveChanges();

Visual Basic
context.SaveChanges()

Adding new entities is a little more involved, but it parallels what you would normally do with
a collection of objects in .NET. To add a new Customer entity to the model, and ultimately to
the database table or tables that manage customer data, follow four simple steps:

1.	 Create a new instance of the Customer entity.

2.	 Fill in its properties.

3.	 Add the new entity instance to the context or the context’s exposed set of customers.

4.	 Call the context object’s SaveChanges method.

Dwonloaded from: iDATA.ws

272	 Microsoft ADO.NET 4 Step by Step

Here’s an example that adds a new customer:

C#
using (SalesOrderEntities context =

 new SalesOrderEntities(connectionString))

{

 // ----- Step 1: Create a new Customer instance.

 Customer oneCustomer = new Customer();

 // ----- Step 2: Fill in the properties.

 oneCustomer.FullName = "Fourth Coffee";

 // ...and so on...

 // ----- Step 3: Add the Customer to the context.

 context.AddObject("Customers", oneCustomer);

 // ...or...

 context.Customers.AddObject(oneCustomer);

 // ----- Step 4: Confirm the change.

 context.SaveChanges();

}

Visual Basic
Using context As New SalesOrderEntities(connectionString)

 ' ----- Step 1: Create a new Customer instance.

 Dim oneCustomer As New Customer

 ' ----- Step 2: Fill in the properties.

 oneCustomer.FullName = "Fourth Coffee"

 ' ...and so on...

 ' ----- Step 3: Add the Customer to the context.

 context.AddObject("Customers", oneCustomer)

 ' ...or...

 context.Customers.AddObject(oneCustomer)

 ' ----- Step 4: Confirm the change.

 context.SaveChanges()

End Using

The ObjectContext.AddObject method accepts the name of the entity set (normally the plural
name of the entity) and the new entity instance. Alternatively, you can call AddObject from
the existing collection (as in context.Customers.AddObject), passing only the new entity in-
stance as an argument.

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 273

Note  Each generated entity exposes two events for each core property: OnPropertyChanging
and OnPropertyChanged, where the “Property” portion matches the associated property name.
Use these events to add appropriate business logic to any entity modifications.

Your code is responsible for supplying all required property values (those that don’t accept
NULL values and that don’t have defaults). If neither the conceptual model nor the underlying
database provides primary key values, your code must supply them as well.

Note  If you neglect to call SaveChanges, not only will the changes not be persisted to the data-
base but you will also not receive any warning about the unsaved content.

To remove an existing entity from the model, call the DeleteObject method—the counterpart
of AddObject—passing it the instance to be deleted.

C#
// ----- Delete a Customer from the context.

context.DeleteObject(oneCustomer);

// ...or...

context.Customers.DeleteObject(oneCustomer);

Visual Basic
' ----- Delete a Customer from the context.

context.DeleteObject(oneCustomer)

' ...or...

context.Customers.DeleteObject(oneCustomer)

If an entity or one or more of its underlying database tables are configured to cascade de-
letes, other related entities or data values can be removed in response to a DeleteObject call.

Be sure to call SaveChanges after completing one or more entity adds, updates, or deletes. If
saving your data modifications causes other data side effects (perhaps due to triggers at the
database level), you can call the context object’s Refresh method to force an eventual reload
of any new or modified values.

C#
context.Refresh(RefreshMode.StoreWins);

Visual Basic
context.Refresh(RefreshMode.StoreWins)

The Refresh method includes a RefreshMode parameter that tells the method how to deal
with data conflicts between the data source and the local EF model’s content. Passing a

Dwonloaded from: iDATA.ws

274	 Microsoft ADO.NET 4 Step by Step

value of RefreshMode.StoreWins will bring any modifications found in the data source into
the local entity sets, overwriting any out-of-date information stored within the EF context.
RefreshMode.ClientWins, the other available option, updates data in the data source to bring
it in line with the model’s view of those associated data records.

By default, the Entity Framework will build the appropriate INSERT, UPDATE, and DELETE
statements needed by each entity as found in the storage layer, taking into account the data
fields, the primary keys, and the relationships for each entity. You can override this behavior
and supply your own table-specific modification functions in the mapping layer. These func-
tions ultimately tie to stored procedures within the linked database. In the Entity Data Model
Designer, use the Map Entity To Functions button on the Mapping Details panel to specify
each stored procedure. The “Adding a Mapping Condition to an Entity” exercise on page 237
in Chapter 14 demonstrated this process.

Modifying a Database Through Entity Objects: C#

1.	 Open the “Chapter 16 CSharp” project from the installed samples folder. The project
includes Windows.Forms classes named CustomerEditor and CustomerDetail, which let a
user modify records in the sample database’s Customer table.

2.	 Open the source code view for the CustomerEditor form. Locate the GetConnectionString
function; this is a routine that uses a SqlConnectionStringBuilder to create a valid con-
nection string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = @"(local)\SQLExpress";

sqlPortion.InitialCatalog = "StepSample";

sqlPortion.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

3.	 Open the source code view for the CustomerDetail form. Locate the SaveFormData
function. This routine updates an entity’s properties with data supplied by the user. Just
after the “Update the individual fields” comment, add the following statements:

toUpdate.FullName = CustomerName.Text.Trim();

if (Address1.Text.Trim().Length > 0)

 toUpdate.Address1 = Address1.Text.Trim();

else

 toUpdate.Address1 = null;

if (Address2.Text.Trim().Length > 0)

 toUpdate.Address2 = Address2.Text.Trim();

else

 toUpdate.Address2 = null;

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 275

if (CityName.Text.Trim().Length > 0)

 toUpdate.City = CityName.Text.Trim();

else

 toUpdate.City = null;

if (ItemData.GetItemData(StateName.SelectedItem) != -1L)

 toUpdate.StateRegion = ItemData.GetItemData(StateName.SelectedItem);

else

 toUpdate.StateRegion = null;

if (PostalCode.Text.Trim().Length > 0)

 toUpdate.PostalCode = PostalCode.Text.Trim();

else

 toUpdate.PostalCode = null;

if (PhoneNumber.Text.Trim().Length > 0)

 toUpdate.PhoneNumber = PhoneNumber.Text.Trim();

else

 toUpdate.PhoneNumber = null;

if (WebSite.Text.Trim().Length > 0)

 toUpdate.WebSite = WebSite.Text.Trim();

else

 toUpdate.WebSite = null;

toUpdate.AnnualFee = AnnualFee.Value;

Most of the properties in the Customer entity are nullable, allowing even numeric prop-
erties to be assigned a value of null.

4.	 Just after the “Update the database” comment, inside the try block, add the following
statements:

if (this.ActiveCustomer == null)

{

 this.ActiveContext.Customers.AddObject(toUpdate);

 this.ActiveCustomer = toUpdate;

}

this.ActiveContext.SaveChanges();

return true;

These lines perform the actual add or update of the Customer entity. The call to
SaveChanges flushes all changes out to the database.

5.	 Run the program. When the list of customers appears, click Add or select a customer
and click Edit. When the CustomerDetail form appears, add or update the individual field
values. When you’re finished, click OK. If you added or modified a customer name, that
change will be reflected in the list of customer names back on the CustomerEditor form.

Dwonloaded from: iDATA.ws

276	 Microsoft ADO.NET 4 Step by Step

Note  At this point, the Delete button on the CustomerEditor form does not work. The example
that appears later in this chapter on page 283 adds the necessary code to enable the customer re-
moval feature.

Modifying a Database Through Entity Objects: Visual Basic

1.	 Open the “Chapter 16 VB” project from the installed samples folder. The project in-
cludes Windows.Forms classes named CustomerEditor and CustomerDetail, which let a
user modify records in the sample database’s Customer table.

2.	 Open the source code view for the CustomerEditor form. Locate the GetConnectionString
function; this is a routine that uses a SqlConnectionStringBuilder to create a valid con-
nection string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = "(local)\SQLExpress"

sqlPortion.InitialCatalog = "StepSample"

sqlPortion.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

3.	 Open the source code view for the CustomerDetail form. Locate the SaveFormData
function. This routine updates an entity’s properties with data supplied by the user. Just
after the “Update the individual fields” comment, add the following statements:

toUpdate.FullName = CustomerName.Text.Trim

If (Address1.Text.Trim.Length > 0) Then _

 toUpdate.Address1 = Address1.Text.Trim Else _

 toUpdate.Address1 = Nothing

If (Address2.Text.Trim.Length > 0) Then _

 toUpdate.Address2 = Address2.Text.Trim Else _

 toUpdate.Address2 = Nothing

If (CityName.Text.Trim.Length > 0) Then _

 toUpdate.City = CityName.Text.Trim Else _

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 277

 toUpdate.City = Nothing

If (ItemData.GetItemData(StateName.SelectedItem) <> -1&) Then _

 toUpdate.StateRegion = ItemData.GetItemData(

 StateName.SelectedItem) Else toUpdate.StateRegion = Nothing

If (PostalCode.Text.Trim.Length > 0) Then _

 toUpdate.PostalCode = PostalCode.Text.Trim Else _

 toUpdate.PostalCode = Nothing

If (PhoneNumber.Text.Trim.Length > 0) Then _

 toUpdate.PhoneNumber = PhoneNumber.Text.Trim Else _

 toUpdate.PhoneNumber = Nothing

If (WebSite.Text.Trim.Length > 0) Then _

 toUpdate.WebSite = WebSite.Text.Trim Else _

 toUpdate.WebSite = Nothing

toUpdate.AnnualFee = AnnualFee.Value

Most of the properties in the Customer entity are nullable, allowing even numeric prop-
erties to be assigned a value of Nothing.

4.	 Just after the “Update the database” comment, inside the Try block, add the following
statements:

If (Me.ActiveCustomer Is Nothing) Then

 Me.ActiveContext.Customers.AddObject(toUpdate)

 Me.ActiveCustomer = toUpdate

End If

Me.ActiveContext.SaveChanges()

Return True

These lines perform the actual add or update of the Customer entity. The call to
SaveChanges flushes all changes out to the database.

5.	 Run the program. When the list of customers appears, click Add or select a customer
and click Edit. When the CustomerDetail form appears, add or update the individual field
values. When you’re finished, click OK. If you added or modified a customer name, that
change will be reflected in the list of customer names back on the CustomerEditor form.

Dwonloaded from: iDATA.ws

278	 Microsoft ADO.NET 4 Step by Step

Note  At this point, the Delete button on the CustomerEditor form does not work. The example
that appears later in this chapter on page 284 adds the necessary code to enable the customer re-
moval feature.

Using Query Builder Methods
Entity SQL and entity-specific LINQ queries (discussed in upcoming chapters) are useful
tools for accessing Entity Framework-managed data because they both provide a SQL-like
experience, which is based, in part, on the desire to provide an English-like experience. As
programmer-friendly as these methods are, they aren’t in a form that is easily processed by
languages such as C# and Visual Basic. The SELECT statements and the pseudo-language
content of a LINQ query must first be molded into a form that the relevant language com-
piler can process. Enter query builder methods.

Query builder methods are ordinary .NET extension methods that apply the subtasks of a
SQL-query to an entity or to the larger entity collection. An extension method is a feature of
.NET that lets developers add method-like functionality to a class without having access to
the source code for that class. For example, the following code adds a DelimSubstring meth-
od to the System.String data type that returns a delimited substring:

C#
public static class StringExtensions

{

 // ----- The "this" keyword defines the extension target.

 public static String DelimSubstring(this String origString,

 String delim, int position)

 {

 // ----- Return a base-1 delimited substring from a larger string.

 String pieces[];

 // ----- Don't bother if there is no string to split.

 if (origString == null) return null;

 if (origString.Length == 0) return "";

 if (position <= 0) return "";

 // ----- Break the string into delimited parts.

 pieces = origString.Split(new String[] {delim},

 StringSplitOptions.None);

 // ----- Locate and return the requested portion.

 if (pieces.Count < position) return "";

 return pieces(position - 1);

 }

}

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 279

Visual Basic
' ----- Namespace for the <Extension()> attribute.

Imports System.Runtime.CompilerServices

Module StringExtensions

 <Extension()>

 Public Function DelimSubstring(ByVal origString As String,

 ByVal delim As String, ByVal position As Integer) As String

 ' ----- Return a base-1 delimited substring from a larger string.

 Dim pieces() As String

 ' ----- Don't bother if there is no string to split.

 If (origString Is Nothing) Then Return Nothing

 If (origString.Length = 0) Then Return ""

 If (position <= 0) Then Return ""

 ' ----- Break the string into delimited parts.

 pieces = origString.Split(New String() {delim},

 StringSplitOptions.None)

 ' ----- Locate and return the requested portion.

 If (pieces.Count < position) Then Return ""

 Return pieces(position - 1)

 End Function

End Module

To use an extension method, call it as a method on the target data type or class.

C#
String phoneNumber = "206-555-1234";

String areaCode = phoneNumber.DelimSubstring("-", 1);

Visual Basic
Dim phoneNumber As String = "206-555-1234"

Dim areaCode As String = phoneNumber.DelimSubstring("-", 1)

The Entity Framework includes extension methods for common Entity SQL clauses, includ-
ing Select, GroupBy, and Union. These methods can be used on instances of ObjectSet and
ObjectQuery, which are two Framework base classes (introduced earlier in this chapter) that
act as collections for named or anonymous entity types.

Dwonloaded from: iDATA.ws

280	 Microsoft ADO.NET 4 Step by Step

Consider this simple Entity SQL statement that selects a few fields from Customer entities:

SELECT c.FullName, c.WebSite

FROM Customers AS c

ORDER BY c.FullName

You can apply query builder methods to a set of customer entities to generate the same
results.

C#
ObjectQuery<DbDataRecord> query =

 context.Customers.Select("it.FullName, it.WebSite").OrderBy("it.FullName");

Visual Basic
Dim query As ObjectQuery(Of DbDataRecord) =

 context.Customers.Select("it.FullName, it.WebSite").OrderBy("it.FullName")

This code uses the Select and OrderBy query builder methods to replicate the SELECT and
ORDER BY Entity SQL clauses. In fact, internally the Entity Framework does something similar,
breaking the clauses and components of a complex query into distinct method calls. (Both
Entity SQL and LINQ convert their queries into a “command tree” that executes in much the
same way as the query builder example shown here.)

The “it” keyword used within the content of each query builder method provides a way of
referring to the current named or anonymous type as viewed from each builder method. It’s
somewhat similar to the this keyword in C#, or the Me keyword in Visual Basic, both of which
allow classes to reference their own members. You can change the “it” term to something
else by setting the Name property of the ObjectSet or ObjectQuery instance being enhanced
by the extension method.

All query builder methods return a generic ObjectQuery instance, either an entity type, a
modeled complex type, or the ad hoc ObjectQuery(Of DbDataRecord) type. Table 16-1 lists
the standard query builder methods provided by the Entity Framework.

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 281

Table 16-1  Query Builder Methods

Query Builder
Method

Entity SQL
Equivalent

Description

Select SELECT Returns all original instances in the base class, but with
only those properties specified in the string argument. The
argument is a comma-delimited list of fields, properties, or
expressions, as is normally used in a SELECT statement.

SelectValue SELECT VALUE Similar to Select, but returns only a single property or
value. The returned value must be a simple type, an EF-
defined complex type, or a modeled entity type.

Distinct SELECT DISTRICT Removes duplicates from the collection of data instances.
Distinct doesn’t work on instances that contain BLOBs or
other database-level large-data fields.

Where WHERE Applies a conditional rule to the instances in the base query,
returning only those that match. The string argument is
the same as you would normally use in a WHERE clause.

GroupBy GROUP BY Groups results by one or more fields. The method accepts
two string arguments: (1) a comma-delimited list of the
grouping fields, or what would normally appear in a SQL
GROUP BY clause; and (2) a comma-delimited list of pro-
jected fields, or what would normally appear in the SELECT
clause.

OrderBy ORDER BY Uses a comma-delimited list of property or field names to
order a collection of instances. When used, the OrderBy
method should always appear at the end of a statement
that includes multiple query builder methods.

Top TOP, LIMIT Returns just the top number of instances from the base
collection, which is indicated by the passed-in argument.
When used after (to the right of) the Skip method, Top acts
like the LIMIT clause in an Entity SQL query.

Skip SKIP Skips over the number of instances indicated by the
passed-in count, returning all instances after the skipped
portion.

OfType OFTYPE For conceptual models that include inherited types, this
method returns only those instances that are truly instances
of the specified base or derived type.

Union UNION Combines a base query with another passed-in query, re-
turning the full set with duplicates removed.

UnionAll UNION ALL Same as the Union method, but with duplicates retained.

Intersect INTERSECT Merges the base query with the contents of another query
argument and returns only those instances that are found
in both.

Dwonloaded from: iDATA.ws

282	 Microsoft ADO.NET 4 Step by Step

Query Builder
Method

Entity SQL
Equivalent

Description

Except EXCEPT Returns all records in the original collection except those
found in the collection passed as an argument to this
method.

query1.Except(query2)

Returns query1 records not found in query2.

Those query builder methods that accept property names or expressions can use @-prefixed
parameters. The parameter values appear as additional arguments to the query method. The
following statement uses a parameter in a Where method call:

C#
query = context.Customers.Where("it.ID = @lookupID",

 new ObjectParameter("lookupID", 3422));

Visual Basic
query = context.Customers.Where("it.ID = @lookupID",

 New ObjectParameter("lookupID", 3422))

When using the Union, UnionAll, Intersect, or Except methods, the parameters applied to the
two source query collections are merged. Thus the same parameter name cannot appear in
both source queries.

This restriction on duplicate parameter names exists because of the way query builder meth-
ods process the core data. As with Entity SQL processing, the query builder methods delay
processing of data until your code attempts to access actual data from the query, such as try-
ing to access the value of an individual entity property.

Instead of applying changes to the entity sets and instance collections as the query builder
methods are encountered, each method instead helps craft one or more database-level
queries that perform the actual data retrieval. You can view this composed SQL statement by
accessing the CommandText property of the final query builder method in your set. As an ex-
ample, here’s the SQL command text produced by the previous query (the one that includes
the @lookupID parameter):

SELECT VALUE it

FROM ([SalesOrderEntities].[Customers]) AS it

WHERE it.ID = @lookupID

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 283

Queryable Extension Methods
The collection of results returned by each of the query builder methods is ObjectQuery(Of T),
a generic type that implements the IQueryable interface. This interface supports its own set
of extension methods (from the System.Linq.Queryable type) that can be used to augment
the results returned by query builder methods.

One of the simplest of these methods is First, which returns the topmost instance in the
query collection. It is the same as using the Top query builder method, but it returns results
of type IQueryable.

Other Queryable methods, such as Count and Max, provide results that parallel the Entity
SQL aggregate functions. For a full list of these methods, look up the “Queryable Class
(System.Linq)” entry in the Visual Studio online help.

Note  Many of the Queryable extension methods accept lambda functions as arguments.
Lambdas act as a type of inline function that the extension method calls for each instance in the
collection being processed. Visual Basic and C# have specific syntax rules for crafting lambda
expressions. See the Visual Studio online help for information on using lambda expressions.

Using Query Builder Methods: C#

Note  This exercise continues the previous exercise in this chapter.

1.	 Open the source code view for the CustomerEditor form. Locate the ActDelete_Click
event handler; this is a routine that manages the removal of Customer records. Just af-
ter the “Locate the customer record” comment (but before the if statement that follows
it), add the following code:

whichCustomer = ActiveContext.Customers.Where("it.ID = @lookupID",

 new ObjectParameter("lookupID", ItemData.GetItemData(

 AllCustomers.SelectedItem))).First();

This statement uses a parameterized Where query builder method to select one of the
customer entities by ID. It also calls the First extension method, one of the Queryable
methods.

2.	 Run the program. To test the code, select a customer from the list and then click Delete.
If the program prompts you to delete the customer, it successfully located the entity by
ID.

Dwonloaded from: iDATA.ws

284	 Microsoft ADO.NET 4 Step by Step

Using Query Builder Methods: Visual Basic

Note  This exercise continues the previous exercise in this chapter.

1.	 Open the source code view for the CustomerEditor form. Locate the ActDelete_Click
event handler; this is a routine that manages the removal of Customer records. Just af-
ter the “Locate the customer record” comment (but before the If statement that follows
it), add the following code:

whichCustomer = Me.ActiveContext.Customers.Where("it.ID = @lookupID",

 New ObjectParameter("lookupID", ItemData.GetItemData(

 AllCustomers.SelectedItem))).First()

This statement uses a parameterized Where query builder method to select one of the
customer entities by ID. It also calls the First extension method, one of the Queryable
methods.

2.	 Run the program. To test the code, select a customer from the list and then click Delete.
If the program prompts you to delete the customer, it successfully located the entity by
ID.

Dwonloaded from: iDATA.ws

	 Chapter 16  Understanding Entities Through Objects	 285

Summary
This chapter introduced Object Services—the core of the Entity Framework—and its concep-
tual model-centric way of dealing with data. The ability to modify database-level content
through seemingly simple object properties is what EF is all about. There is some work in-
volved in getting to that point; work that is thankfully supported by wizards and other tools
supplied with Visual Studio.

Microsoft added extension methods to both Visual Basic and C# initially to support the then-
new LINQ functionality. But beyond this core technology, Microsoft also added ready-to-use
methods that bring SQL-query functionality to ordinary object method calls. By stringing a
few or even a few dozen of these calls together, you can generate results that match even the
most complex hand-crafted SQL database queries.

Chapter 16 Quick Reference
To Do This

Modify a database field through an entity
property

Create a context instance for the conceptual model.

Access an entity from the context.

Modify the desired property value by assigning a new
value to it.

Call the context object’s SaveChanges method.

Use a query builder method to sort Customer
entities by the FullName field

Create a context instance for the conceptual model.

Access the collection of entities to be sorted.

Call the collection object’s OrderBy extension method,
passing it “it.FullName” as the order-by clause.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Microsoft ADO.NET 4 Step by Step

	 	 287

Part IV

LINQ

	 Chapter 17: Introducing LINQ

	 Chapter 18: Using LINQ to DataSet

	 Chapter 19: Using LINQ to Entities

	 Chapter 20: Using LINQ to SQL

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Chapter 17

Introducing LINQ
After completing this chapter, you will be able to:

■■ Understand the purpose of LINQ in your applications

■■ Identify the different LINQ providers

■■ Craft typical LINQ queries using ordinary .NET objects

SQL has proved to be a popular language for retrieving and manipulating data. It is found in
most major database systems, and even data libraries that aren’t necessarily tied to a data-
base—including the Entity Framework (EF)—use variants of SQL to access tabular or similarly
shaped data.

Given its consistency in the programming industry, it comes as no surprise that Microsoft
would endow both Visual Basic and C# with a SQL-like syntax for data retrieval purposes.
LINQ, introduced into Visual Studio with its 2008 release (and the accompanying .NET
Framework version 3.5), enables SQL-style queries that can analyze and retrieve data stored
in databases, XML, and even ordinary .NET objects and collections.

This chapter introduces LINQ in both its C# and Visual Basic forms. This is the first of four
chapters that cover the querying technology. Chapters 18 through 20 discuss specific flavors
of LINQ—flavors that tie directly to features of ADO.NET and the Entity Framework.

Note  The four LINQ-related chapters in this book offer only a brief introduction to the
LINQ query language and its extensibility. For expanded coverage of LINQ and how to use
it in your projects, review the Visual Studio online help. The upcoming Microsoft Press book,
Programming Microsoft® LINQ in .NET Framework 4, provides a detailed overview of LINQ and
its features.

Getting to Know LINQ
LINQ enables SQL-style language queries against a variety of data types. The queries
are part of the language syntax in both C# and Visual Basic, meaning that you get full
IntelliSense during query development. LINQ supports a wide range of queryable data
types, including most types of collections, arrays, and anything else that supports the
IEnumerable(Of T) or IQueryable(Of T) interfaces.

Dwonloaded from: iDATA.ws

290

LINQ was a major enhancement to Microsoft’s .NET language offerings; it brought several
syntax additions to both Visual Basic and C#. To support these changes, it was necessary to
add many new technologies, all of which are now available even when you’re not using LINQ
in your applications. Some of the more significant technologies you might encounter when
using LINQ include the following:

■■ Anonymous types  Entity SQL used these nameless types to generate results that
didn’t tie to any predefined entity type or complex type. LINQ uses them for much the
same purpose, allowing your code to project queries that include property sets not tied
to any custom class defined in your source code.

■■ Nullable types  The .NET Framework has always supported nullable reference types,
allowing your code to assign a value of null (C#) or Nothing (Visual Basic) to, say, a
string instance variable. Nullable types extend this same support to value types, such as
System.Int32 and System.Bool. LINQ uses nullable types to represent fields that contain
missing values in query results.

■■ Lambda expressions  Lambdas are function definitions that enable lightweight, call-
able logic in an in-line experience. LINQ uses lambda expressions to define the specifics
of each query operation, among other tasks.

■■ Extension methods  These methods let you add functionality to an existing class def-
inition, even if you don’t have access to the class source code. Query builder methods,
discussed in Chapter 16, “Understanding Entities Through Objects,” are extension meth-
ods. In fact, those same query builder methods provide much of the core functionality
for LINQ.

■■ Object initializers  Object initializers provide a convenient way of setting the proper-
ties of a new object instance, all in a single source code statement. More important,
this action is considered “in line,” meaning that the resulting populated instance can be
used right away in the same statement. New instances of objects generated by a LINQ
query have their fields populated using this tool. A related feature known as collection
initializers provides similar functionality for arrays and collections of individual objects.

■■ Local type inference  This feature lets the language compiler identify the data type
of a variable on your behalf, all based on the type of content being assigned to the
variable. LINQ depends heavily on inference, but you’ll see it most clearly when assign-
ing the results of a query to an untyped variable.

■■ Relaxed delegates  The .NET Framework enforces strong typing, not only in primitive
data types but also in function delegates and signatures. But there is still room for va-
riety through the use of function overloads. Relaxed delegates provide a form of func-
tion overloading to event handlers and delegates, allowing code to trigger handlers
that don’t necessarily conform to the official definition. The individual operations that
make up a LINQ query use somewhat ad hoc handlers that are implemented through
relaxed delegates.

Dwonloaded from: iDATA.ws

	 Chapter 17  Introducing LINQ	 291

■■ Partial methods  Partial methods allow classes (typically generated classes) to define
methods that might or might not be implemented at compile time. The inclusion of
these optional methods is left up to the programmer filling out the remainder of the
partial class definition. You can enhance your queries with partial methods to add inter-
active processing while the LINQ query builds the results.

■■ XML literals, XML axis properties, and embedded XML expressions  Version 3.5
of the .NET Framework added several new XML-related technologies, including the
somewhat exciting XML literals functionality included with Visual Basic. LINQ can query
XML content, and these technologies are used for such queries.

You can read about all these features in detail in the Visual Studio online help.

LINQ provides a common SQL-like experience to data retrieval within your source code. But
the syntax and features used change slightly depending on the type of data being queried.
LINQ includes several providers that tie to the type of data accessed by the system.

■■ LINQ to Objects  This is LINQ in its most basic form: the ability to query ordinary .NET
objects and collections. LINQ to Objects is the main focus of this chapter.

■■ LINQ to DataSet  ADO.NET DataSet instances have their own LINQ provider, enabling
specialized queries against the related tables and column values defined within each
set. Chapter 18, “Using LINQ to DataSet,” introduces this DataSet-centric form of LINQ.

■■ LINQ to Entities  This provider enables LINQ queries against an Entity Data Model,
whether generated by the EF’s Entity Data Model Designer or crafted by hand in XML.
An introduction to LINQ to Entities appears in Chapter 19, “Using LINQ to Entities.”

■■ LINQ to SQL  The LINQ to SQL provider specifically targets data stored in a Microsoft
SQL Server database. Information on the specifics of using this provider appears in
Chapter 20, “Using LINQ to SQL.”

■■ LINQ to XML  LINQ lets you query XML tags and attributes as if they were typical
database elements. The LINQ to XML provider is not discussed in this book.

LINQ is extensible, so third parties can develop their own providers. Several special-purpose
providers already exist, enabling access to formats as diverse as comma-separated values
(CSV) and Wikipedia.

Using LINQ with .NET Objects
The LINQ to Objects provider enables queries against standard .NET arrays, collections, ge-
neric collections, and anything else that implements the IEnumerable(Of T) or IQueryable(Of T)
interface. As in standard SQL, you form LINQ queries from operational clauses, such as Select,
Where, and Order By.

Dwonloaded from: iDATA.ws

292	 Microsoft ADO.NET 4 Step by Step

Note  The capitalization and syntax of the clause keywords differ slightly between C# and Visual
Basic. For readability purposes, I will use the Visual Basic form of these keywords when referring
to them in the prose text, but all examples appear in both languages.

For the sample queries in this section, assume that the following two simple object collec-
tions, transport and speed (code shown as follows), already exist and are available to the
query code:

C#
var transport = new[] { new { Name = "Car", Wheels = 4, SpeedClass = 3 },

 new { Name = "Motorcycle", Wheels = 2, SpeedClass = 3 },

 new { Name = "Bike", Wheels = 2, SpeedClass = 2 },

 new { Name = "Unicycle", Wheels = 1, SpeedClass = 1 },

 new { Name = "Tricycle", Wheels = 3, SpeedClass = 1 },

 new { Name = "Semi", Wheels = 18, SpeedClass = 3 }};

var speed = new[] { new { ClassID = 1, Name = "Low",

 LowMaxSpeed = 1, HighMaxSpeed = 10 },

 new { ClassID = 2, Name = "Medium",

 LowMaxSpeed = 11, HighMaxSpeed = 50 },

 new { ClassID = 3, Name = "High",

 LowMaxSpeed = 51, HighMaxSpeed = 150 }};

Visual Basic
Dim transport = {New With {.Name = "Car", .Wheels = 4, .SpeedClass = 3},

 New With {.Name = "Motorcycle", .Wheels = 2, .SpeedClass = 3},

 New With {.Name = "Bike", .Wheels = 2, .SpeedClass = 2},

 New With {.Name = "Unicycle", .Wheels = 1, .SpeedClass = 1},

 New With {.Name = "Tricycle", .Wheels = 3, .SpeedClass = 1},

 New With {.Name = "Semi", .Wheels = 18, .SpeedClass = 3}}

Dim speed = {New With {.ClassID = 1, .Name = "Low",

 .LowMaxSpeed = 1, .HighMaxSpeed = 10},

 New With {.ClassID = 2, .Name = "Medium",

 .LowMaxSpeed = 11, .HighMaxSpeed = 50},

 New With {.ClassID = 3, .Name = "High",

 .LowMaxSpeed = 51, .HighMaxSpeed = 150}}

These collections are anonymous in that a formal class was not defined to hold each instance.
Instead, C# and Visual Basic defined ad hoc (anonymous) classes based on the With clause in
each new object instance.

LINQ’s core implementation appears in the System.Linq namespace.

Dwonloaded from: iDATA.ws

	 Chapter 17  Introducing LINQ	 293

Starting a Query with the From Clause
The starting point for most LINQ queries is the From keyword. It serves much the same pur-
pose as the FROM keyword in SQL, but andunlike the SQL variant, the LINQ From keyword
appears first in typical query statements.

C#
// ----- Standalone From clauses are not supported in C#.

// This next line will not compile, but serves only

// to demonstrate the general syntax.

var results = from tr in transport;

Visual Basic
Dim results = From tr In transport

The From clause identifies the enumerable source of the query (transport in this case) and its
single-instance operator (tr), also known as a range variable. It’s akin to working with a collec-
tion of entities in the Entity Framework, where an individual entity is something distinct from
the collection that contains it.

Your query need not be limited to anonymous results, either. If you know the data type of
the query output, you should take advantage of this knowledge by using a target variable of
the expected type.

C#
// ----- Standalone From clauses are not supported in C#.

// This next line will not compile, but serves only

// to demonstrate the general syntax.

IEnumerable<Customer> results = from cu in Customers;

Visual Basic
Dim results As IEnumerable(Of Customer) = From cu In Customers

The single-line From query is the simplest LINQ query you can form in Visual Basic (it is
not supported in C#), and it doesn’t do much more than express the source collection as
IEnumerable(Of T).

Projecting Results with the Select Clause
The Select keyword lets you create a projection, a transformation of the original columns or
properties into a new subset of columns or properties. The output properties can include any
of the source properties and can also include static values or calculated values.

Dwonloaded from: iDATA.ws

294	 Microsoft ADO.NET 4 Step by Step

The following statement projects four new properties from the original speed collection: a
calculated string value, two of the original numeric properties, and a new property that in-
volves a complex multiproperty calculation. When including multiple output properties in your
projection, C# requires that the properties be contained in a new anonymous type definition
(new {}). Visual Basic lets you retain a more SQL-like presentation, allowing you to list the
fields without the object-creation syntax.

C#
var results = from sp in speed

 select new { Name = sp.Name.ToUpper(), sp.LowMaxSpeed, sp.HighMaxSpeed,

 SpeedRange = (sp.HighMaxSpeed - sp.LowMaxSpeed + 1) };

Visual Basic
Dim results = From sp In speed

 Select Name = sp.Name.ToUpper, sp.LowMaxSpeed, sp.HighMaxSpeed,

 SpeedRange = (sp.HighMaxSpeed - sp.LowMaxSpeed + 1)

This query is a little more interesting than a plain From clause. And it’s interesting-looking
as well because it gives the impression of a SQL-like query within the very syntax of the C#
or Visual Basic source code. Behind the scenes, the language is coercing these queries into a
typical method-based format so that it can be turned into standard .NET compiled code. If
desired, you can skip the SQL-style coding and craft the method-style statements yourself.
The following statement replicates the functionality of the SQL-style statement appearing
just above.

C#
var results = speed.Select(sp => new { Name = sp.Name.ToUpper(),

 sp.LowMaxSpeed, sp.HighMaxSpeed,

 SpeedRange = sp.HighMaxSpeed - sp.LowMaxSpeed + 1 });

Visual Basic
Dim results = speed.Select(Function(sp) New With {

 .Name = sp.Name.ToUpper, sp.LowMaxSpeed, sp.HighMaxSpeed,

 .SpeedRange = sp.HighMaxSpeed - sp.LowMaxSpeed + 1})

Instead of the database-style query format, this version works directly with the extension
methods and lambda expressions that form the basis of LINQ query processing.

Unless you specify otherwise, the output of a projection will be a new anonymous type. To
force output of a specific type, include the type name when building the projection fields.

Dwonloaded from: iDATA.ws

	 Chapter 17  Introducing LINQ	 295

C#
IEnumerable<SimpleClass> results = from tr in transport

 select new SimpleClass { Name = tr.Name, NumValue = tr.SpeedClass };

Visual Basic
Dim results As IEnumerable(Of SimpleClass) = From tr In transport

 Select New SimpleClass With {.Name = tr.Name, .NumValue = tr.SpeedClass}

You can assign the results of any query to an inferred or manually-typed variable or use the
results immediately in other statements that accept collections, such as the For Each (Visual
Basic) or foreach (C#) statement.

C#
foreach (var oneVehicle in (from tr in transport select tr))

{

}

Visual Basic
For Each oneVehicle In (From tr In transport Select tr)

Next oneVehicle

Note  Although you do not need to surround the LINQ query in parentheses when using it in a
For Each statement in Visual Basic, leaving out the parentheses can sometimes cause confusion,
especially within the development environment. In Visual Basic, there is no formal terminator
(beyond a blank line) that indicates the end of a LINQ query. Therefore, if you immediately fol-
low the loop’s LINQ query with loop content, forgoing a blank line at the top of the loop’s body,
Visual Studio’s code editor and its IntelliSense system might incorrectly assume that the query
continues onto the next line. Adding the parentheses removes this interpretation.

Filtering Results with the Where Clause
The Where clause applies a filtering operation to the original collection, using the supplied
filter to limit the results to just those that match the filter.

C#
var results = from tr in transport

 where tr.SpeedClass == 1

 select tr;

Visual Basic
Dim results = From tr In transport

 Where tr.SpeedClass = 1

 Select tr

Dwonloaded from: iDATA.ws

296	 Microsoft ADO.NET 4 Step by Step

Internally, LINQ uses the Where extension method and a lambda expression that expresses
the condition that filters the original collection.

C#
var results = transport.Where(tr => tr.SpeedClass == 1);

Visual Basic
Dim results = transport.Where(Function(tr) tr.SpeedClass = 1)

The Where clause supports all the conditional filtering elements you would expect from SQL,
including the comparison operators (>=, <, and so on), the logical operators (And, Or, and
Not in Visual Basic, &&, ||, and ! in C#), and support for complex expressions. Add parentheses
as needed to allow for conditional grouping of filters.

C#
var results = from tr in transport

 where tr.SpeedClass == 1 && tr.Name.EndsWith("cycle")

 select tr;

Visual Basic
Dim results = From tr In transport

 Where tr.SpeedClass = 1 And tr.Name Like "*cycle"

 Select tr

Sorting Results with the Order By Clause
The Order By clause sorts the projected and filtered results by one or more properties or
expressions. Each sort field in the comma-separated list that follows the Order By keywords
is processed from left to right. Optional Ascending (the default) and Descending modifiers ap-
pear after any of the sort fields.

C#
var results = from tr in transport

 orderby tr.SpeedClass descending, tr.Name

 select tr;

Visual Basic
Dim results = From tr In transport

 Order By tr.SpeedClass Descending, tr.Name

 Select tr

Dwonloaded from: iDATA.ws

	 Chapter 17  Introducing LINQ	 297

LINQ uses the OrderBy (or its OrderByDescending counterpart) extension method to sort a
projection on a field. When sorting on a single field, that method does a great job, but it
always assumes that the records to be sorted have not been previously sorted. If you opt to
develop a query using extension methods and try to string together multiple OrderBy meth-
ods, the results will be sorted only by the last (rightmost) OrderBy call.

C#
// ----- This sorts by tr.Name (ascending) ONLY!

var results = transport.OrderByDescending(

 tr => tr.SpeedClass).OrderBy(tr => tr.Name);

Visual Basic
' ----- This sorts by tr.Name (ascending) ONLY!

Dim results = transport.OrderByDescending(

 Function(tr) tr.SpeedClass).OrderBy(Function(tr) tr.Name)

To preserve the ordering imposed by earlier calls to OrderBy or OrderByDescending, LINQ
provides the ThenBy and ThenByDescending extension methods. This pair sorts results just
like their OrderBy complements, but they do so in conjunction with and subordinate to prior
sorting requests.

C#
// ----- This sorts by SpeedClass (descending), Name (ascending).

var results = transport.OrderByDescending(

 tr => tr.SpeedClass).ThenBy(tr => tr.Name);

Visual Basic
' ----- This sorts by SpeedClass (descending), Name (ascending).

Dim results = transport.OrderByDescending(

 Function(tr) tr.SpeedClass).ThenBy(Function(tr) tr.Name)

Selecting Linked Results with the Join Keyword
As in standard SQL, LINQ supports queries that combine results from two or more object col-
lections. LINQ has direct support for inner joins and cross joins, and indirect support for left
outer joins through the generation of hierarchical query results. Standard LINQ queries do
not support right outer joins and full outer joins.

Dwonloaded from: iDATA.ws

298	 Microsoft ADO.NET 4 Step by Step

To build a cross join, which generates all possible combinations of two incoming collections,
simply include both of the collections in From clauses. Visual Basic allows multiple comma-
delimited sources in the From clause; in C#, you must provide distinct From clauses.

C#
var results = from tr in transport

 from sp in speed

 select new { tr.Name, tr.SpeedClass, SpeedName = sp.Name };

Visual Basic
Dim results = From tr In transport, sp In speed

 Select tr.Name, tr.SpeedClass, SpeedName = sp.Name

To change this cross join into an inner join (which includes only those record combinations
that match based on a condition), add a Where clause that indicates the relationship between
the two collections in the From clause.

C#
var results = from tr in transport

 from sp in speed

 where tr.SpeedClass == sp.ClassID

 select new { tr.Name, tr.SpeedClass, SpeedName = sp.Name };

Visual Basic
Dim results = From tr In transport, sp In speed

 Where tr.SpeedClass = sp.ClassID

 Select tr.Name, tr.SpeedClass, SpeedName = sp.Name

You can also create inner joins using the Join clause, which is a syntax closer to standard SQL
JOIN syntax. Similar to From, Join identifies a collection and its range variable, but it also in-
cludes an On clause that documents the joined fields.

C#
var results = from tr in transport

 join sp in speed on tr.SpeedClass equals sp.ClassID

 select new { tr.Name, tr.SpeedClass, SpeedName = sp.Name };

Visual Basic
Dim results = From tr In transport

 Join sp In speed On tr.SpeedClass Equals sp.ClassID

 Select tr.Name, tr.SpeedClass, SpeedName = sp.Name

Dwonloaded from: iDATA.ws

	 Chapter 17  Introducing LINQ	 299

Note that you use the Equals keyword rather than an equals sign to pair the joined fields. For
multicolumn relationships, the On clause includes an And keyword that works much like the
conditional And clause.

LINQ can create hierarchical results, known as group joins, which simulate a database-level
left outer join. This type of joined query can include a subordinate set of results within one
field of each parent record. For instance, a group join between customer and order collec-
tions can generate a set of customer objects, each of which includes an Orders field contain-
ing a full collection of orders for that customer.

The syntax to produce a group join parallels that of a standard inner join, but you add the
Group keyword just before Join (Visual Basic only). An additional Into clause defines the
columns or properties of the subordinate collection. Within this clause, the special Group
keyword refers to the entire collection (again, Visual Basic only).

C#
// ----- Generates a set of speed records, with each record

// containing the speed record name plus a "Members"

// property that is itself a collection of transport

// records associated with the parent speed record.

var results = from sp in speed

 join tr in transport on sp.ClassID equals tr.SpeedClass

 into Members

 select new { SpeedGroup = sp.Name, Members };

Visual Basic
' ----- Generates a set of speed records, with each record

' containing the speed record name plus a "Members"

' property that is itself a collection of transport

' records associated with the parent speed record.

Dim results = From sp In speed

 Group Join tr In transport On sp.ClassID Equals tr.SpeedClass

 Into Members = Group

 Select SpeedGroup = sp.Name, Members

Limiting the Queried Content
In Visual Basic, LINQ includes several SQL-style keywords that limit the amount of data re-
turned by its queries.

The Distinct clause removes duplicate rows from the results. It typically appears after the en-
tire Select clause in Visual Basic. C# supports Distinct only in its extension method form.

Dwonloaded from: iDATA.ws

300	 Microsoft ADO.NET 4 Step by Step

C#
var results = (from tr in transport

 orderby tr.Wheels

 select tr.Wheels).Distinct();

Visual Basic
Dim results = From tr In transport

 Select tr.Wheels Distinct

 Order By Wheels

The Skip and Take clauses let you generate paged results, returning a limited number of ob-
jects in the output collection. Each keyword is followed by a numeric count that indicates the
number of records to skip (Skip) or include (Take). You can use either or both of these clauses
in your query. Using the Take clause alone parallels the functionality of the TOP keyword in
SQL Server.

C#
// ----- Use extension method form in C#.

var results = (from tr in transport

 select tr).Take(5);

Visual Basic
Dim results = From tr In transport

 Take 5

Because LINQ queries are processed in the order in which their clauses appear, you will prob-
ably want to use an Order By clause before applying either Skip or Take, not after.

The Skip While and Take While clauses work just like Skip and Take, but rather than a number,
each accepts a conditional expression applied to each successive instance in the generated
query results.

Some of the extension methods associated with the IQueryable interface can also be used
to limit the results. They are applied to the completed query when using the SQL-like syntax.
When using LINQ’s extension method syntax, they appear as additional methods on the end
of the statement, as was done with the C# samples for Distinct and Take.

C#
// ----- Returns just the first result, not a collection.

var result = (from tr in transport select tr).First();

// ----- Counts the returned records.

int result = (from tr in transport select tr).Count();

Dwonloaded from: iDATA.ws

	 Chapter 17  Introducing LINQ	 301

Visual Basic
' ----- Returns just the first result, not a collection.

Dim result = (From tr In transport).First

' ----- Counts the returned records.

Dim result As Integer = (From tr In transport).Count

Summarizing Data Using Aggregates
LINQ includes several data aggregation functions that summarize data across the entire
result set or within subgroups when used with the Group By clause.

In Visual Basic, if a query exists only to generate a single aggregate value, replace the From
clause with an Aggregate clause. It starts out just like the From clause, with its source collec-
tion name and its range variable. This is followed by an Into clause that indicates the summary
function.

Visual Basic
' ----- What is the maximum wheel count on any vehicle?

Dim result As Integer = Aggregate tr In transport

 Into Max(tr.Wheels)

You can also use the extension method form of Max (or other aggregates), which works in
both Visual Basic and C#.

C#
// ----- What is the maximum wheel count on any vehicle?

int result = transport.Max(tr => tr.Wheels);

Visual Basic
' ----- What is the maximum wheel count on any vehicle?

Dim result As Integer = transport.Max(Function (tr) tr.Wheels)

LINQ includes the aggregate functions common to most database systems: Count (or
LongCount, which is functionality identical to Count, but returns a System.Int64 value); Sum;
Min; Max; and Average. Two additional functions, Any and All, return a Boolean value indicat-
ing whether any or all of the objects in the collection passed some conditional query.

Dwonloaded from: iDATA.ws

302	 Microsoft ADO.NET 4 Step by Step

C#
// ----- Do any vehicles have three wheels?

bool result = transport.Any(tr => tr.Wheels == 3);

Visual Basic
' ----- Do any vehicles have three wheels?

Dim result As Boolean = Aggregate tr In transport

 Into Any(tr.Wheels = 3)

The Group By clause collects aggregate summaries within unique and identifiable groups.
Use it instead of the Aggregate clause to summarize data by category. Like Aggregate, it in-
cludes an Into clause that lists the summary functions (useful in Visual Basic) or indicates the
target group identifier (C#). The comma-delimited list of fields used in categorizing the data
appears between the By and Into keywords. A special member of the created aggregate, Key,
presents the unique grouping value for each subsection.

C#
// ----- Vehicles by wheel count.

var results = from tr in transport

 group tr by tr.Wheels into g

 orderby g.Key

 select new { g.Key, HowMany = g.Count(tr => true) };

Visual Basic
' ----- Vehicles by wheel count.

Dim results = From tr In transport

 Group By tr.Wheels Into HowMany = Count(True)

 Order By Wheels

In Visual Basic, the Group By class performs an implicit Select of both the grouping columns
and the aggregate results, so you don’t need to include your own Select clause unless you
want to further project the results.

Applying Set Operations
Table 16-1 in Chapter 16 includes some extension methods that perform set operations:
Union, UnionAll, Intersect, and Except. SQL-style LINQ queries do not have specific keywords
for these features, but you can still use the extension methods directly to combine multiple
collections. The following query adds the Union extension method to one query, passing a
second query as an argument:

Dwonloaded from: iDATA.ws

	 Chapter 17  Introducing LINQ	 303

C#
var allTheNames = (from tr in transport

 select tr.Name).Union(

 from sp in speed

 select sp.Name);

Visual Basic
Dim allTheNames = (From tr In transport

 Select tr.Name).Union(

 From sp In speed

 Select sp.Name)

The queries to be combined can be as complex as you want, but the results must be
merge-compatible.

Summary
This chapter provided a glimpse into LINQ and its capability to apply SQL-style queries to
ordinary .NET object collections. The clauses that form the basis of each query including
From, Select, and Order By parallel their SQL counterparts in both meaning and functionality.
Although there are some differences that stem from LINQ’s data-agnostic way of processing
information, the ability to use the familiar SQL paradigm directly in the syntax of the C# and
Visual Basic languages brings together two great data processing worlds to meet your data
management needs.

For added power, you can use the IEnumerable(Of T) and IQueryable(Of T) extension meth-
ods, among others, to enhance the processed results. Although not covered in this chapter, it
is possible to write your own extension methods that integrate into LINQ queries as first-class
processing features.

The next three chapters delve deeper into the specific flavors of LINQ that pertain to the
ADO.NET experience.

Dwonloaded from: iDATA.ws

304	 Microsoft ADO.NET 4 Step by Step

Chapter 17 Quick Reference
To Do This

Join two collections together with an ”inner join” Include the Join keyword in the LINQ query, specifying
the linked columns with the On keyword.

Alternatively, include both collections in the From clause;
use a Where condition to indicate the link.

Get a count of records in a query Use the Aggregate clause followed by an Into Count(x).

The argument to Count is a Boolean expression; use True
to include all records.

Return the results of a query minus any results
found in a second query

Use the Except extension method:

(query1).Except(query2)

Dwonloaded from: iDATA.ws

Chapter 18

Using LINQ to DataSet
After completing this chapter, you will be able to:

■■ Prepare a DataTable instance so that it uses the IEnumerable interface

■■ Treat ADO.NET table values as first-class members of a LINQ query

■■ Cast type-neutral column values as strongly typed query values

LINQ processes data from a variety of sources, but those sources must first be expressed in a
form that LINQ can use. For instance, LINQ expects that all incoming data be stored in a col-
lection, one that conforms to either the IEnumerable(Of T) or the IQueryable(Of T) interface.

The LINQ to DataSet provider endows ordinary ADO.NET DataTable objects with the ability
to participate fully in LINQ queries. It does this by adding the necessary LINQ requirements
to relevant ADO.NET classes. This chapter introduces these enhancements and shows you
how to employ them to extract data from data sets using the power of LINQ.

Understanding the LINQ to DataSet Provider
ADO.NET’s DataTable class, as a logical collection of data-laden objects, is the perfect can-
didate for inclusion in LINQ queries. Unfortunately, it exhibits two aspects that make it less
than useful with LINQ: (1) it implements neither IEnumerable(Of T) nor IQueryable(Of T), and
(2) the data values contained in each DataRow instance exist as System.Object instances
and only indirectly express their true types through DataColumn definitions.

To overcome these deficiencies, the LINQ to DataSet provider adds new extension methods
to both the DataTable and DataRow classes. These new features appear in the System.Data.
DataSetExtensions assembly (found in the System.Data.DataSetExtensions.dll library file).

The assembly defines two classes, DataTableExtensions and DataRowExtensions, that include
new extension methods for the DataTable and DataRow classes, respectively. For data tables,
there is a new AsQueryable method that acts as the gateway for bringing ADO.NET data into
a LINQ query.

Dwonloaded from: iDATA.ws

306

On the DataRow side, a new Field(Of T) method moves each data column value from a ge-
neric, semi-typeless existence to a strongly typed presence within your queries. It is still up
to you, as the programmer, to correctly indicate the type of each field as you add them to
the LINQ query syntax. But once defined, you can apply all the standard operators to those
fields, including them in projections, filters, and other types of expressions.

Note  You can use DataRow values within LINQ queries without applying the Field(Of T) exten-
sion method. However, these fields will still pose as System.Object instances. This might prevent
you from carrying out certain types of query actions on specific fields. Also, you must still resolve
the data type of each field before using it in post-query processing.

LINQ to DataSet also lets you craft queries that use ADO.NET Typed Data Sets; however, the
Entity Framework supercedes most of the advantages of typed data sets. Therefore, LINQ queries
against typed data sets are not discussed in this book.

Writing Queries with LINQ to DataSet
With the exception of the new enumerated methods specific to LINQ to DataSet, using
ADO.NET DataTable objects in LINQ queries is identical to using standard collection objects.
The first step involves converting a data table to its enumerable equivalent using the and,
which can be applied to any DataTable instance.

C#
// ----- Customer is an existing DataTable instance.

var results = from cu in Customer.AsEnumerable()

 select cu;

Visual Basic
' ----- Customer is an existing DataTable instance.

Dim results = From cu In Customer.AsEnumerable()

 Select cu

Although the LINQ to DataSet provider includes “DataSet” in its name, the focus in LINQ
queries is on the DataTable class. LINQ to DataSet does not consider a DataTable instance’s
presence in an overall DataSet to be significant, nor does it examine any DataRelationship
objects when processing queries that contain multiple DataTable instances. You must link
tables together using LINQ’s standard Join operator or use the Where clause to create an
implicit join.

Dwonloaded from: iDATA.ws

	 Chapter 18  Using LINQ to DataSet	 307

C#
// ----- Explicit join.

var results = from cu in Customer.AsEnumerable()

 join ord in Order.AsEnumerable() on cu.ID equals ord.CustomerID

 select...

// ----- Implicit join

var results = from cu in Customer.AsEnumerable()

 from ord in Order.AsEnumerable()

 where cu.ID == ord.CustomerID

 select...

Visual Basic
' ----- Explicit join.

Dim results = From cu In Customer.AsEnumerable()

 Join ord In Order.AsEnumerable() On cu.ID Equals ord.CustomerID

 Select...

' ----- Implicit join

Dim results = From cu In Customer.AsEnumerable(), ord In Order.AsEnumerable()

 Where cu.ID = ord.CustomerID

 Select...

After making the tables part of the query, you can access each row’s individual column values
as if they were typical LINQ query properties. As mentioned previously, LINQ will not auto-
matically ascertain the data type of any given column; you must explicitly cast each field to
its proper type.

To cast a field, add the Field extension method to the end of the range variable (the range
variables in the previous code sample are cu and ord). Because the implementation of Field
uses generics, you must also attach a type name using the language-appropriate syntax. Pass
the name of the column as an argument to Field.

C#
var results = from cu in Customer.AsEnumerable()

 orderby cu.Field<string>("FullName")

 select new { CustomerName = cu.Field<string>("FullName") };

Visual Basic
Dim results = From cu In Customer.AsEnumerable()

 Select CustomerName = cu.Field(Of String)("FullName")

 Order By CustomerName

Dwonloaded from: iDATA.ws

308	 Microsoft ADO.NET 4 Step by Step

The Field method includes a few overloaded variations. In addition to field names, you can
use a zero-based column position to locate field data, although this might reduce readability
in your queries. An additional argument lets you specify the DataRowVersion to use. By de-
fault, queries use the DataRowVersion.Current version of the row.

Even when enumerated DataTable objects play a key role in a LINQ query, they need not be
the only source of data involved. Part of LINQ’s appeal is that it allows you to write queries
that involve data from disparate sources. You can mix LINQ to Objects and LINQ to DataSet
content in the same query simply by including each source in the From clause.

C#
// ----- Build an ad hoc collection, although you could also

// include a fully realized class.

var statusTable[] = { new { Code = "P", Description = "Active Order" },

 new { Code = "C", Description = "Completed / Shipped" },

 new { Code = "X", Description = "Canceled" }};

// ----- Link ADO.NET and Object collections in one query.

var results = from ord in Order.AsEnumerable()

 join sts in statusTable on

 ord.Field<string>("StatusCode") equals sts.Code

 orderby ord.Field<long>("ID")

 select new { OrderID = ord.Field<long>("ID"),

 CurrentStatus = sts.Description };

Visual Basic
' ----- Build an ad hoc collection, although you could also

' include a fully realized class.

Dim statusTable = {New With {.Code = "P", .Description = "Active Order"},

 New With {.Code = "C", .Description = "Completed / Shipped"},

 New With {.Code = "X", .Description = "Canceled"}}

' ----- Link ADO.NET and Object collections in one query.

Dim results = From ord In Order.AsEnumerable()

 Join sts In statusTable On _

 ord.Field(Of String)("StatusCode") Equals sts.Code

 Select OrderID = ord.Field(Of Long)("ID"),

 CurrentStatus = sts.Description

 Order By OrderID

As in LINQ to Objects, the actual processing of a LINQ to DataSet query does not occur until
your code references content from a constructed query. However, all the involved DataTable
instances must already be filled with valid data before you make the query. When dealing

Dwonloaded from: iDATA.ws

	 Chapter 18  Using LINQ to DataSet	 309

with data from external sources, you must bring any data you plan to include in a LINQ
query into the relevant DataTable instances before passing the objects through LINQ. If you
use a DataAdapter to load data, call its Fill method before using LINQ to extract data.

Note  The DataAdapter object’s Fill method loads all requested data into local DataSet memory.
If the tables you need to query with LINQ are large and you aren’t able to first reduce the num-
ber of ADO.NET-managed rows, you might wish to consider alternatives to LINQ to DataSet.
LINQ to Entities, discussed in Chapter 19, “Using LINQ to Entities,” can process external data
without the need to load full tables into memory.

Querying with LINQ to DataSet: C#

1.	 Open the “Chapter 18 CSharp” project from the installed samples folder. The project
includes a Windows.Forms class named OrderViewer, which is a simple order-list viewer.

2.	 Open the source code view for the OrderViewer form. Locate the GetConnectionString
function; this is a routine that uses a SqlConnectionStringBuilder to create a valid con-
nection string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = @"(local)\SQLExpress";

sqlPortion.InitialCatalog = "StepSample";

sqlPortion.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

3.	 Locate the ActView_Click event handler. This routine displays a list of orders for either
all customers in the database or for a specific customer by ID number. Just after the
“Retrieve all customer orders” comment, add the following statement:

var result = from cu in customerTable.AsEnumerable()

 from ord in orderTable.AsEnumerable()

 from sts in statusTable

 where cu.Field<long>("ID") == ord.Field<long>("Customer")

 && ord.Field<string>("StatusCode") == sts.Code

 orderby cu.Field<string>("FullName"), ord.Field<long>("ID")

 select new { CustomerID = cu.Field<long>("ID"),

 CustomerName = cu.Field<string>("FullName"),

 OrderID = ord.Field<long>("ID"),

 OrderStatus = sts.Description,

 OrderDate = ord.Field<Date>("OrderDate"),

 OrderTotal = ord.Field<decimal>("Total") };

This query combines two DataTable instances (customerTable and orderTable, each
decorated with the AsEnumerable extension method) with a collection of local object
instances (statusTable). It forms implicit inner joins between the tables via the where
clause and performs a projection of fields from each source table.

Dwonloaded from: iDATA.ws

310	 Microsoft ADO.NET 4 Step by Step

4.	 Just after the “Filter and display the orders” comment, add the following lines:

var result2 = result.Where(ord => ord.CustomerID ==

 long.Parse(CustomerID.Text));

AllOrders.DataSource = result2.ToList();

These statements filter the original query by selecting those records that include a user-
specified customer ID. This segment uses LINQ extension methods and a lambda ex-
pression, which works well with the LINQ to DataSet provider. The second line displays
the results.

5.	 Just after the “Just display the original full results” comment, add the following
statement:

AllOrders.DataSource = result.ToList();

This code displays the query results when no further customer ID filtering is needed.

6.	 Run the program. To see orders, select the Include One Customer By ID option, enter 1
in the Customer ID field, and then click View.

The grid displays content from each of the three source tables. For example, the
CustomerName column shows a value from the ADO.NET Customer table, the
OrderDate column comes from the Order table, and OrderStatus gets its information
from the ad hoc in-memory statusTable collection.

Querying with LINQ to DataSet: Visual Basic

1.	 Open the “Chapter 18 VB” project from the installed samples folder. The project in-
cludes a Windows.Forms class named OrderViewer, which is a simple order-list viewer.

Dwonloaded from: iDATA.ws

	 Chapter 18  Using LINQ to DataSet	 311

2.	 Open the source code view for the OrderViewer form. Locate the GetConnectionString
function; this is a routine that uses a SqlConnectionStringBuilder to create a valid con-
nection string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = "(local)\SQLExpress"

sqlPortion.InitialCatalog = "StepSample"

sqlPortion.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

3.	 Locate the ActView_Click event handler. This routine displays a list of orders for either
all customers in the database or for a specific customer by ID number. Just after the
“Retrieve all customer orders” comment, add the following statement:

Dim result = From cu In customerTable.AsEnumerable(),

 ord In orderTable.AsEnumerable(),

 sts In statusTable

 Where cu.Field(Of Long)("ID") = ord.Field(Of Long)("Customer") _

 And ord.Field(Of String)("StatusCode") = sts.Code

 Select CustomerID = cu.Field(Of Long)("ID"),

 CustomerName = cu.Field(Of String)("FullName"),

 OrderID = ord.Field(Of Long)("ID"),

 OrderStatus = sts.Description,

 OrderDate = ord.Field(Of Date)("OrderDate"),

 OrderTotal = ord.Field(Of Decimal)("Total")

 Order By CustomerName, OrderID

This query combines two DataTable instances (customerTable and orderTable, each
decorated with the AsEnumerable extension method) with a collection of local object
instances (statusTable). It forms implicit inner joins between the tables via the Where
clause and performs a projection of fields from each source table.

4.	 Just after the “Filter and display the orders” comment, add the following lines:

Dim result2 = result.Where(Function(ord) ord.CustomerID =

 CLng(CustomerID.Text))

AllOrders.DataSource = result2.ToList()

These statements filter the original query by selecting those records that include a user-
specified customer ID. This segment uses LINQ extension methods and a lambda ex-
pression, which works well with the LINQ to DataSet provider. The second line displays
the results.

5.	 Just after the “Just display the original full results” comment, add the following
statement:

AllOrders.DataSource = result.ToList()

This code displays the query results when no further customer ID filtering is needed.

Dwonloaded from: iDATA.ws

312	 Microsoft ADO.NET 4 Step by Step

6.	 Run the program. To see orders, select the Include All Customers option and then click
View.

The grid displays content from each of the three source tables. For example, the
CustomerName column shows a value from the ADO.NET Customer table, the OrderDate
column comes from the Order table, and OrderStatus gets its information from the ad hoc
in-memory statusTable collection.

Summary
This chapter introduced LINQ to DataSet, an ADO.NET-focused variation of LINQ to Objects.
The implementation of the LINQ to Dataset provider shares a close relationship and syntax
with the base LINQ to Objects implementation. By applying a few simple extension methods,
DataTable objects can become part of independent or integrated data queries.

Beyond LINQ to Objects, LINQ to DataSet is probably the easiest of the LINQ providers to
use in your application. Its only drawback is that it expects any queried data to be memory-
resident, something not required by other LINQ providers that extract content from external
databases.

Dwonloaded from: iDATA.ws

	 Chapter 18  Using LINQ to DataSet	 313

Chapter 18 Quick Reference
To Do This

Include a DataTable instance in a LINQ query Call the DataTable object’s AsEnumerable extension
method.

Pass the results of this call as a table source in the query.

Include a DataTable column in a LINQ query Add the DataTable as a source within the query, adding a
range variable.

Call the range variable’s Field extension method, indicat-
ing the generic data type and the name of the column.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Chapter 19

Using LINQ to Entities
After completing this chapter, you will be able to:

■■ Create LINQ queries that access content from an Entity Framework data model

■■ Call database-level functions from LINQ queries

■■ Understand how LINQ treats entities differently from other data sources

The Entity Framework (EF) is a model-based interface between your application and an ex-
ternal database. As discussed earlier in this book, the Framework presents logical, database-
centric data content in a conceptual form expressed through object instances. This focus on
objects makes the Entity Framework a great match for LINQ.

The LINQ to Entities provider brings the world of entities and LINQ queries together. This
chapter introduces this EF-centric LINQ provider, a system that takes advantage of the Entity
Framework’s model-focused data and LINQ’s capability to develop native language queries
that target entities and their properties.

Note  The exercises in this chapter all use the same sample project, a tool that makes queries
using LINQ to Entities. Although you can run the application after each exercise, the expected
results for the full application might not appear until you complete all exercises in the chapter.

Understanding the LINQ to Entities Provider
The ObjectSet(Of TEntity) and ObjectQuery(Of T) classes—the two key collection-style base
classes used in the Entity Framework—are ready to use in LINQ queries. Both collection
types implement IEnumerable(Of T) and IQueryable(Of T), the same interfaces that LINQ
requires to enable query operations on a collection. Any entity collection exposed by an EF
context or built from an ObjectQuery instance—such as a query processed with Entity SQL—
can form the basis of a LINQ query.

EF entities referenced in a LINQ query expose properties that are available for projection,
filtering, sorting, and other LINQ operations. LINQ to Entities queries are much cleaner than
their LINQ to DataSet counterparts because each entity property already expresses its
model-defined data type.

Dwonloaded from: iDATA.ws

316

Like LINQ, the Entity Framework is a delayed-processing system. The actual retrieval of data
(from the database) does not occur at the time you build a data query; instead, data is pro-
cessed and returned to your application only when you attempt to reference specific entities
and properties. When you write an EF query, the Framework prepares a T-SQL query (when
SQL Server is used as the backend database) that it runs on the database server to obtain the
desired records. That database action occurs only when you access the results of the query
statement.

When you craft LINQ queries that involve EF objects, the application employs this same form
of delayed processing. The clauses in a LINQ query—and ultimately the extension methods
and lambda expressions that make up a LINQ expression tree—translate into SQL statements
and clauses that are played out on the data server. For this reason, all LINQ to Entities queries
can involve only objects and data elements that can be represented within a remotely run SQL
statement. While other LINQ providers can be mixed—Chapter 18, “Using LINQ to DataSet,”
combined LINQ to Objects and LINQ to DataSet content—LINQ to Entities imposes restric-
tions on the type of data involved in the queries.

Note  One of the exercises in this chapter will demonstrate one way that LINQ to Entities can be
used indirectly with other forms of LINQ.

Some LINQ features available with other LINQ providers are not supported by LINQ to
Entities. Projections, comparisons, and joins that are based on a locally-defined function
won’t work in LINQ to Entities because the local function cannot be represented in a SQL
query running elsewhere. Also, the Last, SkipWhile, and TakeWhile extension methods are not
available; Skip and Take (in both their SQL-style and extension method forms) will work.

Writing Queries with LINQ to Entities
As with all LINQ providers, the general structure of LINQ to Entities queries varies only a little
from the LINQ to Objects standard. In fact, looking at a LINQ to Entities query, it’s hard to
see that it isn’t working with standard .NET objects. The telltale sign is the use of an active
Entity Framework object context, either as a direct source for entities or as a way to run an
ObjectQuery that will feed data into LINQ.

Dwonloaded from: iDATA.ws

	 Chapter 19  Using LINQ to Entities	 317

Here is a query that returns some properties from a Customer entity:

C#
using (SalesOrderEntities context = new SalesOrderEntities(connectionString))

{

 var results = from cu in context.Customers

 orderby cu.FullName

 select new { CustomerID = cu.ID, CustomerName = cu.FullName };

}

Visual Basic
Using context As New SalesOrderEntities(connectionString)

 Dim results = From cu In context.Customers

 Order By cu.FullName

 Select CustomerID = cu.ID, CustomerName = cu.FullName

End Using

Most of the standard LINQ clauses are included, in both their LINQ expression and their
extension method/lambda expression forms, including Where, Join, Group By, and so on.
As far as the LINQ syntax is concerned, LINQ to Entities is pretty full-featured. But there are
limitations. Some, such as the inability to use the SkipWhile and TakeWhile extension meth-
ods, were listed previously. Others follow this general rule: If it can’t be converted easily into a
storage-level function, it can’t be used directly in LINQ to Entities.

Querying with LINQ to Entities: C#

Note  This exercise parallels the exercise found in Chapter 18. It is nearly identical in functionality
and purpose, but uses LINQ to Entities instead of LINQ to DataSet to process database content.

1.	 Open the “Chapter 19 CSharp” project from the installed samples folder. The project
includes three Windows.Forms classes: OrderViewer, StatesByYear, and Switchboard. This
example focuses on the OrderViewer form.

Dwonloaded from: iDATA.ws

318	 Microsoft ADO.NET 4 Step by Step

2.	 Open the source code view for the General class. Locate the GetConnectionString func-
tion; this is a routine that uses a SqlConnectionStringBuilder to create a valid connection
string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = @"(local)\SQLExpress";

sqlPortion.InitialCatalog = "StepSample";

sqlPortion.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

3.	 Open the source code view for the OrderViewer form. Locate the ActView_Click event
handler. This routine displays a list of orders, either for all customers in the database or
for a specific customer by ID number. Just after the “Retrieve all customer orders” com-
ment, add the following statement:

var result = from cu in OrderContext.Customers

 from ord in OrderContext.OrderEntries

 where cu.ID == ord.Customer

 orderby cu.FullName, ord.ID

 select new { CustomerID = cu.ID,

 CustomerName = cu.FullName,

 OrderID = ord.ID,

 OrderDate = ord.OrderDate,

 OrderTotal = ord.Total,

 ord.StatusCode };

This query combines two entity collections, Customers and OrderEntries, both of which
are members of the SalesOrderEntities class, a derived Entity Framework context. It
forms implicit inner joins between the entity collections via the where clause and per-
forms a sorted projection of fields from each source table.

4.	 Just after the “Add in the status code” comment, add the following query:

var result2 = from cu in result.ToArray()

 from sts in statusTable

 where cu.StatusCode == sts.Code

 select new { cu.CustomerID, cu.CustomerName, cu.OrderID,

 OrderStatus = sts.Description, cu.OrderDate, cu.OrderTotal };

This query extends the original query by linking in a local object collection. This is nec-
essary because LINQ to Entities cannot transmit an entire local collection to the data-
base for SQL processing. Instead, the original query must be converted into a regular
.NET collection, as is done with the result.ToArray() clause. The original query is pro-
cessed at that moment, and the results are placed in a standard anonymous array. The
result2 query is actually doing its work using LINQ to Objects.

Dwonloaded from: iDATA.ws

	 Chapter 19  Using LINQ to Entities	 319

5.	 Run the program. When the Switchboard form appears, click Order Viewer. When the
OrderViewer form appears, select the Include All Customers option and then click View.

The grid displays content from the Customer and OrderEntries entities, plus a column
from the local statusTable collection.

Querying with LINQ to Entities: Visual Basic

Note  This exercise parallels the exercise found in Chapter 18. It is nearly identical in functionality
and purpose, but uses LINQ to Entities instead of LINQ to DataSet to process database content.

1.	 Open the “Chapter 19 VB” project from the installed samples folder. The project in-
cludes three Windows.Forms classes: OrderViewer, StatesByYear, and Switchboard. This
example focuses on the OrderViewer form.

2.	 Open the source code view for the General module. Locate the GetConnectionString
function; this is a routine that uses a SqlConnectionStringBuilder to create a valid con-
nection string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = "(local)\SQLExpress"

sqlPortion.InitialCatalog = "StepSample"

sqlPortion.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

Dwonloaded from: iDATA.ws

320	 Microsoft ADO.NET 4 Step by Step

3.	 Open the source code view for the OrderViewer form. Locate the ActView_Click event
handler. This routine displays a list of orders, either for all customers in the database or
for a specific customer by ID number. Just after the “Retrieve all customer orders” com-
ment, add the following statement:

Dim result = From cu In OrderContext.Customers,

 ord In OrderContext.OrderEntries

 Where cu.ID = ord.Customer

 Select CustomerID = cu.ID,

 CustomerName = cu.FullName,

 OrderID = ord.ID,

 OrderDate = ord.OrderDate,

 OrderTotal = ord.Total,

 ord.StatusCode

 Order By CustomerName, OrderID

This query combines two entity collections, Customers and OrderEntries, both of which
are members of the SalesOrderEntities class, a derived Entity Framework context. It
forms implicit inner joins between the entity collections via the Where clause and per-
forms a sorted projection of fields from each source table.

4.	 Just after the “Add in the status code” comment, add the following query:

Dim result2 = From cu In result.ToArray(), sts In statusTable

 Where cu.StatusCode = sts.Code

 Select cu.CustomerID, cu.CustomerName, cu.OrderID,

 OrderStatus = sts.Description, cu.OrderDate, cu.OrderTotal

This query extends the original query by linking in a local object collection. This is nec-
essary because LINQ to Entities cannot transmit an entire local collection to the database
for SQL processing. Instead, the original query must be converted into a regular .NET
collection, as is done with the result.ToArray() clause. The original query is processed
at that moment and the results are placed in a standard anonymous array. The result2
query is actually doing its work using LINQ to Objects.

5.	 Run the program. When the Switchboard form appears, click Order Viewer. When the
OrderViewer form appears, select the Include One Customer By ID option, enter 1 in
the Customer ID field and then click View.

Dwonloaded from: iDATA.ws

	 Chapter 19  Using LINQ to Entities	 321

The grid displays content from the Customer and OrderEntries entities, plus a column
from the local statusTable collection.

Working with Entity and Database Functions
Calling your own custom function within the Where clause isn’t supported.

C#
private decimal? AdjustTotal(decimal? origValue)

{

 // ----- Add tax to the amount.

 if (origValue.HasValue == false) return new decimal?();

 return Math.Round((decimal)origValue * LocalTaxRate, 2);

}

// ----- Later, try this code, although it will fail.

var result = from ord in context.OrderEntries

 where AdjustTotal(ord.Total) > 500M

 select new { ord.ID, ord.OrderCustomer.FullName, ord.Total };

Visual Basic
Private Function AdjustTotal(ByVal origValue As Decimal?) As Decimal?

 ' ----- Add tax to the amount.

 If (origValue.HasValue = False) Then Return New Decimal?

 Return Math.Round(CDec(origValue) * LocalTaxRate, 2)

End Function

' ----- Later, try this code, although it will fail.

Dim result = From ord In context.OrderEntries

 Where AdjustTotal(ord.Total) > 500@

 Select ord.ID, ord.OrderCustomer.FullName, ord.Total

Dwonloaded from: iDATA.ws

322	 Microsoft ADO.NET 4 Step by Step

But converting this code to use the calculation inline does work.

C#
// ----- This will work.

var result = from ord in context.OrderEntries

 where Math.Round(ord.Total * LocalTaxRate, 2) > 500M

 select new { ord.ID, ord.OrderCustomer.FullName, ord.Total };

Visual Basic
' ----- This will work.

Dim result = From ord In context.OrderEntries

 Where Math.Round(ord.Total * LocalTaxRate, 2) > 500@

 Select ord.ID, ord.OrderCustomer.FullName, ord.Total

This works because although LINQ to Entities cannot easily migrate your custom and possibly
complex AdjustTotal function to a SQL equivalent, it does know how to convert the Math.
Round reference into something that the database engine will recognize (the T-SQL ROUND
function).

Only certain .NET methods have database-level equivalents, and it’s not always immedi-
ately clear which local methods will be passed to the database without your interaction.
Math.Round converts to SQL Server’s ROUND, but Math.Sqrt generates an error, even though
Transact-SQL includes a SQRT function.

If you would like to have a little more confidence when writing your LINQ to Entities queries,
you can forgo the automated conversion and decide up front which Entity Framework or
database-level functions you want to include in your query.

LINQ to Entities includes a set of canonical functions which are all hosted in the System.Data.
Objects.EntityFunctions class. These functions somewhat parallel the Entity SQL canonical
functions discussed in the “Using Literals, Operators, and Expressions” section on page 249 of
Chapter 15, although only a subset is available with LINQ.

■■ Date and time functions  All the Add... functions (such as AddMinutes) are included,
as are Diff... functions that return an integral time span. CreateTime, CreateDateTime,
and CreateDateTimeOffset build new date and time values from their components.
TruncateTime maps to the Entity SQL Truncate function, which returns a date with the
time portion removed.

■■ String functions  Left and Right return string subsets. Reverse returns the content of a
string in reverse order. AsUnicode and AsNonUnicode perform Unicode-related conver-
sions on existing strings. These two functions are specific to LINQ to Entities and do not
have Entity SQL equivalents.

Dwonloaded from: iDATA.ws

	 Chapter 19  Using LINQ to Entities	 323

■■ Math and statistical functions  The Truncate canonical function performs nu-
meric rounding. Three statistical functions—StandardDeviation, Var, and VarP are also
included.

To use the canonical functions, be sure to have a using (C#) or Imports (Visual Basic) ref-
erence to System.Data.Objects and then prefix the function calls in your query with the
EntityFunctions class name.

C#
var result = from cu in context.Customers

 where EntityFunctions.Left(cu.FullName, 1) == "A"

 select cu;

Visual Basic
Dim result = From cu In context.Customers

 Where EntityFunctions.Left(cu.FullName, 1) = "A"

 Select cu

Beyond the canonical functions, LINQ to Entities also exposes database-level functions. The
SQL Server functions appear in the System.Data.Objects.SqlClient.SqlFunctions class and par-
allel their T-SQL counterparts. The following list touches lightly on the functions available.

■■ Server identity functions  HostName, CurrentUser, and UserName equate to the
T-SQL HOST_NAME, CURRENT_USER, and USER_NAME functions, respectively.

■■ Math functions  Most, but not all the native SQL Server math functions are in-
cluded: Acos, Asin, Atan, Atan2, Cos, Cot, Degrees, Exp, Log, Log10, Pi, Radians, Rand,
Sign, Square, SquareRoot (a renaming of SQRT), and Tan. Missing from this list are ABS,
CEILING, FLOOR, POWER, and ROUND, although each of these can be accomplished
either by using their System.Math or EntityFunctions equivalents.

■■ String functions  Various string and string-conversion functions from SQL Server can
be called from LINQ: Ascii, Char, CharIndex, Difference (a Soundex-related function),
IsDate, IsNumeric, NChar, PatIndex, QuoteName, Replicate, SoundCode (more Soundex),
Space, StringConvert (known as STR in T-SQL), Stuff, and Unicode.

■■ Date and time functions  This set includes some of the query-level and system-level
date-related functions: CurrentTimestamp (known as CURRENT_TIMESTAMP in the da-
tabase), DateAdd, DateDiff, DateName, DatePart, GetDate, and GetUtcDate.

■■ Other functions  The Checksum and DataLength functions map to their CHECKSUM
and DATALENGTH function counterparts in SQL Server.

The database functions work just like the canonical functions. First include an Imports
(Visual Basic) or using (C#) reference to System.Data.Objects.SqlClient and then attach the
SqlFunctions class name to the start of each database function used in your query.

Dwonloaded from: iDATA.ws

324	 Microsoft ADO.NET 4 Step by Step

C#
var result = from ord in context.OrderEntries

 select new { ord.ID, ord.OrderCustomer.FullName,

 LateDate = SqlFunctions.DateAdd("day", 90, ord.OrderDate) };

Visual Basic
Dim result = From ord In context.OrderEntries

 Select ord.ID, ord.OrderCustomer.FullName,

 LateDate = SqlFunctions.DateAdd("day", 90, ord.OrderDate)

Working with Custom Database Functions
In addition to calling database-supplied functions from your LINQ queries, you can also call
user-defined functions added to SQL Server with the CREATE FUNCTION command. Like
standard stored procedures, custom functions let you add business logic within the database
with standard Transact-SQL syntax, or with Visual Basic or C# via SQL Server’s support for the
Common Language Runtime (CLR).

Making direct calls to database-level functions through a LINQ to Entities query involves four
distinct steps:

1.	 Create the target function in SQL Server using the CREATE FUNCTION DDL command.
Make note of the exact spelling and capitalization of the function name and its param-
eters because you will need to replicate them within your application. The exercise
shown later in this section references AdmittedInYear, a custom function from the
book’s sample database. Here is its T-SQL definition:

CREATE FUNCTION AdmittedInYear(@whichDate AS DATETIME)

RETURNS int AS

BEGIN

 ----- Return the number of states admitted to the union

 -- during the year of the specified date.

 DECLARE @result int;

 SELECT @result = COUNT(*) FROM StateRegion

 WHERE DATEPART(year, Admitted) = DATEPART(year, @whichDate);

 RETURN @result;

END

This function returns a count of the number of states admitted to the United States
during the year specified by the supplied date.

Dwonloaded from: iDATA.ws

	 Chapter 19  Using LINQ to Entities	 325

2.	 Add a reference to the function within your Entity Framework storage model layer
design for the target database. The storage model uses the Store Schema Definition
Language (SSDL) and will appear in an .ssdl file in your project or within the storage
portion of the .edmx file generated by the Entity Data Model Wizard. When using the
Wizard, add the function by selecting it from the Stored Procedures tree branch on the
Choose Your Database Objects panel.

The AdmittedInYear function, when imported using the Entity Data Model Wizard, gen-
erates the following SSDL content:

<Function Name="AdmittedInYear" ReturnType="int" Aggregate="false"

 BuiltIn="false" NiladicFunction="false" IsComposable="true"

 ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo">

 <Parameter Name="whichDate" Type="datetime" Mode="In" />

</Function>

3.	 Add a static (C#) or shared (Visual Basic) function to your application that parallels the
database-level function in its name, arguments, and return type. While the actual data-
base function is remote and inaccessible to LINQ during compilation, this local defini-
tion provides LINQ with a valid function to call and enables full IntelliSense during LINQ
query development.

You don’t need to include any of the function’s logic in this stub, but you must decorate
the definition with the System.Data.Objects.DataClasses.EdmFunctionAttribute attribute.
The EdmFunctionAttribute class accepts two arguments: (1) the function’s namespace,
which matches the namespace of the storage level; and (2) the name of the function,
with the original spelling and capitalization intact. See the following exercise for ex-
amples on how to build this stub in both Visual Basic and C#.

4.	 Call the function in your LINQ query. The syntax is the same as calls to the canonical
and database functions shown earlier in this chapter on page 323.

Although LINQ to Entities is limited in its capability to call custom functions defined within
your application, this limitation can be remedied in part by adding relevant logic directly to
the database within a custom function and using the preceding steps to enable LINQ to call
the custom functionality.

Dwonloaded from: iDATA.ws

326	 Microsoft ADO.NET 4 Step by Step

Calling Custom Database Functions: C#

Note  This exercise continues the previous exercise in this chapter.

1.	 Open the source code view for the StatesByYear form. This form will access the
AdmittedInYear database function. Your sample database should already have this func-
tion defined.

Note  The SalesOrder.edmx project file includes the SSDL definition of the function within the
storage model layer. The code for both appears in the discussion immediately before this example.

2.	 Within the StatesByYear class, add the following static method:

[EdmFunction("SalesOrderModel.Store", "AdmittedInYear")]

public static int? AdmittedInYear(DateTime? whichDate)

{

 // ----- This is a stub for the true AdmittedInYear function

 // in the database.

 throw new NotSupportedException("Direct calls are not supported.");

}

This routine defines the function stub that both LINQ and Visual Studio’s IntelliSense
will use to recognize the database function. This function cannot be called directly, as
evidenced by the thrown exception within the function body. Instead, the EdmFunction
attribute notifies LINQ that it should locate the AdmittedInYear function exposed in the
SalesOrderModel.Store namespace of the model and call that function instead. The date
parameter and the return value for the stub are both nullable types because the query
can pass NULL values to the actual database function.

3.	 Locate the StatesByYear_Load event handler; this is a routine that loads the data onto
the form. Add the following code as the body of the routine:

var result = from st in context.StateRegions

 orderby st.Admitted

 select new { StateName = st.FullName,

 AdmitYear = SqlFunctions.DatePart("year", st.Admitted),

 TotalAdmittedInYear = AdmittedInYear(st.Admitted) };

StateAdmittance.DataSource = result.ToList();

This query includes a call to both a native database function (SqlFunctions.DatePart)
and the custom function (AdmittedInYear) that matches the function stub added in the
previous step. When LINQ to Entities processes this query, it builds a SQL statement
that includes a T-SQL call to the database-level AdmittedInYear custom function.

Dwonloaded from: iDATA.ws

	 Chapter 19  Using LINQ to Entities	 327

4.	 Run the program. When the Switchboard form appears, click States By Year. When the
StatesByYear form appears, the query results will display in the form’s main grid.

The TotalAdmittedInYear column displays an integer value generated by the logic in the
custom database function.

Calling Custom Database Functions: Visual Basic

Note  This exercise continues the previous exercise in this chapter.

1.	 Open the source code view for the StatesByYear form. This form will access the
AdmittedInYear database function. Your sample database should already have this func-
tion defined.

Note  The SalesOrder.edmx project file includes the SSDL definition of the function within the
storage model layer. The code for both appears in the discussion immediately before this example.

2.	 Within the StatesByYear class, add the following shared method:

<EdmFunction("SalesOrderModel.Store", "AdmittedInYear")>

Public Shared Function AdmittedInYear(

 ByVal whichDate As Date?) As Integer?

 ' ----- This is a stub for the true AdmittedInYear function

 ' in the database.

 Throw New NotSupportedException("Direct calls are not supported.")

End Function

Dwonloaded from: iDATA.ws

328	 Microsoft ADO.NET 4 Step by Step

This routine defines the function stub that both LINQ and Visual Studio’s IntelliSense
will use to recognize the database function. This function cannot be called directly, as
evidenced by the thrown exception within the function body. Instead, the EdmFunction
attribute notifies LINQ that it should locate the AdmittedInYear function exposed in the
SalesOrderModel.Store namespace of the model and call that function instead. The date
parameter and the return value for the stub are both nullable types because the query
can pass NULL values to the actual database function.

3.	 Locate the StatesByYear_Load event handler; this is a routine that loads the data onto
the form. Add the following code as the body of the routine:

Dim result = From st In context.StateRegions

 Select StateName = st.FullName,

 AdmitYear = SqlFunctions.DatePart("year", st.Admitted),

 TotalAdmittedInYear = AdmittedInYear(st.Admitted)

 Order By AdmitYear

StateAdmittance.DataSource = result.ToList

This query includes a call to both a native database function (SqlFunctions.DatePart)
and the custom function (AdmittedInYear) that matches the function stub added in the
previous step. When LINQ to Entities processes this query, it builds a SQL statement
that includes a T-SQL call to the database-level AdmittedInYear custom function.

4.	 Run the program. When the Switchboard form appears, click States By Year. When the
StatesByYear form appears, the query results will display in the form’s main grid.

The TotalAdmittedInYear column displays an integer value generated by the logic in the
custom database function.

Dwonloaded from: iDATA.ws

	 Chapter 19  Using LINQ to Entities	 329

Summary
This chapter introduced LINQ to Entities, a LINQ provider that allows you to run queries
against entity types within a generated Entity Framework conceptual model. Because entities
and their properties are strongly typed, it’s simple to include them in LINQ queries without
additional data type conversion code. Also, the syntax used in the query is nearly identical to
the basic LINQ to Objects form.

If there is a downside to LINQ to Entities, it is its inability to include client-side content within
the query. Because its queries are processed within the database using that platform’s native
SQL language, locally defined logic and data content can’t always make the transition to the
processing layer. Fortunately, LINQ to Entities exposes both predefined and custom database
functions that let you move any needed logic to the database level.

Chapter 19 Quick Reference
To Do This

Include an Entity Framework entity in a LINQ
query

Generate the entity container from the conceptual model,
storage model, and mapping layer.

Create an ObjectContext instance for the generated
model.

Use the context’s exposed entity collections within the
From clauses of a LINQ query.

Include a custom SQL Server function within a
LINQ to Entities query

Add the function to the storage layer of the Entity
Framework model.

Generate the entity container for the model that contains
the function.

Create a static (C#) or shared (Visual Basic) function stub
that has the same name, arguments, and return value (or
a reasonable .NET equivalent) as the original function.

Call the function within a LINQ query.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Chapter 20

Using LINQ to SQL
After completing this chapter, you will be able to:

■■ Build LINQ queries that use the LINQ to SQL provider

■■ Understand how LINQ to SQL prepares queries for processing

■■ Determine when to use LINQ to SQL over LINQ to Entities

LINQ is an extensible system, enabling a consistent querying experience against different
data platforms. Sometimes these different systems overlap, providing access to the same
target platform through different providers. SQL Server is one such database platform. LINQ
to DataSet and LINQ to Entities both allow you to build LINQ queries that interact with data
sourced from SQL Server, either directly (LINQ to Entities) or indirectly (LINQ to DataSet).
LINQ to SQL, also included as a native LINQ provider within the .NET Framework, provides a
third option for processing SQL Server data.

This chapter focuses on the LINQ to SQL provider and the benefits it supplies to your data-
focused application. In many ways, LINQ to SQL feels like LINQ to Entities, especially when
using its class-generation feature. However, LINQ to SQL was built specifically to interact
with SQL Server database tables, and its queries reflect that closer relationship.

Note  In October 2008, soon after the announcement of its plans for Visual Studio 10 and the
related .NET Framework 4.0 release, Microsoft provided guidance on the future of its LINQ to
SQL provider. This “Update on LINQ to SQL and LINQ to Entities Roadmap” blog entry posted
by the ADO.NET team (http://blogs.msdn.com/b/adonet/archive/2008/10/29/update-on-linq-to-
sql-and-linq-to-entities-roadmap.aspx) indicated that the Entity Framework would be the “rec-
ommended data access solution for LINQ to relational scenarios.” The posting also included a
commitment to evolve the LINQ to SQL product based on customer feedback.

Note  The exercises in this chapter all use the same sample project, a tool that makes queries
using LINQ to SQL. Although you will be able to run the application after each exercise, the ex-
pected results for the full application might not appear until you complete all exercises in the
chapter.

Dwonloaded from: iDATA.ws

332

Understanding the LINQ to SQL Provider
LINQ to SQL is a LINQ provider that targets SQL Server databases. Its simple configuration
needs and its focus on the logical organization of the underlying tables make it a useful tool
for applications that need easy access to a specific SQL Server database.

Comparing LINQ to SQL with LINQ to Entities
The LINQ to SQL provider first appeared with the initial release of LINQ, part of Visual Studio
2008 and the .NET Framework 3.5. It preceded the release of LINQ to Entities, which was
delivered as part of the .NET Framework 3.5 SP1. The two platforms share many similarities,
including the following:

■■ Modeling of data entities using an XML-based schema language

■■ A Visual Studio–hosted visual designer that simplifies XML model creation

■■ Generation of a language-specific class layer from the model

■■ Support for database updates using custom stored procedures

■■ Delayed query processing through LINQ-constructed SQL statements

Despite these similarities, the two systems diverge significantly in many respects. These dif-
ferences often help determine which of the two solutions is best for a given application. The
two systems differ in four key areas:

■■ Platform support  The Entity Framework and its LINQ to Entities extension include
support for a wide range of database platforms. In contrast, LINQ to SQL communicates
only with SQL Server 2000 and later, including SQL Server Compact 3.5.

Note  The visual designer used to set up LINQ to SQL models does not work with SQL Server
Compact 3.5.

■■ Model focus  LINQ to Entities queries focus on the Entity Framework conceptual
model, which is an abstraction of the underlying logical database model. This model
can differ significantly from the organization presented within the database. In LINQ to
SQL, the model closely reflects the database tables that support it.

■■ Overhead  LINQ to SQL is extremely lightweight compared with its Entity Framework
counterpart. EF’s three model layers allow for tremendous flexibility, but such design
comes at a performance and memory overhead cost.

■■ Extensibility  While the query features available in both LINQ to Entities and LINQ to
SQL are comparable, the Entity Framework’s design offers many opportunities for third-
party enhancement that aren’t currently possible with LINQ to SQL.

Dwonloaded from: iDATA.ws

	 Chapter 20  Using LINQ to SQL	 333

Using LINQ to SQL, especially when building models with its visual designer, is straightforward
and often much quicker than setting up a LINQ to Entities environment. Microsoft’s official
encouragement to use the Entity Framework option may help guide your decision, but for
applications that have simple needs and access to SQL Server data, LINQ to SQL may be the
best query platform.

Understanding the Components of LINQ to SQL
The focus of an Entity Framework model is the XML-based definition of the three different
layers: conceptual, storage, and mapping. While LINQ to SQL can use an XML definition as
the basis for a specific data implementation, the focus of each table definition is the entity
class, a standard .NET class decorated with attributes from the System.Data.Linq.Mapping
namespace.

C#
[Table(Name="UnitOfMeasure")]

public class UnitOfMeasure

{

 // ----- As defined in the database:

 // ID bigint

 // ShortName varchar(15)

 // FullName varchar(50)

 [Column(IsPrimaryKey = true)] public long ID;

 [Column] public string ShortName;

 [Column] public string FullName;

}

Visual Basic
<Table(Name:="UnitOfMeasure")>

Public Class UnitOfMeasure

 ' ----- As defined in the database:

 ' ID bigint

 ' ShortName varchar(15)

 ' FullName varchar(50)

 <Column(IsPrimaryKey:=True)> Public ID As Long

 <Column> Public ShortName As String

 <Column> Public FullName As String

End Class

Dwonloaded from: iDATA.ws

334	 Microsoft ADO.NET 4 Step by Step

Attributes, such as the TableAttribute and ColumnAttribute shown in this code block, inform
LINQ to SQL how to map class members to tables and columns in the database. Additional
attributes identify storage-level data types, intertable relationships, stored procedure defini-
tions, and other key items that let the application communicate cleanly with the external data
source.

The System.Data.Linq.DataContext class binds these class definitions with actual data
and acts much like the ObjectContext class in the Entity Framework. Derived versions of
DataContext include instances of the decorated classes, forming a class-style representation
of the actual database.

C#
public class SalesOrderLink : DataContext

{

 // ----- Constructor establishes database connection.

 public SalesOrder(string connectionString):

 base(connectionString) {}

 // ----- Table definitions to link with database.

 public Table<Customer> Customers;

 public Table<OrderEntry> Orders;

 public Table<UnitOfMeasure> UnitsOfMeasure;

}

Visual Basic
Public Class SalesOrderLink

 Inherits DataContext

 ' ----- Constructor establishes database connection.

 Public Sub New(ByVal connectionString As String)

 MyBase.New(connectionString)

 End Sub

 ' ----- Table definitions to link with database.

 Public Customers As Table(Of Customer)

 Public Orders As Table(Of OrderEntry)

 Public UnitsOfMeasure As Table(Of UnitOfMeasure)

End Class

After you have a defined context, using it with LINQ is a simple matter of creating an in-
stance of the context and adding its exposed members to a query.

Dwonloaded from: iDATA.ws

	 Chapter 20  Using LINQ to SQL	 335

C#
using (SalesOrderLink context = new SalesOrderLink(connectionString))

{

 var results = from cu in context.Customers

 orderby cu.FullName

 select new { CustomerID = cu.ID, CustomerName = cu.FullName };

}

Visual Basic
Using context As New SalesOrderLink(connectionString)

 Dim results = From cu In context.Customers

 Order By cu.FullName

 Select CustomerID = cu.ID, CustomerName = cu.FullName

End Using

Except for the replacement of an ObjectContext by a DataContext, this query is identical to
the first LINQ to Entities query included in Chapter 19, “Using LINQ to Entities.”

Like its Entity Framework complement, LINQ to SQL uses the clauses in the query (in either
the standard LINQ form shown here or one built with extension methods) to craft SQL state-
ments that retrieve, project, filter, and sort the data returned by the query. Because of this,
you are limited in the types of non-LINQ-To-SQL data that you can include in the query. Only
data content and functionality that can be represented easily in a SQL statement are candi-
dates for inclusion in a LINQ to SQL query.

Despite this limitation, LINQ to SQL does a pretty good job at converting ordinary .NET ele-
ments into SQL equivalents. Comparisons with null (C#) and Nothing (Visual Basic) translate
into the expected IS NULL and IS NOT NULL forms. Using the Visual Basic Like pattern-
matching operator results in a similar LIKE comparison in the generated SQL. Including the
AddDays method on a date value within a LINQ to SQL query properly converts the expres-
sion into one that uses the related DATEADD function in T-SQL. For a complete list of all .NET
features that LINQ to SQL can use in database queries, see the “Data Types and Functions
(LINQ to SQL)” entry in the Visual Studio online help.

Using the Object Relational Designer
Although you can handcraft your own entity classes, a better option for large databases (and
even small ones) is to use the Object Relational (O/R) Designer, a drag-and-drop visual de-
signer that generates LINQ to SQL classes based on a graphical database model. To use the
O/R Designer, add a new “LINQ to SQL Classes” item to your Visual Basic or C# project.

Dwonloaded from: iDATA.ws

336	 Microsoft ADO.NET 4 Step by Step

The Designer adds a .dbml file to your project, which hosts the data model in XML form. It
also adds two support files: (1) a .dbml.layout file that stores some designer-specific informa-
tion; and (2) a .designer.vb or .designer.cs file that holds the generated entity classes in either
Visual Basic or C#. The Designer produces the designer file content as you make content-
related changes to the visual design.

You build your data model by dragging classes (entities) and associations (relationships) to
the left pane of the designer surface. These entity and relationship instances are either
generic forms from the Visual Studio Toolbox or existing database elements from the Server
Explorer (or Database Explorer in Visual Studio Express Editions) tool window, as shown in
Figure 20-1. You can also include database-level stored procedures and custom functions in
the model by dragging them to the Designer’s right-side pane.

Figure 20-1  The Designer after dragging and dropping an existing database table.

Any changes you make to the model result in an immediate adjustment to the generated
language-specific source code. You should not customize these generated class files because
any future changes to the model will overwrite your changes.

Note  You can generate both the XML model and the class layer from a source database with-
out using the visual designer. The Windows SDK installed with Visual Studio includes a program
named SqlMetal.exe. This tool generates output similar to that of the visual designer, but it does
so through a command-line interface. See the “SqlMetal.exe (Code Generation Tool)” entry in the
Visual Studio online help for information on using this application.

Dwonloaded from: iDATA.ws

	 Chapter 20  Using LINQ to SQL	 337

Building a LINQ to SQL Model

1.	 Open the “Chapter 20 CSharp” (C#) or “Chapter 20 VB” (Visual Basic) project from
the installed samples folder. The project includes three Windows.Forms classes:
OrderViewer, StatesByYear, and Switchboard.

2.	 Add a new LINQ to SQL data model to the application through the Project | Add New
Item menu command. When the Add New Item form appears, select LINQ to SQL
Classes from the list of templates and enter SalesOrder.dbml in the Name field. Click
the Add button.

3.	 Visual Studio displays a blank Object Relational Designer. Open the Server Explorer
(or Database Explorer) tool window (use the View | Server Explorer or View | Database
Explorer menu if the window is not already present in Visual Studio) to display the
contents of the book’s sample database. If the sample database is not already present
in the Data Connections tree, use the Connect To Database toolbar button within the
Server Explorer to locate the database.

4.	 Expand the sample database tree in the Server Explorer and drag the following items to
the left half of the O/R Designer surface: Customer, OrderEntry, and StateRegion.

Dwonloaded from: iDATA.ws

338	 Microsoft ADO.NET 4 Step by Step

As you drag each item, the Designer automatically creates associations between the
entities based on foreign key references defined in the database schema. Click each en-
tity and association, and then view the Properties panel to review the different settings
associated with each element.

5.	 Drag the AdmittedInYear custom function from the Server Explorer tree to the right half
of the designer surface. This adds a reference to a database-level function, allowing it
to be used in your LINQ to SQL queries.

Dwonloaded from: iDATA.ws

	 Chapter 20  Using LINQ to SQL	 339

6.	 Save changes to the file and close it. The Designer has already generated the class layer
for the database objects dragged to the design surface. You can view the generated
content by opening SalesOrder.designer.cs (C#) or SalesOrder.designer.vb (Visual Basic,
although you may need to click the Show All Files button in the Solution Explorer to see
the file).

Using Custom Database Functions in Queries
Although custom functions defined within a .NET application cannot participate directly in
a LINQ to SQL query, these same queries can easily access functions written at the database
level. When dragged to the design surface (as was done in the example shown previously),
these T-SQL functions become part of the context that also hosts the entity classes.

LINQ to Entities includes a similar feature, but it requires you to create local .NET stubs in
your own code. With LINQ to SQL, the functions are ready to use in your queries; simply ref-
erence the function name as a member of the instantiated context, passing the appropriate
parameters as defined within the database.

C#
// ----- Assumes an AgedInvoices database function that

// accepts a customer ID and a number of days,

// returning a financial amount.

var result = from cu in context.Customers

 orderby cu.FullName

 select new { cu.ID, cu.FullName, context.AgedInvoices(cu.ID, 90) };

Visual Basic
' ----- Assumes an AgedInvoices database function that

' accepts a customer ID and a number of days,

' returning a financial amount.

Dim result = From cu In context.Customers

 Select cu.ID, cu.FullName, context.AgedInvoices(cu.ID, 90)

 Order By cu.FullName

You can also call these functions directly, as long as a valid context exists.

C#
decimal pending = context.AgedInvoices(whichCustomer, 90);

Visual Basic
Dim pending As Decimal = context.AgedInvoices(whichCustomer, 90)

Dwonloaded from: iDATA.ws

340	 Microsoft ADO.NET 4 Step by Step

Querying with LINQ to SQL: C#

Note  This exercise parallels exercises found in Chapter 19. The project is nearly identical in func-
tionality and purpose, but it uses LINQ to SQL instead of LINQ to Entities to process database
content.

This exercise continues the previous exercise in this chapter.

1.	 Open the source code view for the General class. Locate the GetConnectionString func-
tion; this is a routine that uses a SqlConnectionStringBuilder to create a valid connection
string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = @"(local)\SQLExpress";

sqlPortion.InitialCatalog = "StepSample";

sqlPortion.IntegratedSecurity = true;

Adjust these statements as needed to provide access to your own test database.

2.	 Open the source code view for the StatesByYear form. This form will access the
AdmittedInYear database function, which was dragged into the model in the prior
example.

3.	 Locate the StatesByYear_Load event handler; this is a routine that loads the data onto
the form. Add the following code as the body of the routine:

using (SalesOrderDataContext context = new

 SalesOrderDataContext(GetConnectionString()))

{

 var result = from st in context.StateRegions

 where st.Admitted != null

 orderby st.Admitted.Value.Year

 select new { StateName = st.FullName,

 AdmitYear = st.Admitted.Value.Year,

 TotalAdmittedInYear = context.AdmittedInYear(st.Admitted) };

 StateAdmittance.DataSource = result.ToList();

}

In addition to calling the custom function AdmittedInYear, this query also uses != null as
a condition, which will translate into the appropriate T-SQL comparison clause.

4.	 Run the program. When the Switchboard form appears, click States By Year. When the
StatesByYear form appears, the results of the query will display in the form’s main grid.

Dwonloaded from: iDATA.ws

	 Chapter 20  Using LINQ to SQL	 341

Querying with LINQ to SQL: Visual Basic

Note  This exercise parallels exercises found in Chapter 19. It is nearly identical in functionality
and purpose, but it uses LINQ to SQL instead of LINQ to Entities to process database content.

This exercise continues the previous exercise in this chapter.

1.	 Open the source code view for the General class. Locate the GetConnectionString func-
tion; this is a routine that uses a SqlConnectionStringBuilder to create a valid connection
string to the sample database. It currently includes the following statements:

sqlPortion.DataSource = "(local)\SQLExpress"

sqlPortion.InitialCatalog = "StepSample"

sqlPortion.IntegratedSecurity = True

Adjust these statements as needed to provide access to your own test database.

2.	 Open the source code view for the StatesByYear form. This form will access the
AdmittedInYear database function, which was dragged into the model in the prior
example.

Dwonloaded from: iDATA.ws

342	 Microsoft ADO.NET 4 Step by Step

3.	 Locate the StatesByYear_Load event handler; this is a routine that loads the data onto
the form. Add the following code as the body of the routine:

Using context As New SalesOrderDataContext(GetConnectionString())

 Dim result = From st In context.StateRegions

 Where st.Admitted IsNot Nothing

 Select StateName = st.FullName,

 AdmitYear = st.Admitted.Value.Year,

 TotalAdmittedInYear = context.AdmittedInYear(st.Admitted)

 Order By AdmitYear

 StateAdmittance.DataSource = result.ToList

End Using

In addition to calling the custom function AdmittedInYear, this query also uses IsNot
Nothing as a condition, which will translate into the appropriate T-SQL comparison
clause.

4.	 Run the program. When the Switchboard form appears, click States By Year. When the
StatesByYear form appears, the results of the query will display in the form’s main grid.

Dwonloaded from: iDATA.ws

	 Chapter 20  Using LINQ to SQL	 343

Summary
This chapter introduced the LINQ to SQL query provider. Although it shares many features
with LINQ to Entities, its quick setup and close ties to SQL Server make it a useful choice for
applications that target that platform.

LINQ to SQL sports its own visual designer: the Object Relational Designer, or O/R Designer.
For developers looking for a more direct approach or who need the automation support
available through command-line utilities, the provider also includes SqlMetal.exe as an alter-
native to the visual experience.

Chapter 20 Quick Reference
To Do This

Include an entity class in a LINQ query Add the entity class to your project by writing its code,
using the Object Relational Designer, or employing the
SqlMetal.exe command-line tool.

Create a DataContext instance for the generated entity
class.

Use the context’s exposed entity collections within the
From clauses of a LINQ query.

Include a custom SQL Server function within a
LINQ to SQL query

Drag the function to the right half of the Object
Relational Designer surface or use equivalent code-based
alternatives.

Create a DataContext instance that contains the function.

Call the function within a LINQ query.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Microsoft ADO.NET 4 Step by Step

	 	 345

Part V

Presenting Data to the World

	 Chapter 21: Binding Data with ADO.NET

	 Chapter 22: Providing RESTful Services with WCF Data
Services

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Chapter 21

Binding Data with ADO.NET
After completing this chapter, you will be able to:

■■ Bind data to controls in Windows Forms, WPF, and ASP.NET applications

■■ Understand the classes and technologies that make binding possible

■■ Create working database programs with simple drag-and-drop techniques

Data binding involves connecting display and data-entry controls with a data source in a
way that somewhat automates the data management process. Rather than writing code that
manually transfers data between, say, a DataTable instance and individual TextBox controls,
you configure the controls to understand how they should obtain data from the DataTable.
This simulated simplicity—the true complexity is hidden away inside of .NET controls and
classes—brings Rapid Application Development (RAD) features from pre-.NET versions of
Visual Basic into the .NET world.

This chapter provides brief demonstrations of using data binding in three types of .NET
applications: Windows Forms, Windows Presentation Foundation (WPF), and ASP.NET. In
each case, you’ll create a sample application with simple drag-and-drop techniques, with no
additional code added to enable data migration. A discussion of the technologies involved
follows each example.

Binding Data in Windows Forms
The Windows Forms system supports two types of binding scenarios based on the features
of individual controls: simple and complex. In simple data binding, a control hosts a single
value from a single data record, such as a TextBox that supports displaying or editing a cus-
tomer name. In this arrangement, a form typically hosts multiple controls, each of which is
bound to a specific data row field.

In complex data binding, a single control expresses a list of records, perhaps all records in
a table. The control can include features that indicate how to display the complexities of a
data row in a single control entry. The ListBox control is a typical candidate for complex data
binding.

Dwonloaded from: iDATA.ws

348

Creating Complex-Bound Applications
You’ve already seen complex data binding demonstrated throughout this book. Starting with
Chapter 4, many of the sample applications employed the DataGridView control to display
data results. Assigning a compatible array or collection to that control’s DataSource property
renders the data within the control’s visible grid.

The most interesting use of the control appeared in Chapter 11, “Making External Data Available
Locally,” where a data adapter-enabled DataTable instance was linked to the DataGridView.
DataSource property. The sample code built a data adapter link to the UnitOfMeasure table,
crafting each of the INSERT, UPDATE, and DELETE statements before making the assignment
to the grid control.

C#
UnitAdapter.Fill(UnitTable);

UnitGrid.DataSource = UnitTable;

Visual Basic
UnitAdapter.Fill(UnitTable)

UnitGrid.DataSource = UnitTable

By having an active data adapter as part of the control’s input source, changes made to
data values within the grid propagate back to the external data source, essentially creating
a miniature grid-based table editor. That sample could be shortened even more to use a
SqlCommandBuilder, freeing you from even having to craft the three SQL data manipulation
statements. But even with this change, you still need a bit of custom code to make the grid
work.

For an even simpler grid-based solution, you can build an application that supports editing
of database table values without writing a single line of code. Creating such a program in-
volves little more than dragging tables from a wizard-configured data source to the surface
of a form.

Creating a Complex Data-Bound Form

1.	 Create a new Windows Forms application using either Visual Basic or C#. The new proj-
ect displays a single blank form.

2.	 Add a data source for the table to be edited. The “Connecting to External Data” section
in Chapter 1, “Introducing ADO.NET 4,” includes step-by-step instructions for creat-
ing such a data source. Follow those instructions. When you reach the Choose Your

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 349

Database Objects panel in step 14 of the instructions, select the CourseCatalog table
from the list. Type CourseDataSet in the DataSet Name field. Click Finish to add the
DataSet to the project.

3.	 The Data Sources panel in Visual Studio now contains a CourseDataSet tree with the
CourseCatalog table as a branch within it. Expand the CourseCatalog branch to see the
individual fields associated with the table: four text fields and two Boolean fields.

Dwonloaded from: iDATA.ws

350	 Microsoft ADO.NET 4 Step by Step

4.	 The CourseCatalog branch is actually a drop-down list; click its name to enable the list.
Expand the list and ensure that DataGridView is selected.

5.	 Drag the CourseCatalog name from the Data Sources panel and drop it on the blank
form’s surface. This action adds a DataGridView control to the form with columns for
each of the table’s fields. It also adds a toolbar-style control and several non-visual con-
trols to the bottom of the design window. Resize the form and grid control as needed.

6.	 Run the program. When the form appears, the grid will display any records already
found in the CourseCatalog table. Note that the data is fully editable; you can add, up-
date, and delete records in the table through the form.

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 351

Creating Simple-Bound Applications
The DataGridView control and the accompanying VCR-style control in the complex-bound
solution provide an editing experience reminiscent of Microsoft Access’ default table edit-
ing environment. If a grid interface doesn’t meet your data display and editing needs, Visual
Studio can generate a data-bound form that hosts each data value in a distinct control. This
method gives the form a more traditional data-editing look while still keeping the promise of
no-custom-code simplicity.

Creating a Simple Data-Bound Form

1.	 Create a new Windows Forms application using either Visual Basic or C#. The new proj-
ect displays a single blank form.

2.	 As in the prior example, use the Data Source Configuration Wizard to create a
CourseDataSet data set that contains the CourseCatalog table.

3.	 In the Data Sources panel, click the drop-down for the CourseCatalog table branch and
select Details from the list of choices.

Note  The field names for each table as displayed in the Data Sources panel are also drop-down
lists. These lists allow you to indicate what type of simple data-bound control will be used to dis-
play the data on the target form.

4.	 Drag the CourseCatalog name from the Data Sources panel and drop it on the blank
form’s surface. This action adds separate TextBox and CheckBox controls to the form for
each column in the CourseCatalog table. It also adds a toolbar-style control, and several
nonvisual controls to the bottom of the design window. Resize the form and data con-
trols as needed.

Dwonloaded from: iDATA.ws

352	 Microsoft ADO.NET 4 Step by Step

5.	 Run the program. When the form appears, it displays one record from the
CourseCatalog table. The data is fully editable, and you can add, update, and delete re-
cords in the table through the form.

Understanding Windows Forms Data Binding
Although these simple applications work without the need for custom code, the form and its
display controls, the data set, and the nonvisual controls added to the form each include suf-
ficient code to enable source-to-user data management.

When you drag a table to the form’s surface in either the complex-style or simple-style bind-
ings, Visual Studio builds a hierarchy of classes that work together to transport data between
the database and the user. The following list identifies the members of this chain, moving
from the source-side to the form-side of the interaction.

■■ TableAdapter  As discussed in Chapter 11, a data adapter enables bidirectional move-
ment of a table’s content. Because the bound controls display data and accept updates
from the user, the adapter keeps the database and the form in sync.

■■ TableAdapterManager  This object, added to the form by Visual Studio, assists the
TableAdapter in hierarchical-data environments. The CourseCatalog examples shown
above do not include hierarchical data.

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 353

■■ DataSet  This is the wizard-built DataSet instance added to the Data Sources panel.
It’s actually a strongly typed data set, which is not discussed in this book other than to
point out how the Entity Framework (EF) expands on the basic strongly typed data set
functionality.

■■ BindingSource  Although Windows Forms controls can bind directly to ADO.NET
DataTable instances, such a relationship provides only minimal functionality. The
BindingSource class enriches this relationship by adding change notifications, error
management, and consistent movement functionality between the records of a source
data table.

■■ BindingContext  The binding context doesn’t appear as one of the controls added by
Visual Studio, but it is present. It appears as a member of the form itself and exists in
parallel in each of the controls that participate in the data binding operation. A single
form (or some other equivalent data surface, such as a Panel control) can support mul-
tiple binding contexts, one for each source of incoming and outgoing data displayed
on the form. Each context is defined by its source (typically a reference to the DataSet
instance or other top-level data source) and the path within the source (for DataSet
instances, this typically refers to the table name). The BindingContext instances manage
the comings and goings of all data, keeping all controls that share a common context
in sync with each other. It ensures that controls managing the same source table don’t
point to different rows.

■■ Form and controls  The form surface and the individual data control form one end-
point of the data-binding relationship. Each control exposes a DataBindings collection
that maps bound data to specific properties of the control. For instance, in the preced-
ing simple-bound example, the incoming CourseCatalog.CourseName field is mapped
to the CourseNameTextBox control’s Text property. But data can be bound to other
properties as well. For example, you can map a control’s BackColor property to a data-
base field that tracks color values.

In addition to the grid or detail controls added to the form, dragging a data source table to
a form adds a BindingNavigator control, a “VCR” control that lets the user move between the
different rows of the table, adding and deleting rows as needed. One of the buttons on this
toolbar, the Save button (with a floppy disk image), includes some code-behind in its Click
event handler.

C#
this.Validate();

this.courseCatalogBindingSource.EndEdit();

this.tableAdapterManager.UpdateAll(this.courseDataSet);

Dwonloaded from: iDATA.ws

354	 Microsoft ADO.NET 4 Step by Step

Visual Basic
Me.Validate()

Me.CourseCatalogBindingSource.EndEdit()

Me.TableAdapterManager.UpdateAll(Me.CourseDataSet)

This code finishes up all pending edits and saves all changes to the database, bringing every-
thing back in sync.

As convenient as these data binding examples are, it is rare that an application can meet us-
ability needs without providing additional custom code. In addition to using these simple
techniques, you can augment the generated controls and code with your own source code or
use the generated source as a basis for designing your own data-bound environments.

Binding Data in WPF
Windows Presentation Foundation (WPF) applications use an XML-based schema language
called XAML to define the user interface and behavioral aspects of an application. Visual
Studio includes support for building WPF/XAML applications, presenting a design experience
that is similar to standard Windows Forms development.

Note  An introduction to the Windows Presentation Foundation and its XML-based way of de-
scribing application elements is beyond the scope of this book.

Creating Data-Bound WPF Applications
WPF applications in Visual Studio support the same type of drag-and-drop data-bound ap-
plication building features present in Windows Forms projects, albeit with some variations.
The following examples guide you through the construction of a data-bound WPF project.

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 355

Creating a Data-Bound WPF Project

1.	 Create a new WPF Application project using either Visual Basic or C#. The new proj-
ect displays a single blank window with associated XAML content below the visual
representation.

2.	 As in the prior examples, use the Data Source Configuration Wizard to create a
CourseDataSet data set that contains the CourseCatalog table.

3.	 In the Data Sources panel, click the drop-down for the CourseCatalog table branch and
select Details from the list of choices.

4.	 Drag the CourseCatalog name from the Data Sources panel and drop it on the blank
WPF window surface. This action adds a grid to the form that hosts separate Label,
TextBox, and CheckBox controls for each column in the CourseCatalog table.

Dwonloaded from: iDATA.ws

356	 Microsoft ADO.NET 4 Step by Step

5.	 Run the program. When the form appears, it displays the first record from the
CourseCatalog table.

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 357

Building the WPF project is simple using drag-and-drop techniques, but as the example proj-
ect demonstrates, it’s possible to view only the initial record in the incoming table. The fol-
lowing language-specific projects add navigation features.

Adding Navigation to a Data-Bound WPF Window: C#

Note  This exercise continues the initial WPF exercise in this section.

1.	 Add four Button controls from the Toolbox panel to the WPF window surface. Name the
buttons ActFirst, ActPrevious, ActNext, and ActLast; set their Content property val-
ues to First, Previous, Next, and Last, respectively.

2.	 Double-click the ActFirst button control. When the event handler appears, add the fol-
lowing code:

// ----- Move to the first record in the table.

System.Windows.Data.CollectionViewSource catalogSource =

 (System.Windows.Data.CollectionViewSource)

 this.FindResource("courseCatalogViewSource");

catalogSource.View.MoveCurrentToFirst();

3.	 Back on the window design surface, double-click the ActPrevious button control. When
the event handler appears, add the following code:

// ----- Move to the previous record in the table.

System.Windows.Data.CollectionViewSource catalogSource =

 (System.Windows.Data.CollectionViewSource)

 this.FindResource("courseCatalogViewSource");

if (catalogSource.View.CurrentPosition > 0)

 catalogSource.View.MoveCurrentToPrevious();

Dwonloaded from: iDATA.ws

358	 Microsoft ADO.NET 4 Step by Step

4.	 Back on the window design surface, double-click the ActNext button control. When the
event handler appears, add the following code:

// ----- Move to the next record in the table.

System.Windows.Data.CollectionViewSource catalogSource =

 (System.Windows.Data.CollectionViewSource)

 this.FindResource("courseCatalogViewSource");

catalogSource.View.MoveCurrentToNext();

if (catalogSource.View.IsCurrentAfterLast)

 catalogSource.View.MoveCurrentToPrevious();

5.	 Back on the window design surface, double-click the ActLast button control. When the
event handler appears, add the following code:

// ----- Move to the last record in the table.

System.Windows.Data.CollectionViewSource catalogSource =

 (System.Windows.Data.CollectionViewSource)

 this.FindResource("courseCatalogViewSource");

catalogSource.View.MoveCurrentToLast();

6.	 Run the program. When the form appears, it displays the first record from the
CourseCatalog table. Use the new navigation buttons to move through the records in
the bound table.

Adding Navigation to a Data-Bound WPF Window: Visual Basic

Note  This exercise continues the initial WPF exercise in this section.

1.	 Add four Button controls from the Toolbox panel to the WPF window surface. Name the
buttons ActFirst, ActPrevious, ActNext, and ActLast; set their Content property val-
ues to First, Previous, Next, and Last, respectively.

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 359

2.	 Double-click the ActFirst button control. When the event handler appears, add the fol-
lowing code:

' ----- Move to the first record in the table.

Dim catalogSource As System.Windows.Data.CollectionViewSource =

 CType(Me.FindResource("CourseCatalogViewSource"),

 System.Windows.Data.CollectionViewSource)

catalogSource.View.MoveCurrentToFirst()

3.	 Back on the window design surface, double-click the ActPrevious button control. When
the event handler appears, add the following code:

' ----- Move to the previous record in the table.

Dim catalogSource As System.Windows.Data.CollectionViewSource =

 CType(Me.FindResource("CourseCatalogViewSource"),

 System.Windows.Data.CollectionViewSource)

If (catalogSource.View.CurrentPosition > 0) Then _

 catalogSource.View.MoveCurrentToPrevious()

4.	 Back on the window design surface, double-click the ActNext button control. When the
event handler appears, add the following code:

' ----- Move to the next record in the table.

Dim catalogSource As System.Windows.Data.CollectionViewSource =

 CType(Me.FindResource("CourseCatalogViewSource"),

 System.Windows.Data.CollectionViewSource)

Dim totalItems = Aggregate vw In catalogSource.View

 Into Count(True)

If (catalogSource.View.CurrentPosition < (totalItems - 1)) Then _

 catalogSource.View.MoveCurrentToNext()

Dwonloaded from: iDATA.ws

360	 Microsoft ADO.NET 4 Step by Step

5.	 Back on the window design surface, double-click the ActLast button control. When the
event handler appears, add the following code:

' ----- Move to the last record in the table.

Dim catalogSource As System.Windows.Data.CollectionViewSource =

 CType(Me.FindResource("CourseCatalogViewSource"),

 System.Windows.Data.CollectionViewSource)

catalogSource.View.MoveCurrentToLast()

6.	 Run the program. When the form appears, it displays the first record from the
CourseCatalog table. Use the new navigation buttons to move through the records in
the bound table.

Understanding WPF Data Binding
The DataSet, TableAdapter, and TableAdapterManager instances used in the Windows Forms
bound data example earlier in this chapter also appear in the WPF example. That’s because
those portions are generated by the Data Source Configuration Wizard; they are not depen-
dent on the type of project in which they appear. In WPF, as in Windows Forms, they manage
retrieving the data from the external data source and propagating any changes from the ap-
plication back to the data source.

The binding elements that connect the DataSet content to the on-window fields vary sig-
nificantly between WPF and Windows Forms. Much of a WPF application is declared using
XAML, and data bindings are no different. To enable data binding, Visual Studio adds infor-
mation on the data source to the Grid control that hosts the individual data controls.

<!-- Attributes not relevant to the discussion have been removed. -->

<Grid DataContext="{StaticResource CourseCatalogViewSource}" Name="Grid1" >

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 361

The DataContext attribute defines the data source for all subordinate elements, which
in this case will be the individual data-bound controls found inside of the Grid1 grid.
CourseCatalogViewSource is defined a little earlier in the XAML.

<Window.Resources>

 <my:CourseDataSet x:Key="CourseDataSet" />

 <CollectionViewSource x:Key="CourseCatalogViewSource"

 Source="{Binding Path=CourseCatalog,

 Source={StaticResource CourseDataSet}}" />

</Window.Resources>

CourseCatalogViewSource is an instance of CollectionViewSource (actually, it’s known as the
CollectionView class by the time the XAML bubbles up into actual code), which is a wrapper
around data sources that makes navigation of those sources convenient for WPF applications.
In this case, that data source is the CourseDataSet data set, as identified in this same XML
block.

The important part of the CourseCatalogViewSource definition is the Binding component.

{Binding Path=CourseCatalog, Source={StaticResource CourseDataSet}}

This content identifies the source of the data that will bind to the controls. As with the form-
hosted BindingContext in Windows Forms applications, the Binding entry defines both a
source (the DataSet instance) and a path within the source (the DataTable name).

Within the XAML definitions for an individual data-bound control, the Binding entry appears
again to identify the path to the individual column hosted by that control. This code block
defines the TextBox control that hosts the CourseCatalog.CourseName field.

<!-- Attributes not relevant to the discussion have been removed. -->

<TextBox Name="CourseNameTextBox" Text="{Binding Path=CourseName,

 Mode=TwoWay, ValidatesOnExceptions=true, NotifyOnValidationError=true}" />

This entry specifies the path (the CourseName column) relative to the DataContext estab-
lished by the enclosing Grid control (Grid1). The binding ties to the Text attribute, which will
display the bound content in the editable portion of the control. Part of XAML’s power is that
bound data can flow into almost any attribute exposed by a control. In fact, the entire XAML
binding system extends to non-controls as well, allowing nearly any aspect of a WPF applica-
tion definition to be configured by bound data from a variety of sources, both internal and
external to the application.

Dwonloaded from: iDATA.ws

362	 Microsoft ADO.NET 4 Step by Step

Although the drag-and-drop operation that built the WPF window included enabled text
boxes and clickable CheckBox controls, the application will not return any data changes to
the database. Also, you cannot add or delete records through the default bound application.
To enable these features, you must update the bound DataSet directly, adjusting the con-
tent exposed through each DataTable instance’s Rows collection as needed. Calls to DataSet.
AcceptChanges and the table adapter’s Update method will send any changes back to the
source and trigger a refresh of the displayed results.

Binding Data in ASP.NET
ASP.NET is Visual Studio’s standard web application development solution. Although the
development experience is similar to that of Windows Forms and other Visual Studio project
types, running ASP.NET applications exist to generate valid HTML and related Web-centric
scripting content for consumption by a web browser. All application components, including
any data-bound controls, flow to the user’s screen as ordinary web content.

Note  ASP.NET is not included in either the C# or the Visual Basic flavors of the Visual Studio
2010 Express Edition product. Express Edition users must instead obtain Visual Web Developer
2010 from Microsoft’s Visual Studio Express web site http://www.microsoft.com/express/Web/.

Creating Data-Bound ASP.NET Applications
ASP.NET applications in Visual Studio support some drag-and-drop data-bound functional-
ity, although the default data presentation options are not as varied as those found in either
Windows Forms or WPF projects. The following projects guide you through the process of
adding a read-only data-bound grid to a new ASP.NET project.

Creating a Data-Bound ASP.NET Page

1.	 Create a new ASP.NET web application project using either Visual Basic or C#. The new
project displays an ASP.NET page in source view. Click the Design display mode button
along the bottom of the Default.aspx page panel.

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 363

2.	 Clear out some of the default content to make room for the bound data content. Just
above the “Welcome to ASP.NET” message in the page, click the MainContent (Custom)
tab. This selects the content within the tab’s panel. Press Delete to remove the content.

3.	 Access the Server Explorer panel (or the Database Explorer panel depending on your
edition of Visual Studio). Expand the branch for the book’s sample database. (You might
need to add it as a new connection if it does not appear in the panel.) Within that
branch, expand the Tables item. The CourseCatalog table should appear in the panel.

Dwonloaded from: iDATA.ws

364	 Microsoft ADO.NET 4 Step by Step

4.	 Drag CourseCatalog from the Server Explorer panel (or the Database Explorer panel) to
the blank area within the MainContent (Custom) tab in the web page.

This action adds an ASP.NET GridView control to the page, already configured with the
table’s columns. It also adds a SqlDataSource control just below the grid.

5.	 Run the application. Visual Studio starts up a web browser session and displays the
data-bound grid in the web page that appears in the browser.

Understanding ASP.NET Data Binding
As with Windows Forms, a data-bound ASP.NET application uses controls that encapsulate
database access and data-binding behaviors. But whereas the Windows Forms example ear-
lier in this chapter added nearly a half-dozen data-enabled intermediate controls to work its
binding magic, not to mention the final display controls, the ASP.NET sample gets by with
only two controls: the data source and the grid control.

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 365

Within the markup for an ASP.NET application, controls appear as special HTML tags prefixed
with “asp.” Behind the scenes, the implementation for these special tags is a standard .NET
class, a system that has a closer relationship with a WPF user interface than to a Windows
Forms UI. The following code defines the data source that Visual Studio created when you
dragged the CourseCatalog table to the page surface:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

 ConnectionString="<%$ ConnectionStrings:StepSampleConnectionString1 %>"

 DeleteCommand="DELETE FROM [CourseCatalog] WHERE [CourseID] = @CourseID"

 InsertCommand="INSERT INTO [CourseCatalog] ([CourseID], [CourseName],

 [OfferedFall], [OfferedSpring], [CreditHours], [Prerequisite]) VALUES

 (@CourseID, @CourseName, @OfferedFall, @OfferedSpring,

 @CreditHours, @Prerequisite)"

 ProviderName="<%$ ConnectionStrings:

 StepSampleConnectionString1.ProviderName %>"

 SelectCommand="SELECT [CourseID], [CourseName], [OfferedFall],

 [OfferedSpring], [CreditHours], [Prerequisite] FROM [CourseCatalog]"

 UpdateCommand="UPDATE [CourseCatalog] SET [CourseName] = @CourseName,

 [OfferedFall] = @OfferedFall, [OfferedSpring] = @OfferedSpring,

 [CreditHours] = @CreditHours, [Prerequisite] = @Prerequisite

 WHERE [CourseID] = @CourseID">

 <DeleteParameters>

 <asp:Parameter Name="CourseID" Type="String" />

 </DeleteParameters>

 <InsertParameters>

 <asp:Parameter Name="CourseID" Type="String" />

 <asp:Parameter Name="CourseName" Type="String" />

 <asp:Parameter Name="OfferedFall" Type="Boolean" />

 <asp:Parameter Name="OfferedSpring" Type="Boolean" />

 <asp:Parameter Name="CreditHours" Type="Int16" />

 <asp:Parameter Name="Prerequisite" Type="String" />

 </InsertParameters>

 <UpdateParameters>

 <asp:Parameter Name="CourseName" Type="String" />

 <asp:Parameter Name="OfferedFall" Type="Boolean" />

 <asp:Parameter Name="OfferedSpring" Type="Boolean" />

 <asp:Parameter Name="CreditHours" Type="Int16" />

 <asp:Parameter Name="Prerequisite" Type="String" />

 <asp:Parameter Name="CourseID" Type="String" />

 </UpdateParameters>

</asp:SqlDataSource>

This definition includes sufficient content to define both the DataSet instance and the
DataAdapter that loads data into it. The asp:SqlDataSource control (as implemented through
the System.Web.UI.WebControls.SqlDataSource class) includes the logic needed to create a
DataSet instance and fill it with incoming data from a DataAdapter. The connection string,
referenced in the control’s ConnectionString attribute, appears in the project’s Web.config
XML file.

Dwonloaded from: iDATA.ws

366	 Microsoft ADO.NET 4 Step by Step

<!-- This is just the connection string portion of the Web.config file. -->

<connectionStrings>

 <add name="StepSampleConnectionString1"

 connectionString="Data Source=(local)\SQLExpress;

 Initial Catalog=StepSample;Integrated Security=True"

 providerName="System.Data.SqlClient" />

</connectionStrings>

The content can vary depending on your database configuration.

The actual data binding occurs through the data-enabled features of the GridView control.

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"

 DataKeyNames="CourseID" DataSourceID="SqlDataSource1"

 EmptyDataText="There are no data records to display.">

 <Columns>

 <asp:BoundField DataField="CourseID" HeaderText="CourseID"

 ReadOnly="True" SortExpression="CourseID" />

 <asp:BoundField DataField="CourseName" HeaderText="CourseName"

 SortExpression="CourseName" />

 <asp:CheckBoxField DataField="OfferedFall" HeaderText="OfferedFall"

 SortExpression="OfferedFall" />

 <asp:CheckBoxField DataField="OfferedSpring" HeaderText="OfferedSpring"

 SortExpression="OfferedSpring" />

 <asp:BoundField DataField="CreditHours" HeaderText="CreditHours"

 SortExpression="CreditHours" />

 <asp:BoundField DataField="Prerequisite" HeaderText="Prerequisite"

 SortExpression="Prerequisite" />

 </Columns>

</asp:GridView>

The control’s DataSourceID references the SqlDataSource instance that will supply the bound
data. Within the control’s Columns tag, a collection of asp:BoundField instances and their
DataField attributes identify the path needed to locate the display data within the source.
The control also includes an EmptyDataText attribute that adjusts the grid’s content in the
running application if the source lacks data records. It’s a surprisingly small amount of code
for the functionality it brings to the web page, and it works without adding a single line of
custom C# or Visual Basic code.

Dwonloaded from: iDATA.ws

	 Chapter 21  Binding Data with ADO.NET	 367

Summary
This chapter introduced some of the data binding options available in different flavors of
Visual Studio projects: Windows Forms, Windows Presentation Foundation, and ASP.NET.
With little more than wizard-based database configuration followed by some mouse clicks,
Visual Studio can generate a working application that displays—or in some cases enables
editing of—data from an external source.

The samples included in this chapter provide only the most basic examples of what is pos-
sible with data-bound controls. If you forgo the simple drag-and-drop methods and use the
examples as a starting point for data binding concepts, you can craft complex, interactive ap-
plications that depend on the intelligent data-linking features included in most Visual Studio
user interface controls.

Chapter 21 Quick Reference
To Do This

Create a simple data-bound Windows Forms
application

Create a new Windows Forms project.

Add a data source to the project that exposes the rel-
evant data table(s).

Drag a table from the data source to the surface of a
form.

Create a simple data-bound Windows
Presentation Foundation application

Create a new WPF application.

Add a data source to the project that exposes the
relevant data table(s).

Drag a table from the data source to the surface of a
window.

Create a simple data-bound ASP.NET application Create a new ASP.NET application.

Ensure that the target database is available in the Server
Explorer (or Database Explorer).

Drag a table from the Server Explorer (or Database
Explorer) to the surface of a page.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Chapter 22

Providing RESTful Services with WCF
Data Services

After completing this chapter, you will be able to:

■■ Create model-based data services

■■ Understand REST and its interaction with a data service

■■ Make database queries using specially constructed URIs

The Internet is a disconnected world. Except for brief moments of connectivity, web pages
spend most of their time separated from the servers that provide their data. This reality
makes it difficult, if not impossible, to implement a traditional client-server or n-tier database
application. Instead, some Web-based applications use a new service-oriented model of re-
questing and updating data at the server.

This chapter introduces some ADO.NET-related technologies that take advantage of this
service-focused methodology. WCF Data Services provides a standardized way of exposing
Entity Framework (EF) data and other ADO.NET data content to Web-based clients. REST,
short for representational state transfer, provides a method of querying and updating data
service content using URIs and other standardized Web-based interfaces.

Getting to Know the Service Layers
Exposing entity data through a service-oriented RESTful interface involves multiple layers
of data libraries. Some of them have already been covered in this book, including the Entity
Framework modeling layer that provides the core access to the data. WCF Data Services and
the REST interface provide two additional layers that make the service-based movement of
data to a web client a reality.

Introducing WCF Data Services
Windows Communication Foundation (WCF) Data Services began its life as ADO.NET Data
Services in Microsoft’s version 3.5 update to the .NET Framework and in the accompanying
Visual Studio 2008 SP1 release. The library is Microsoft’s implementation of the Open Data
Protocol, a Web-based standard for querying and updating data from a wide array of data
sources. The Open Data Protocol is sponsored by Microsoft.

Dwonloaded from: iDATA.ws

370

Note  Learn more about the Open Data Protocol and its objectives at the specification’s official
web site: www.odata.org.

WCF Data Services are ASP.NET services as expressed through a .svc service file in an ASP.NET
project. Clients make query and data-update requests by accessing the service using stan-
dard HTTP operations.

Note  In addition to ASP.NET, WCF Data Services can be expressed directly through Microsoft’s
Internet Information Services (IIS), through a standalone WCF service, or through any other net-
work service that supports the IDataServiceHost interface. This chapter discusses only the ASP.NET
service interface.

The goal of a WCF Data Service is to present a collection of data, such as an EF model, in a
form that can be queried by something as basic as a specially formed web page address. The
system has a strong preference for EF conceptual models, making exposure of model data as
easy as creating a derived class instance.

WCF Data Services uses a set of source providers to express different types of source data.
The Entity Framework provider handles EF conceptual models. Services can also expose data
from standard .NET objects that implement the IQueryable interface via the Reflection pro-
vider. (If a model supports the IUpdatable interface, clients will be able to update source data
as well through that same provider.) Custom Data Service Providers let you create late-bound
data services that indicate the available data collections as they are accessed.

Note  This chapter examines only the Entity Framework provider.

By default, data exposed by the service is in the form of an Atom Publishing Protocol
(AtomPub) XML document. JavaScript Object Notation (JSON) is also supported. Queries of
individual scalar properties return data either in a simple XML wrapper (the default) or as
plain-text data.

All classes involved in setting up WCF Data Services appear in the System.Data.Services
namespace.

Introducing REST
Representational state transfer is a software architecture for managing distributed text and
media content in a client-server environment. It documents a standardized interface for re-
questing distributed hypermedia content in a stateless manner.

Dwonloaded from: iDATA.ws

	 Chapter 22  Providing RESTful Services with WCF Data Services	 371

The type of content being retrieved is not REST’s concern. Instead, the architecture focuses
on the rules and tools used to locate and transfer the content. If you’ve ever browsed the
Internet, you are already well versed in REST because the World Wide Web is, with its distrib-
uted content and its standardized set of request verbs, the largest implementation of a REST-
based (or “RESTful”) system.

WCF Data Services—and the Open Data Protocol on which it is based—is a RESTful system.
The services you create in ASP.NET can expose a variety of source data, but the interfaces
and commands used to access that data are standardized. For the convenience of discussion
in this chapter, RESTful refers to the HTTP transport and the constructed URIs or HTTP re-
quests that access data from an exposed service.

The URIs for REST requests use a syntax that reflects the structure of the data and the query
capabilities inherent in an EF model. Data components, such as entity and property names,
are added to the URI after the service address. For example, a request to return all entities in
the “Customers” entity set might use the following URI:

http://example.com/ExampleService.svc/Customers

In a more complex example, the following URI returns the ID numbers and totals (in de-
scending order) for all of a specific customer’s orders:

http://example.com/ExampleService.svc/Customers(3492L)/

 OrderEntries?$orderby=OrderTotal desc&$select=ID,OrderTotal

Setting Up a Data Service
WCF Data Services implementations typically appear as web services and are built as part of
an ASP.NET application. You can create a new service based on an Entity Framework model in
just a few steps:

1.	 Create a new ASP.NET web application using either C# or Visual Basic.

2.	 Add an ADO.NET Entity Data Model to your project and generate the conceptual mod-
el from a database. The “Using the Entity Data Model Wizard” section of Chapter 14,
“Visualizing Data Models,” walks you through this process.

Dwonloaded from: iDATA.ws

372	 Microsoft ADO.NET 4 Step by Step

3.	 Add a new WCF Data Service item to your project. This action adds a new class file to
your project that derives from System.Data.Services.DataService(Of T). The new file in-
cludes some boilerplate code that you can modify to meet the needs of your service.
At the very least, you must modify this template to identify the name of your EF entity
container (for the “Of T” part of the generic definition).

4.	 Configure the new data service to indicate which portions of the entity model are avail-
able for use by clients. These changes occur in the InitializeService method of the new
service class. The method already appears in the generated class code; you just need to
customize it.

The following exercise exposes an Entity Framework data model as a WCF Data Service.

Creating a Data Service from an EF Model: C#

Note  If you are using Microsoft Visual C# 2010 Express as your development tool, you must
download and install Microsoft Visual Web Developer 2010 Express to complete the exercises in
this chapter. Visit www.microsoft.com/express to download Express products.

1.	 Create a new ASP.NET web application project.

2.	 Add a new ADO.NET Entity Data Model to the project. (See the “Importing Database
Tables as Entities” exercise on page 227 in Chapter 14 for step by step instructions.)
Name the model file SalesOrder.edmx. When the Entity Data Model Wizard prompts
you to store the connection string in the Web.config file, select that option.

3.	 On the wizard’s Choose Your Database Objects panel, add the Customer,
OrderEntry, and StateRegion tables to the model. Set the Model Namespace field to
SalesOrderModel. Click Finish to complete the wizard.

4.	 In the properties for the SalesOrder.edmx model, make sure that the EntityContainerName
property is set to SalesOrderEntities. Save and close the model file.

5.	 Add a new WCF Data Service item to the project, naming it SalesOrder.svc. The new
file appears in your project with the following class code already included (comments
removed for clarity):

public class SalesOrder : DataService< >

{

 public static void InitializeService(DataServiceConfiguration config)

 {

 config.DataServiceBehavior.MaxProtocolVersion =

 DataServiceProtocolVersion.V2;

 }

}

Dwonloaded from: iDATA.ws

	 Chapter 22  Providing RESTful Services with WCF Data Services	 373

6.	 In the initial class definition clause, replace the DataService< > base class definition
(and any content contained within the angle brackets) with DataService<SalesOrder
Entities>. This change tells the service which Entity Framework model to use as the
data source.

7.	 Add the following statement to the SalesOrder class in the InitializeService method:

config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);

This line tells the service to allow full read access to all the model’s entities.

8.	 Run the application. Visual Studio starts the service using its built-in web server. Next,
it opens a web browser and points it to the address of the new service. The service re-
turns information about the service’s available features in the default AtomPub format.

Note  Depending on the configuration of your web browser, the XML content might or might
not appear in the browser window.

Creating a Data Service from an EF Model: Visual Basic

Note  If you are using Microsoft Visual Basic 2010 Express as your development tool, you must
download and install Microsoft Visual Web Developer 2010 Express to complete the exercises in
this chapter. Visit www.microsoft.com/express to download Express products.

1.	 Create a new ASP.NET web application project.

Dwonloaded from: iDATA.ws

374	 Microsoft ADO.NET 4 Step by Step

2.	 Add a new ADO.NET Entity Data Model to the project. (See the “Importing Database
Tables as Entities” exercise on page 227 in Chapter 14 for step-by-step instructions.)
Name the model file SalesOrder.edmx. When the Entity Data Model Wizard prompts
you to store the connection string in the Web.config file, select that option.

3.	 On the wizard’s Choose Your Database Objects panel, add the Customer,
OrderEntry, and StateRegion tables to the model. Set the Model Namespace field to
SalesOrderModel. Click Finish to complete the wizard.

4.	 In the properties for the SalesOrder.edmx model, make sure that the EntityContainerName
property is set to SalesOrderEntities. Save and close the model file.

5.	 Add a new WCF Data Service item to the project, naming it SalesOrder.svc. The new
file appears in your project with the following class code already included (comments
removed for clarity):

Public Class SalesOrder

 Inherits DataService(Of [[class name]])

 Public Shared Sub InitializeService(ByVal config

 As DataServiceConfiguration)

 config.DataServiceBehavior.MaxProtocolVersion =

 DataServiceProtocolVersion.V2

 End Sub

End Class

6.	 In the Inherits clause of the SalesOrder class definition, replace [[class name]] with
SalesOrderEntities. This change tells the service which Entity Framework model to use
as the data source.

7.	 Add the following statement to the SalesOrder class in the InitializeService method:

config.SetEntitySetAccessRule("*", EntitySetRights.AllRead)

This line tells the service to allow full read access to all of the model’s entities.

8.	 Run the application. Visual Studio starts the service using its built-in web server. Next,
it opens a web browser and points it to the address of the new service. The service re-
turns information about the service’s available features in the default AtomPub format.

Dwonloaded from: iDATA.ws

	 Chapter 22  Providing RESTful Services with WCF Data Services	 375

Note  Depending on the configuration of your web browser, the XML content might or might
not appear in the browser window.

Defining Service Rights
By default, the WCF Data Service exposes none of the entity sets included in a model for
client queries. To access any data, you must configure the data rights available to RESTful
callers. This configuration occurs in the derived DataService(Of T) class’ InitializeService method.
The service host calls this routine once at startup to determine the features activated for the
service.

When you add a new WCF Data Service to your project, the InitializeService method already
includes one configuration setting, which is updated using the passed-in config parameter, an
instance of DataServiceConfiguration.

C#
config.DataServiceBehavior.MaxProtocolVersion =

 DataServiceProtocolVersion.V2;

Visual Basic
config.DataServiceBehavior.MaxProtocolVersion =

 DataServiceProtocolVersion.V2

Dwonloaded from: iDATA.ws

376	 Microsoft ADO.NET 4 Step by Step

This setting indicates which features are available to clients based on the release version of
those features. For example, the ability to project properties in a query (with the Select ex-
tension method) is not available before Version 2. (Version 2 is the current release level as of
this writing.)

For entity permissions, the key configuration setting is the DataServiceConfig.SetEntitySet
AccessRule method, as used in the previous example. You pass this method the name of an
entity set and a set of rights from the EntitySetRights enumeration.

C#
config.SetEntitySetAccessRule("Customers", EntitySetRights.AllRead);

Visual Basic
config.SetEntitySetAccessRule("Customers", EntitySetRights.AllRead)

Call this method for each entity set you plan to make available or use an asterisk (“*”) as the
entity name to simultaneously set rights for all entities at once. Table 22-1 lists the rights
available for each entity set. Combine multiple rights together with a bitwise-Or operator to
use a combination of rights.

Table 22-1  Rights Available for Data Service Entities

EntitySetRights Member Description

None Removes all access rights for the indicated entity set. This is the
default for all model entities.

ReadSingle Clients can query a specific entity instance by its primary key.

ReadMultiple Clients can retrieve a set of all entities in an entity set. This right
does not permit selection of an individual entity by primary key,
although a filter may retrieve similar results.

WriteAppend Clients can add new entity records to an entity set.

WriteReplace Clients can update entities. When updating an individual entity,
only those new property values supplied by the client are updated.
Other property values are cleared or set to their default values.
The client replaces the original record completely.

WriteDelete Clients can delete existing entity records.

WriteMerge Clients can update entities. When updating an individual entity,
only those new property values supplied by the client get updat-
ed. Other property values are left unchanged. The client modifies
the existing record in-place.

AllWrite Combination of all the write-specific rights.

AllRead Combination of all the read-specific rights.

All Combination of all the read-specific and write-specific rights.

Dwonloaded from: iDATA.ws

	 Chapter 22  Providing RESTful Services with WCF Data Services	 377

If your entity model exposes database-side or model-defined procedures, you can set their
rights using the DataServiceConfig.SetServiceOperationAccessRule method.

Accessing a Data Service using REST
REST uses standard HTTP verbs to retrieve data and make updates to entities. Data queries
that return content in either AtomPub (the default) or JSON format use the GET verb. Data
updates use the PUT, POST, MERGE, and DELETE verbs, depending on the update operation.

Note  This section documents some typical examples of querying and updating entities through
REST. For detailed information and examples, visit the Open Data Protocol web site at www.
odata.org.

Querying Entities with REST
REST queries use the HTTP GET verb to identify the content to retrieve. The easiest way to
use GET is to build a URI that includes all the query components and enter it in the address
bar of a web browser. In the exercise shown earlier in this chapter, the running service dis-
played its available entity sets by making an address-based GET request through the browser.

http://example.com/SalesOrder.svc/

Note  In lieu of an exercise that demonstrates REST queries, run the service created earlier in this
chapter and use its web browser session to test the URIs documented throughout this section.

REST queries start with this URI base and add additional entity information and operators to
adjust the query. The simplest query involves appending the name of an entity set to the URI
base.

http://example.com/SalesOrder.svc/Customers

Assuming that the Customers entity set is enabled for multiple-read access, this request re-
turns all available entities in AtomPub format.

Dwonloaded from: iDATA.ws

378	 Microsoft ADO.NET 4 Step by Step

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<feed xml:base="http://localhost:49712/SalesOrder.svc/"

 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Customers</title>

 <id>http://localhost:49712/SalesOrder.svc/Customers</id>

 <updated>2010-08-11T01:16:42Z</updated>

 <link rel="self" title="Customers" href="Customers" />

 <entry>

 <id>http://localhost:49712/SalesOrder.svc/Customers(1L)</id>

 <title type="text" />

 <updated>2010-08-11T01:16:42Z</updated>

 <author>

 <name />

 </author>

 <link rel="edit" title="Customer" href="Customers(1L)" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/related/State" type="application/atom+xml;type=entry"

 title="State" href="Customers(1L)/State" />

 <link rel="http://schemas.microsoft.com/ado/2007/08/

 dataservices/related/OrderEntries" type="application/atom+xml;

 type=feed" title="OrderEntries" href="Customers(1L)/OrderEntries" />

 <category term="SalesOrderModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

 <content type="application/xml">

 <m:properties>

 <d:ID m:type="Edm.Int64">1</d:ID>

 <d:FullName>Coho Vineyard</d:FullName>

 <d:Address1>123 Main Street</d:Address1>

 <d:Address2 m:null="true" />

 <d:City>Albany</d:City>

 <d:StateRegion m:type="Edm.Int64">32</d:StateRegion>

 <d:PostalCode>85000</d:PostalCode>

 <d:PhoneNumber m:null="true" />

 <d:WebSite>http://www.cohovineyard.com</d:WebSite>

 <d:AnnualFee m:type="Edm.Decimal">200.0000</d:AnnualFee>

 </m:properties>

 </content>

 </entry>

 <entry>

 <!-- Another entry here -->

 </entry>

 <!-- And so on... -->

</feed>

Note  Internet Explorer 8, the latest version of Microsoft’s web browser (as of this writing), ap-
plies a user-friendly interface to AtomPub feed content that hides the underlying XML. You can
still access the XML by viewing the page source. Another option is to disable the interface con-
version on all feeds. To do this, select Tools | Options from the menu in Internet Explorer. On the
Options dialog box, select the Content tab and click the Settings button in the Feeds And Web
Slices section. When the Feed And Web Slice Settings dialog box appears, clear the Turn On Feed
Reading View field.

Dwonloaded from: iDATA.ws

	 Chapter 22  Providing RESTful Services with WCF Data Services	 379

This content includes an <entry> tag for each returned entity, with distinct XML tags for each
of the entity’s properties. This is the typical format any time your query is based on an entity
set. Queries to retrieve a single entity append the primary key in parentheses at the end of
the URI.

http://example.com/SalesOrder.svc/Customers(3L)

This result, as with most results that return a single entity instance, uses the <entry> tag as
the top-level XML tag, instead of <feed>. Otherwise, the content is generally the same as the
multi-entity results.

Note  The schema used by REST defines formats for literals, such as the primary key value. For
example, text-based primary keys must be surrounded by single quotes. If your primary key is a
long (64-bit) integer, you must add an uppercase “L” to the end of the number. Otherwise, the
WCF Data Service will not succeed in locating the record.

To return content in JSON format instead of AtomPub, append the $format=json system
query option to the URI.

http://example.com/SalesOrder.svc/Customers(3L)?$format=json

If you build your own GET packet, you can also set the accept request header to the applica-
tion/json MIME type.

By default, a query for a single entity returns all properties for that entity. To limit the result
to a single scalar property, append the property name to the query.

http://example.com/SalesOrder.svc/Customers(1L)/FullName

This query returns simplified XML content that contains the requested data:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>

<FullName xmlns="http://schemas.microsoft.com/ado/2007/

 08/dataservices">Coho Vineyard</FullName>

The $value query option removes the XML wrapper and returns only the data:

http://example.com/SalesOrder.svc/Customers(1L)/FullName/$value

Dwonloaded from: iDATA.ws

380	 Microsoft ADO.NET 4 Step by Step

This query returns just the retrieved content:

Coho Vineyard

Navigation properties work just like scalar properties within the URI, although they return
results formatted more like a multi-entity feed.

http://example.com/SalesOrder.svc/Customers(1L)/OrderEntries

Several query options modify the returned returns. These options translate into Entity
Framework extension methods that filter, project, or sort the results. The $orderby option
sorts multi-entity results by the indicated properties or expressions.

http://example.com/SalesOrder.svc/Customers?$orderby=FullName desc

The $filter and $select options limit and project the results using the instructions provided
after the equal signs.

http://example.com/SalesOrder.svc/Customers/

 ?$filter=City eq 'Albany'&$select=ID,FullName

Most traditional operators don’t work in REST; instead, you use a set of abbreviated opera-
tors, such as:

■■ Math operators: add, sub, mul, div, and mod

■■ Logical operators: and, or, not

■■ Comparison operators: eq, ne, lt, gt, le, ge

For example, the following query returns orders that have a post–8.75 percent taxed amount
of 500 or more.

http://example.com/SalesOrder.svc/OrderEntries?$filter=

 (Subtotal mul 1.0875) ge 500

Dwonloaded from: iDATA.ws

	 Chapter 22  Providing RESTful Services with WCF Data Services	 381

Other query options include the $top and $skip operators that work like their extension
method counterparts. The $count option returns the number of records in the entity or
query.

http://example.com/SalesOrder.svc/Customers/$count

The query returns just the numeric count as a string, without any XML wrapper.

Note  The $count operator is disabled by default. To enable it, set the config.
DataServiceBehavior.AcceptCountRequests property to True in the InitializeService method.

The $expand option returns a related set of entities for a result. For instance, the follow-
ing query returns the specified Customer entity, plus that customer record’s associated
OrderEntries entities as a <feed> tag subordinate to the customer’s <entry> tag block.

http://example.com/SalesOrder.svc/Customers(1L)?$expand=OrderEntries

Malformed query strings result in an HTTP error code 400: “Bad Request.” In all cases,
the query options, operators, entity names, and all other elements of the query are
case-sensitive.

For more query examples and to discover other query options and formats, see the
“Addressing Resources (WCF Data Services)” and “Query Functions (WCF Data Services)”
pages in the Visual Studio online help. The www.odata.org web site also contains numerous
query examples, plus full documentation on the format of all query components.

Updating Entities with REST
REST also includes features that let you modify the entities exposed by a WCF Data Service—
assuming that write permissions have been enabled for the entities. Creating a REST request
that updates content is a little more involved than writing a simple GET-based query. Beyond
the basic URI, you must also add details on what to update in the HTTP request’s payload
section.

Note  This section provides general information on building REST updates. Specifics on how to
package and transmit the request will vary depending on the client libraries used to communi-
cate with the service. Specific implementation details on transmitting HTTP requests are beyond
the scope of this book.

Dwonloaded from: iDATA.ws

382	 Microsoft ADO.NET 4 Step by Step

To add a new entity, you send a POST request that includes all new property values in
AtomPub or JSON format. The following AtomPub-formatted request adds a new Customer
entity to the database via the data service:

POST /SalesOrder.svc/Customers HTTP/1.1

Host: example.com

DataServiceVersion: 1.0

MaxDataServiceVersion: 2.0

accept: application/atom+xml

content-type: application/atom+xml

Content-Length: 937

<?xml version="1.0" encoding="utf-8"?>

<Entry xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 xmlns="http://www.w3.org/2005/Atom">

 <title type="text"></title>

 <updated>2010-08-31T23:45:12Z</updated>

 <author>

 <name />

 </author>

 <category term="SalesOrderModel.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

 <content type="application/xml">

 <m:properties>

 <d:FullName>Southridge Video</d:FullName>

 <d:Address1>789 Washington Parkway</d:Address1>

 <d:City>Phoenix</d:City>

 <d:StateRegion m:type="Edm.Int64">3</d:StateRegion>

 <d:PostalCode>90909</d:PostalCode>

 <d:WebSite>http://www.southridgevideo.com</d:WebSite>

 <d:AnnualFee m:type="Edm.Decimal">350.0000</d:AnnualFee>

 </m:properties>

 </content>

</Entry>

When the new record is successfully inserted, the service returns an image of the new record
in AtomPub or JSON format (as indicated by the accept request header) and an HTTP status
code of 201.

Updates to existing entities follow the same pattern, but use the PUT verb instead of POST.
This action replaces the existing record with the new content. To perform a merge operation—
modifying just those properties specified in the request payload—use the MERGE verb in-
stead of PUT.

MERGE /SalesOrder.svc/Customers(4L) HTTP/1.1

Dwonloaded from: iDATA.ws

	 Chapter 22  Providing RESTful Services with WCF Data Services	 383

Updates to a single property use a shortened form of the PUT request. The following code
updates the AnnualFee property for a Customer entity:

PUT /SalesOrder.svc/Customers(4L)/AnnualFee HTTP/1.1

Host: example.com

DataServiceVersion: 1.0

MaxDataServiceVersion: 2.0

accept: application/xml

content-type: application/xml

Content-Length: 259

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<d:AnnualFee xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

 m:type="Edm.Decimal">400.0000</d:AnnualFee>

An even shorter form uses the $value query option to indicate that the payload is stripped
down to just the bare data content.

PUT /SalesOrder.svc/Customers(4L)/AnnualFee/$value HTTP/1.1

Host: example.com

DataServiceVersion: 1.0

MaxDataServiceVersion: 2.0

accept: application/xml

content-type: application/xml

Content-Length: 3

400

To remove an entity, issue an HTTP DELETE request, including the query path to the entity in
the request.

DELETE /SalesOrder.svc/Customers(4L) HTTP/1.1

An HTTP return code of 200 indicates success.

Dwonloaded from: iDATA.ws

384	 Microsoft ADO.NET 4 Step by Step

Summary
This chapter provided a brief introduction to WCF Data Services and REST, which are service-
oriented programming tools that make it simple to expose Entity Framework model content
to fully disconnected, remote consumers. WCF Data Services is an implementation of the
Open Data Protocol (OData) standard that provides a consistent request mechanism for dif-
ferent types of server-hosted content.

REST combines the power of traditional database queries with the simplicity of web addresses.
By forming simple text-based HTTP requests, you can query or update data from a WCF Data
Service without the need to know or understand the underlying structure of the data.

Chapter 22 Quick Reference
To Do This

Expose an EF model as a service Create an ASP.NET web application project.

Add the entity model to the project.

Add a WCF Data Service item to the project.

Change the generic class definition of the new service to
include the entity container name.

Modify the service’s InitializeService method to set access
rights.

Make the .svc file available on a web server.

Provide read access to an entity Add the EF model and WCF Data Service to an ASP.NET
project.

Locate the data service’s InitializeService method.

In that method, call config.SetEntitySetAccessRule, passing
it the name of the entity set and the enumerated value
EntitySetRights.AllRead.

Issue a REST query for a single entity instance Create an HTTP GET request.

In the URI, after the path to the .svc hosted file, add /xxx(ID),
where “xxx” is the entity set name, and “ID” is the primary
key of the instance.

Dwonloaded from: iDATA.ws

	 	 385

Symbols

$filter option 380
$orderby option 380
$select option 380
$value option 383
* (asterisk) symbol, using as

entity name 376
.csdl file extensions 217
{ } (curly braces), building

custom collections
using 254

.dbml file extensions 336

.edmx file extensions 217,
218, 325

= (equal sign), comparing
columns to literal
values using 63

>= (greater than or equal
to sign)

comparing columns to lit-
eral values using 63

in Where clause (LINQ)
296

> (greater than sign)
comparing columns to lit-

eral values using 63
<> (inequality sign)

comparing columns to lit-
eral values using 63

<= (less than or equal to
sign)

comparing columns to lit-
eral values using 63

< (less than sign)
comparing columns to lit-

eral values using 63
in Where clause (LINQ)

296

.NET applications, types of
configuration files
13

.NET developers, ADO.NET
and 3

.NET Framework.
See also Entity
Framework (EF)

ADO.NET in 213
connection string builders

in 126
data providers 126–127
strongly typed DataSets

in 214
.NET objects, tools 8
() parentheses

in expression evaluation
63

using in Where clause
(LINQ) 296

@-prefixed placeholders
155, 157, 161, 167,
178

‘ ‘ (single quotes)
using BINARY keyword

with 250
using GUID keyword with

250
using strings with 249

\SQLEXPRESS
appended with SQL

Server 2008 Express
Edition instances 12

.ssdl file extensions 217,
325

- (subtraction) operators, in
Entity SQL language
250

.svc service files 370

.tt (text templates) file ex-
tensions 241

.xsd file extensions
created from Connection

Wizard 14
creating tables with

mouse 28

A

ABS (absolute value) 251
AcceptChanges method

48, 57, 99
Access, provider class li-

braries for 126
ACID

rules 192–193
with transactions 204

Acos function 323
acronym, ADO.NET 4
Add Connection dialog box

12
Add Entity dialog box

231–232
Add Function Import dialog

box 233–234
Add... functions

in Entity SQL language
251

in LINQ to Entities 322
adding

aggregate columns
94–95

BindingNavigator control
to Windows forms
353

calculated columns 71
connections to databases

32
data columns 21–28
data rows to tables 37–41
Entity Framework model

to projects 243

Index

Dwonloaded from: iDATA.ws

386	 Add New

expression columns
68–70

mapping condition to en-
tity 237–239

navigation buttons to
WPF window 357–
360

new entities through ob-
jects 271–272

relationships between
two tables 79

tables to DataSets 75
Add New Item dialog box

28
AddObject method 272
add operator in REST 380
AddWithValue method 157
ADO.NET

about 3–5
components of 5–7
extensions to 7–8
prior versions of, Oracle

providers in 127
ADO.NET Data Services

369
ADO.NET Entity Data

Model Designer
about 218
generating objects using

220
mapping details panel,

working with 235–
240

using 230–236
ADO.NET Entity Data

Model Wizard 218,
225–229, 325, 372

ADO.NET EntityObject
Generator 241

ADO.NET Self-Tracking
EntityObject
Generator 241

ADO vs. ADO.NET 4
Aggregate clauses 301,

302

aggregate functions 252–
254, 301–302

aggregating data 89–98
adding aggregate col-

umns 94–95
functions for 89–90
generating

single aggregates
91–94

summaries 95–98
referencing parent fields

in expressions 98
aliases, using in Entity SQL

language 247
All

as EntitySetRights mem-
ber 376

function 301
AllowDBNull, DataColumn

class property 23
AllowDelete Boolean prop-

erties 101
AllowEdit Boolean proper-

ties 101
AllowNew Boolean proper-

ties 101
AllRead, as EntitySetRights

member 376
AllWrite, as EntitySetRights

member 376
AND operator 250, 296
and operator in REST 380
anonymous type definition

(new {}) 294
anonymous types 290
Any function 301
application configuration

files, modifying set-
tings in 13

Application Name key 123
“applies” as keyword in

Entity SQL language
248–249

arguments, XmlWriteMode
109

arrays
of DataRow instances

in Select method 98
of DataRowView instances

in FindRows method
102

ASC (ascending sorts) 65
ascending sorts (ASC) 65
Ascii function 323
ASC modifier 248
AsEnumerable extension

method 306
Asin function 323
AsNonUnicode function

322
ASP.NET

applications 371
data binding in 362–366
services 370

association ends, Entity
Framework definition
of 215

associations
editing 232–233
edit mappings 237
Entity Framework defini-

tion of 215, 216
sets of, Entity Framework

definition 216
asterisk (*) symbol, using as

entity name 376
AsUnicode function 322
Atan2 function 323
Atan function 323
Atomicity rule 192
AtomPub (Atom Publishing

Protocol) 370, 377–
378, 382

AttachDBFilename key 123
AutoIncrement,

DataColumn class
property 23, 38

AutoIncrementSeed,
DataColumn class
property 23

Dwonloaded from: iDATA.ws

	 C#	 387

AutoIncrementStep,
DataColumn class
property 23

auto-update EF model 233
Average function 301
Avg function 89, 252

B

batch processing 46–49
BeginEdit method 50–53, 57
BeginExecuteNonQuery

method 139–141
BeginExecuteXmlReader

method 146
BeginTransaction method

196
BINARY keyword 250
BindingContext instances

353
binding data

about 347
in ASP.NET 362–366
in Windows forms 347–354

creating complex forms
348

creating simple forms
351–352

understanding 352–354
in Windows Presentation

Foundation (WPF)
352–362

creating data-bound ap-
plications 355–361

BindingNavigator control
353

BindingSource class 353
Bitwise functions 251
BLOBs 281
Boolean functions

All 301
Any 301
Contains 251
EndsWith 251
StartsWith 251

Boolean operators
AND 63, 296, 380

NOT 63, 296, 380
OR 63, 296, 380

Boolean properties
AllowDelete 101
AllowEdit 101
AllowNew 101

Boolean values
true and false keywords as

249
BuildConnection function

129

C

C#
accessing data through

model-generated ob-
jects 268–270

accessing field values 144
adding aggregate columns

95
adding BindingNavigator

control to Windows
forms 353–354

adding columns to
DataTables 25–26

adding constraints manu-
ally 83

adding database tables, us-
ing DataSet Designer
32–33

adding DelimSubstring
method to System.
String data 278

adding expression columns
68–69

adding new entities
through objects 271–
272

adding parameters to a
command 156

adding relationships be-
tween two tables 79

adding rows to DataTables
41

adding tables to Data Sets
75

AddWithValue method in
setting parameters
157

building connection strings
125

calling AddLocation stored
procedure 162–163

calling
BeginExecuteNonQuery
method 139

calling Complete method
of TransactionScope
205–206

calling DeleteObject meth-
od 273

calling
EndExecuteNonQuery
method 139

calling stored procedures
with parameters 163–
165

computing aggregate val-
ues 91–93

configuring update com-
mands 175–176

creating command objects
136

creating custom tables,
in DataSet Designer
28–32

creating data bound WPF
applications 355–361

creating data service from
EF model 372–373

creating DataSet objects
73–74

creating DataTables 19
creating data views 99–101
creating instances of

TransactionScope 204
creating new instance of

command builder 180
creating SQL Server con-

nections 128–129

Dwonloaded from: iDATA.ws

388	 C#

defining update and
delete rules in
DataRelations 85–86

employing savepoints
203

finding rows by primary
key 60–61

generating DataTables
from DataView
103–104

generating EF objects
220–221

generating summaries 96
generating XML from

DataSet 114–115
GetOrdinal method in

144
implementing many-to-

many relationships
based on primary
keys 83–84

LINQ- specific language
features 8

locating parent-child re-
cords 80

modifying databases
through entity ob-
jects 274–276

modifying existing prop-
erties 271

modifying rows in
DataTable 43–44

moving data into
DataSets 173–174

moving data into
DataTables 171–173

nesting child tables 113
null values in 290
opening SQL Server con-

nections 129–130
processing database que-

ries 146–147
processing with distrib-

uted transactions
206–207

processing with local
transactions 198–
200

ReadXml in 110
referencing parent fields

in expressions 98
removing DataRow ob-

jects 45–46
retrieving entity

data through
ObjectQuery 257–
258

retrieving entity data
through provider
261–263

returning data rows
142–143

running nonqueries
138–139

selecting and sorting
DataRow objects
65–66

SELECT queries, return-
ing single values
141–142

syncing data with
SqlDataAdapter
181–183

System.DBNull in 40
this keyword and 280
transactions on open da-

tabase connections
196

updating Data Tables 179
updating data with pa-

rameters 158–159
using batch processing

47
using BeginEdit 51
using ColumnMapping

property 114
using Commit and

Rollback methods
197

using CreateObjectSet
method 222

using DataRow class types
38

using DataRow.
HasVersion method
49

using Dataset Designer
with 27

using DataTableMapping
objects 186–187

using ExecuteReader
method to generate
data reader 260

using LINQ in
applying set operations

302–303, 303
calling custom database

functions 326–327
creating implicit joins

306–307
filtering results with

Where clause 296
limiting data returned

299–300
projecting results with

Select clause 294
querying LINQ to SQL

340–341
querying the data set

309–310
querying to Entities

317–319
selecting linked results

with Join keyword
298–299

sorting results with
OrderBy clause 297

starting queries with
From clause 293

summarizing data using
aggregates 301–302

to SQL provider struc-
ture 334–336

using database func-
tions 323

using EntityFunctions
class 323

Dwonloaded from: iDATA.ws

	 collections, entity-based	 389

Where clause not sup-
ported 321–322

using namespace ele-
ments 19

using namespace proper-
ties in 112–113

using query builder meth-
ods 283

using Rollback method
203

validating data 51–55
viewing source code 233
WriteXML method in

108–109
calculated columns, add-

ing 71
calling

custom database func-
tions 326–329

DataRow.EndEdit 50, 51
Dispose 205
EndExecuteNonQuery

method 139
SaveChanges 273
stored procedures 138,

161
Cancel method 140
canonical functions, using

323
Caption, DataColumn class

property 24
cardinality, relational data-

base modeling term
76

cascade deletes in parent-
child relationships,
enforcing 88

CASE block, in Entity SQL
language 252

case-sensitive lookups, per-
forming 67

CAST function 251
Ceiling function 251
Char function 323
CharIndex functions 323
Checksum function 323

Child keywords to table re-
lationships 95–96

child-parent data, generat-
ing hierarchal 118

child-parent topics.
See parent-child

Child prefixes 94
child records, locating

79–81
child tables

nesting 113
Choose Data Source dialog

box 11
classes

BindingSource 353
ComplexObject 268
DataContext 334
DataRowExtensions 305
DataTableExtensions 305
DbTransaction 195
EdmFunctionAttribute

325
EntityFunctions 322, 323
EntityObject 220, 268
ObjectContext 268
ObjectQuery 256–259
ObjectQuery(Of T) 268,

283, 315
ObjectSet(Of TEntity)

268, 315
OdbcTransaction 195
OleDbTransaction 195
SqlCommand 136–137
SqlDataAdapter 172
SqlFunctions 323
SqlParameter 161
SQLParameter 157
SqlTransaction 195
System.Data

Constraint 81–87
DataRelation 78

TransactionScope 204
within data providers 127

classes in DataTables 18–21
DataColumn

about 21–22

ColumnMapping prop-
erty 114

Namespace property in
111–113

properties in 23–24
DataRow

about 18–20, 37
configuring 38
entries 6
HasVersion method 49
methods in retrieving

current child rows of
data 79–81

removing objects
45–46

validating content in
54–56

DataSet
Namespace property in

111–113
DataTable

about 19, 24–25
in LINQ queries 305,

306
Namespace property

111–113
supporting expression

columns 67
DataView

about 99–100
creating 99–101
using 101–105

class libraries, providers
126–127

clearing data in Entity
Framework

using functions in Entity
SQL language 250–
252

CLR (Common Language
Runtime) 324

code generation items 241
Code Generation Strategy

property 242
collections, entity-based

254

Dwonloaded from: iDATA.ws

390	 ColumnAttribute

ColumnAttribute 334
ColumnChanged event 51
ColumnChanging event 51
column errors, setting 51
ColumnMapping property

114
ColumnName, DataColumn

class property 24
column names

as filter expression ele-
ment 63

columns
data types in bound rela-

tionship 78
expression, using 67–70
managing and position-

ing 113–117
mapping with external

database tables
186–188

rowversion 195
command builders, using

181
Command classes, SQL

Server 127
command objects, creating

136–137
commands

CREATE FUNCTION DDL
324

commands, Update Model
From Database
shortcut 233

CommandText field, types
of string data ac-
cepted 137

command trees 280
CommandType property

137
Commit method 196–197
commit/rollback support

MSDTC distributed trans-
actions and 204

Common Language
Runtime (CLR) 324

Common Type System, of
NET

ADO.NET and 7
Complete method 205–

206
ComplexObject class 268
complex properties, craft-

ing 233, 234–235
components of ADO.NET

5–7
Compute method

calculating aggregate of
his single table col-
umns 91

Parent and Child prefixes
and 94

Concat function 251
conceptual models (con-

ceptual layers)
focus of Entity Data

Model Designer 235
in Entity Framework 215,

217–218
linking with storage mod-

els 226
using 218–219

Conceptual Schema
Definition Language
(CSDL) 217, 218–219,
226, 235, 242, 268

concurrency
data transactions and

191–195
definition of 194

configuration files for .NET
Applications 13

connecting to SQL Server
via data providers
127–132

Connection classes, SQL
Server 127

Connection objects 7
connection pooling 7, 129,

132
connection strings

building 226

content for building
124–126

identifying data sources
using 13

using 121–126
Connection Timeout key

124
Connection Wizard, creat-

ing a data source us-
ing 8–14

Consistency rule 193
Constraint class,

UniqueConstraint 81
Constraint instances, us-

ing 7
constraints, defining table

81–87
Contains function 251
Control keys, selecting

properties using 234
CONVERT function 64
Cos function 323
Cot function 323
COUNT and BIGCOUNT

functions 252
Count function 90, 301
Count method 283
count of records, getting

304
COUNT(*) syntax 252
CreateDateTime function

322
CreateDateTimeOffset

function 322
CREATE FUNCTION DDL

command 324
CreateObjectSet method

222
CreateTime function 322
creating

C# data tables 19
command objects 136–

137
complex types for use in

entity 243
custom tables

Dwonloaded from: iDATA.ws

	 DataColumn	 391

with DataSet Designer
28–32

database connections
128–129

data-bound ASP.NET ap-
plications 362–364

data-bound WPF applica-
tions 355–361

data reader 142–143
data relations 78–79
data service from EF

model 372–375
DataSet objects 73–74
data sources

using Connection
Wizard 8–14

DataTable objects 18
with Dataset Designer

28
DataViews 99–101
instances of command

builder 180
properties within an en-

tity 232
row objects 37–38
SqlDataReader object

149
Visual Basic data tables

20
CROSS JOIN keyword 248
cross joins 297
CRUD operations 4
CSDL (Conceptual Schema

Definition Language)
217, 218–219, 226,
235, 242, 268

curly braces ({ }), building
custom collections
using 254

CurrentTimestamp function
323

CurrentUser function 323
custom DataTables, creat-

ing 28–34

D

data. See also external data
aggregating 89–98

adding aggregate col-
umns 94–95

functions to 89–90
generating single ag-

gregates 91–94
generating summaries

95–98
referencing parent fields

in expressions 98
examining and changing

42–44
integrity of 191–208

employing savepoints
202–203

transactions and con-
currency 191–195

using distributed trans-
actions 204–208

using local transactions
195–203

managing 3
removing 45–46
tabular form

manipulating 4
DataAdapter

class
Entity Framework and

214
SQL Server 127

objects 7
understanding 169–171

data adapters
role in forms data binding

352
understanding 169–171

Database Explorer
adding connections to

databases 32
O/R Designer and 336

databases

connecting to SQL Server
127–132

processing queries 146–
149

querying 135–150
processing SQL queries

135–140
returning results 140–

149
resolution of conflicts in

192–194
databases, normalization of

21–28
database tables

adding to DataSet
Designer 32–34

data binding
about 347
in ASP.NET 362–366
in Windows forms 347–

354
creating complex forms

348–350
creating simple forms

351–352
understanding 352–354

in Windows Presentation
Foundation (WTF)
352–362

creating data-bound
applications 355–
361

DataBindings collection
353

DataColumn
adding expression col-

umns by creating
68–69

definitions
data type declarations

6
including a DefaultValue

setting 38
items, defining 6
objects

Dwonloaded from: iDATA.ws

392	 DataColumn class

about 37–38
DataColumn class

about 21–22
ColumnMapping prop-

erty 114
Namespace property in

111–113
properties in 23–24

Data Connections, in Server
Explorer

adding connections to
databases 32

DataContext class 334
data definition language

(DDLs) 246
Data definition statements

136
data encryption, provid-

ing System.Security
library 3

DataGridView control 350
DataLength function 323
data manipulation lan-

guage (DML) 246
Data manipulation state-

ments 136
data providers

connecting to SQL Server
via 127–132

understanding 126–127
data range errors 49–56
DataReader classes, SQL

Server 127
DataReader instance, re-

trieving records us-
ing SQLDataAdapter
170

DataReader objects 7
DataRelation class 78–79
DataRelation entries, link-

ing 6
DataRelations

defining update and de-
lete rules in 85–87

Entity Framework defini-
tion of 215

data relationships. See rela-
tional databases

DataRow class
about 18–20, 37
configuring 38
entries 6
HasVersion method 49
methods in retrieving

parent-child rows of
data 79–81

removing objects 45–46
validating content in

54–56
DataRow.EndEdit call 50,

51
DataRowExtensions class

305
DataRow.HasErrors prop-

erty 52
DataRow instances

in LINQ 306
using Select method with

98
DataRow objects

Delete method 48
removing 45–46
selecting and sorting

65–68
data rows

adding process 37–44
creating rows 37–38
defining row values

38–40
storing rows in tables

40–41
roll back changes 51

DataRowState
.Added 47
.Deleted 47
.Detached 47, 48
.Modified 47
.Unchanged 47

DataRowVersion
.Current 49
.Default 49
.Original 48

.Proposed 48
DataRowView instances,

generated from
DataView 99

DataService(Of T) 372
data services

accessing using REST
377–384

setting up 371–376
types of 369–370

DataSet class
Namespace property

111–113
DataSet Designer

adding database tables
32–33

creating custom tables
28–32

using in code 33–34
using Toolbox with 29, 35

DataSet instance 353, 360
DataSet objects, creating

73–74
DataSets

adding tables to 75
column mapping with the

external database
tables 186–188

Entity Framework and
214

linking to external data
169–171

LINQ to 291
moving data into 173–

175
moving data to source

from 178
parallel for EF entities in

215
preventing incoming

data from modifying
schema of 189

tables grouped as 7,
73–76

DataSet tables

Dwonloaded from: iDATA.ws

	 DataView instances	 393

creating relationships be-
tween 78–79

Data Source Configuration
Wizard 13, 355, 360

Data Source Connection
Wizard 27, 122–124,
126

Data Source key 123
data sources

creating 8–14
removing 16

DataTable classes
DataColumn 21–24

about 21–22
ColumnMapping prop-

erty 114
Namespace property in

111–113
properties in 23–24

DataRow
about 18–20, 37
configuring 38
entries 7
HasVersion method 49
methods in retrieving

parent-child rows of
data 79–81

removing objects
45–46

validating content in
54–56

DataSet
Namespace property

111–113
DataTable

about 19, 24–25
in LINQ queries 305,

306
Namespace property

111–113
supporting expression

columns 67
DataView

about 99–100
creating 100–102
using 102–106

DataTable class type
about 18, 19
data-related events in 19
generating table-specific

data rows 38
PrimaryKey property

24–25
DataTableExtensions class

305
DataTable.HasErrors prop-

erty 52
DataTableMapping objects

186
DataTable objects

Compute method 91
populating Columns col-

lection of 21–28
using Dataset Designer to

create 28
DataTable.Rows.Find meth-

od 71
DataTables

about 17
adding to DataSets 75
as Key ADO.NET element

6–7
building 17–36

adding data columns
21–28

classes in. See classes in
DataTables

implementing tables
17–21

using Dataset Designer
27–33

collecting into sets 73–76
column mapping with

external database
tables 186–188

DataView instances and 7
defining constraints

81–87
establishing relationships

between 76–81
creating data relations

78–79

locating parent-child
records 79–81

types of relationships
76–78

generating from
DataView 103–105

logical implementation of
objects 17–18

modifying names of 29
modifying TableName

property 19
moving data into 171–

173
moving data to source

from 178–179
parallel for EF entities in

215
physical implementation

of objects 18
searching rows

by primary key 60–62
with search criteria

62–64
storing data in 37–57

adding data process
37–41

batch processing 46–48
examining in changing

data 42–44
removing data 45–46
validating changes

49–56
DataType, DataColumn

class property 24
data types

columns bound in rela-
tionships and 78

user-defined, for entities
215

DataView class
about 99–100
creating 99–101
using 101–105

DataView instances
setting RowStateFilter

properties 100

Dwonloaded from: iDATA.ws

394	 DataView methods

view of rows 7
DataView methods

Find 102
FindRows 101
ToTable 103, 105

DataViewRowsState, enu-
merated values of
100

DateAdd function 323
date and time functions

251, 322, 323
DateDiff function 323
DateName function 323
DatePart function 323
DATETIME keyword 249
DateTimeMod, DataColumn

class property 24
DBNull

returning for nondata re-
sults 141

DbTransaction class 195
DbType property 157
DDLs (data definition lan-

guage) 246
DefaultValue

automatic 40
setting in DataColumn

definition 38
DefaultValue, DataColumn

class property 24
defining

constraints for relation-
ships 81–87

updated delete rules In
DataRelations 85–87

Degrees function 323
Delete method 48, 57, 101
DeleteObject method 273
DELETE queries, adding in

SqlDataAdapter 185
DeleteRule properties

setting 82
DELETE statements

building 274
generating automatically

180

update operations and
169–170, 171, 180

DelimSubstring method
278–279

DEREF function 255
DESC modifier 65, 248
dialog boxes

Add Connection 12
Add Entity 231
Add Function Import

233–234
Add New Item 28
Choose Data Source 11
Feed And Web Slice

Setting 379
Unique Constraint 30–31

Difference function 323
Diff... functions 251, 322
Direction property in

SQLParameter class
161

Dispose, calling 205
Dispose method 128
Distinct clause 299
DISTINCT keyword 254
Distinct method 281
distributed transactions, us-

ing 204–208, 209
div operator in REST 380
DML (data manipulation

language) 246
double-precision floating-

point value literal
249

drag-and-drop visual de-
signer. See Object
Relational (O/R)
Designer

Durability rule 193

E

EDM (Entity Data Model)
adding 225
conceptual model in EF

and 216

EdmFunction attribute 326,
328

EdmFunctionAttribute class
325

edmgen.exe 220, 223
EF (Entity Framework).

See Entity Framework
(EF)

ELSE clause
in Entity SQL language

252
embedded XML expres-

sions 291
Encrypt and

TrustServerCertificate
keys 124

EndEdit, DataRow call 50,
51

EndEdit method 51, 57
EndExecuteNonQuery

method 139–140
EndExecuteXmlReader

method 146
EndsWith function 251
EnlistTransaction method

205
entities

editing 231–232
Entity Framework defini-

tion of 215, 216
importing database tables

as 227–230
LINQ to. See LINQ (pro-

viders)
managing through ob-

jects 267–278
accessing entity data

268–270
modifying entity data

271–278
using Query Builder

methods 278–284
entity

adding mapping condi-
tions to 237–239

Dwonloaded from: iDATA.ws

	 events	 395

creating complex types
for 243

Entity Framework defini-
tion of 215

using stored procedures
to manage data
239–240

entity-based collections
254

Entity Client 127
EntityClient Provider 260–

265
entity container

Entity Framework defini-
tion of 216

instantiated version of
221

ObjectContext class as
embodiment of 268

Entity Data Model
Designer, ADO.NET

about 218
generating objects using

220
Map Entity To Functions

button 274
mapping details panel,

working with 236–
241

using 230–236
Entity Data Model (EDM)

adding 225
conceptual model in EF

and 217
Entity Data Model Wizard

218, 225–229, 325,
372

Entity Framework (EF)
about 8, 213
adding to projects 243
as Object Services layer

267
building models 218–219
designing models 225–

240

creating a data service
372–375

refreshing model after
making structural
changes 243

using Entity Data Model
Designer 230–236

using Entity Data Model
Wizard 225–229

using Model Browser
240

working with map-
ping details panel
235–240

generating objects 220–
221

instantiating context 221
layers 216–218
LINQ provider. See LINQ

(providers)
namespaces, grouping of

related entities 217
OrderBy clause, as query

builder method in
222

provider 370
running framework que-

ries 222
storage model 325
understanding 213–216
Where clause, as query

builder method in
222

EntityFunctions class 322,
323

entity keys 215
EntityObject base class 220
EntityObject class 268
EntityObject Generator,

ADO.NET 241
entity set, definition of 216
EntitySetRights members

376
Entity SQL language

about 222, 246

building custom collec-
tions 254

grouping and aggre-
gating entity data
252–254

query builder method
equivalents 281–282

user-defined functions
255

using functions 250–252
using literals 249–251
using operators 250
writing basic queries

246–248
Entity SQL queries 256–

264
about 278
converting into command

tree 280
using EntityClientProvider

260–265
using ObjectQuery class

256–259
Entity Types, definition of

215
envelope transactions, pa-

rameterized update
queries and 199, 201

eq operator in REST 380
equal sign (=)

comparing columns to lit-
eral values using 63

Equals keyword 299
errors

data range 49–56
row-level 51–52
setting column 51

event handlers, validation
occurring in 51

events
ColumnChanged 51
ColumnChanging 51
RowChanged 51
RowChanging 51
RowDeleted 51
RowDeleting 51

Dwonloaded from: iDATA.ws

396	 Excel

TableCleared 51
TableClearing 51
TableNewRow 51

Excel
provider class libraries for

126
Except function 302
exception-based errors

49–51
exception handling blocks

50
EXCEPT keyword 252
Except method 282
ExecuteNonQuery method

138, 260
ExecuteReader method

142, 260
ExecuteScalar method 141
ExecuteSQL method 147,

148
ExecuteSQLReturn method

149
ExecuteXmlReader method

146
EXISTS keyword, in Entity

SQL language 250
Exp function 323
exporting, DataSet as file to

XML 118
expression columns, using

67–70
expressions, filter elements

63–64
extension methods 280,

290, 302–303
external connections 121–

132
connection pooling 129,

132
connection strings

builders 124–126
using 121–126

data providers
connecting to SQL

Server via 127–132
understanding 126–127

keys for establishing
123–124

using connection strings
121–125

external data
connecting to 8–14
linking to local data set

169–171
managing 3
moving data into

DataSets 173–175
moving data into

DataTables 171–173
moving from memory to

175–185
configuring update

commands 175–179
generating update com-

mands 180–185
performing update

179–180

F

false keyword 249
Feed And Web Slice Setting

dialog box 379
Field extension method

307–308
Field (Of T) method 306
Fill method 171, 172, 174,

186
“fill” operations

moving data from data-
bases into DataSets
169, 171

filter expression elements
63–64

filtering, results with the
Where clause 295

Find method
FindRows tasks and 102
locating single row based

on primary key 60
FindRows method 101–102
First method 283, 284

floating-point value literals
249

Floor function 251
Foreign Key Columns 229
ForeignKeyConstraint class

81
formats, aggregation 90
FOR UPDATE clause 195
FROM clause, in Entity SQL

language 246–248
From clause in LINQ 293,

298
FullName value, modifying

158
FULL OUTER JOIN keyword

248
full outer joins 297
function imports, editing

233–234
functions

Acos 323
Add...

in Entity SQL language
251

in LINQ to Entity 322
aggregate 252–254,

301–302
All 301
Any 301
Ascii 323
Asin 323
AsNonUnicode 322
AsUnicode 322
Atan 323
Atan2 323
Average 301
Avg 89, 252
Bitwise 251
BuildConnection 129
canonical, using 323
CAST 251
Ceiling 251
Char 323
CharIndex 323
Checksum 323
Concat 251

Dwonloaded from: iDATA.ws

	 GetOrdinal method	 397

Contains 251
CONVERT 64
Cos 323
Cot 323
Count 90, 301
COUNT and BIGCOUNT

252
CreateDateTime 322
CreateDateTimeOffset

322
CreateTime 322
CurrentTimestamp 323
CurrentUser 323
DataLength 323
DateAdd 323
date and time 251, 322,

323
DateDiff 323
DateName 323
DatePart 323
Degrees 323
DEREF 255
Diff... 251, 322
Difference 323
EndsWith 251
Except 302
Exp 323
Floor 251
GetColumnTable 25
GetConnectionString

146, 159, 183, 198,
200, 274, 276, 318,
319, 340, 341

GetDate 323
GetDesignerTable 34
GetUtcDate 323
HostName 323
IIF 64
IndexOf 251
Intersect 302
IsDate 323
IsDBNull 23, 40, 42, 44,

56
ISNULL 64
IsNumeric 323
Left 251, 322

LEN 64
Length 251
Log 323
Log10 323
LongCount 301
LTrim 251
math 251, 323
Max 90, 252, 301
Min 90, 252, 301
NChar 323
NewGuid 251
PatIndex 323
Pi 323
Power 251
QuoteName 323
Radians 323
Rand 323
REF 255
Replace 251
Replicate 323
Reverse 251
Right 251, 322
Round 251, 322
ROW 255
RTrim 251
SaveFormData 274–275,

276–277
SET 252
Sign 323
SoundCode 323
Space 323
“SqlServer” in Entity SQL

language 251
SQRT 322
Square 323
StandardDeviation 323
StartsWith 251
statistical 323
StDev 90, 253
STDEVP 253
string 251, 322, 323
StringConvert 323
Stuff 323
Substring 64, 251
Sum 89, 252, 301
Tan 323

ToLower 251
ToUpper 251
TransferDistributed 206,

207
Trim 64, 251
Truncate 323
Unicode 323
Union 302
UnionAll 302
user-defined 255
user-defined (LINQ) 324–

329, 339–342
UserName 323
Var 90, 253, 323
VarP 253, 323

G

Generate Database Wizard
217

ge operator in REST 380
GetBytes method 145
GetChar method 145
GetChars method 145
GetChildRows method

79–81
GetColumnTable function

25
GetConnectionString func-

tion 146, 159, 183,
198, 200, 274, 276,
318, 319, 340, 341

GetDate function 323
GetDateTime method 145
GetDateTimeOffset method

145
GetDecimal method 144
GetDesignerTable function

34
GetDouble method 145
GetFloat method 145
GetGuid method 145
GetInt16 method 145
GetInt32 method 145
GetInt64 method 145
GetOrdinal method 144

Dwonloaded from: iDATA.ws

398	 GetParentRows method

GetParentRows method
79–81, 80

GetSchemaTable method
146

GetSqlMoney method 145
GetString method 145
GetTimeSpan method 145
GetUtcDate function 323
GET verb, HTTP 377
greater than or equal to

sign (>=)
comparing columns to lit-

eral values using 63
in Where clause (LINQ)

296
greater than sign (>), com-

paring columns to
literal values using
63

Group By clause
collecting aggregate sum-

maries with 302
GROUP BY clause

in Entity SQL language
253

GroupBy method 281
GROUP BY (SQL language)

in ADO.NET 95
group joins 299
Group keyword 299
gt operator in REST 380
GUID keyword 250

H

HasErrors, DataRow prop-
erty 52

HasErrors, DataTable prop-
erty 52

HasRows property in re-
turning data rows
142

HasVersion method,
DataRow 49

HAVING clause, in Entity
SQL language 253

HostName function 323
HTTP

GET verb 377
inserting new records

382
issuing DELETE request

383
requests, as querying

method in EF 222
transport 371

I

IEnumerable(Of T) interface
289, 315

IIF function 64
IIS (Microsoft Internet

Information Service)
370

implementing tables 17–21
importing

database tables into
DataTables 189

DataSet as file to XML
118

indexed views 98–105
IndexOf function 251
inequality sign (<>)

comparing columns to lit-
eral values using 63

inference, local type 290
Initial Catalog key 123
InitializeService method

375
INNER JOIN keyword 248
inner joins 297
IN operator

in Entity SQL language
250

using in filter expressions
63

INSERT queries, adding in
SqlDataAdapter 184

INSERT statements
building 274

generating automatically
180

returning specified fields
141

update operations and
169–170, 171, 180

integer literals 249
Integrated Security key

123
integrity of data 191–208

employing savepoints
202–203

transactions and concur-
rency 191–195

using distributed transac-
tions 204–208

using local transactions
195–203

IntelliSense in Visual Studio
326, 328

Interact method 281
internal data, managing 3
Internet Explorer 8, access-

ing XML 379
Intersect function 302
INTERSECT keyword 252
Intersect method 282
invalid data

preventing 49–56
IQueryable interface 370
IQueryable(Of T) interface

283, 289, 315
IsDate function 323
IsDBNull function 23, 40,

42, 44, 56
IS NOT operator 250
IsNullable property 157
ISNULL function 64
IsNumeric function 323
Isolation rule 193
IS operator 250
Item properties, in defining

row values 38
“it” keyword 280
IUpdatable interface 370

Dwonloaded from: iDATA.ws

	 logical implementation	 399

J

JavaScript Object Notation
(JSON) 370, 379

joined-table queries and
SQLCommandBuilder
181

Join keyword 247, 297
JSON (JavaScript Object

Notation) 370, 379,
382

K

key ADO.NET elements
6–7

keyboard shortcuts, add-
ing new columns to
DataTables 30, 35

keys for server connections
123–124

L

lambda expressions 290,
296

Left function 251, 322
LEFT OUTER JOIN keyword

248
left outer joins 297, 299
LEN function 64
Length function 251
le operator in REST 380
less than or equal to sign

(<=)
comparing columns to lit-

eral values using 63
less than sign (<)

comparing columns to lit-
eral values using 63

in Where clause (LINQ)
296

LIKE operator, matching
string patterns us-
ing 63

limiting connection time to
SQL Server 132

LIMIT keyword 253

linking
DataTable objects in rela-

tionships 88
results with Join keywords

297–298
tables 76–78

LINQ
about 8
as querying method in

EF 222
data types of columns

307
enhancements to .Net

language 289–291
LINQ (providers)

to DataSet 291, 305–312
to Entities

about 291, 315–316
downside to 329
working with custom

database functions
324–329

working with database
functions 321–324

writing queries 316–321
to Objects

about 291
filtering results with

Where clause 295
limiting data returned

299–300
projecting results with

Select clause 293–
295

selecting linked results
with Join keyword
297–298

sorting results with
OrderBy clause
296–297

starting queries with
From clause 293

summarizing data using
aggregates 301–302

using 291–292
to SQL

about 291, 331
building models 337–

339
components of 333–

335
using custom database

functions 339
to XML 291

LINQ queries
about 278
converting into command

tree 280
DataTable class in 305
support of joins 297
with Objects

filtering results with
Where clause 295

limiting data returned
299–300

projecting results with
Select clause 293–
295

selecting linked results
with Join keyword
297–298

sorting results with
OrderBy clause
296–297

starting queries with
From keyword 293

summarizing data using
aggregates 301–302

ListBox control 347
literals 64, 249–251, 291
local transactions, using

195–203, 209
local type inference 290
locking records 193–194
Log10 function 323
Log function 323
logical implementation of

tables 17–18
logical implementation

of underlying data
source 213

Dwonloaded from: iDATA.ws

400	 logical models.

logical models. See storage
models (storage lay-
ers)

logical operators 250, 296,
380

LongCount function 301
lookups, performing case-

sensitive 67
lt operator in REST 380
LTrim function 251

M

Many-to-Many table re-
lationships 76–77,
83–84

Map Entity To Functions
button 274

Map Entity toolbar buttons
239

Mapping Details panel 226,
235–240, 274

mappings (mapping layers)
adding condition to entity

237–239
in Entity Framework 218
linking storage and con-

ceptual models with
226

modifying 235–240
using 219

Mapping Specification
Language (MSL) 218,
219, 226, 235

MappingType enumerated
values 114

math functions 251, 323
math operators 250, 380
Max function 90, 252, 301
MaxLength, DataColumn

class property 24
Max method 283
Me keyword 280
MERGE verb 382
metadata key-value pairs

226
methods

AcceptChanges 48, 57, 99
AddObject 272
AddWithValue 157
AsEnumerable extension

306
BeginExecuteNonQuery

139
BeginExecuteXmlReader

146
BeginTransaction 196
Cancel 140
Commit 196–197
Complete 205–206
Compute

calculating aggregate of
single table columns
91

Parent and Child prefixes
and 94

Count 283
CreateObjectSet 222
DataTable.Rows.Find 71
Delete 101
DeleteObject 273
DelimSubstring 278–279
Dispose 128
Distinct 281
EndExecuteNonQuery

139
EndExecuteXmlReader

146
EnlistTransaction 205
Except 282
ExecuteNonQuery 138,

260
ExecuteReader 142, 260
ExecuteScalar 141–142
ExecuteSQL 147, 148
ExecuteSQLReturn 147,

149
ExecuteXmlReader 146
extension 280, 290,

302–303
Field extension 307–308
Field (Of T) 306
Field(Of T) 306

Fill 171, 172, 174, 186
Find 102
FindRows 101
First 283, 284
GetBoolean method 145
GetByte method 145
GetBytes 145
GetChar 145
GetChars 145
GetChildRows 79–81
GetDateTime 145
GetDateTimeOffset 145
GetDecimal method 144
GetDouble 145
GetFloat 145
GetGuid 145
GetInt16 145
GetInt32 145
GetInt64 145
GetOrdinal 144
GetParentRow 80
GetParrentRow 79–81
GetSchemaTable 146
GetSqlMoney 145
GetString 145
GetTimeSpan 145
GroupBy 281
InitializeService 375
Interact 281
Intersect 282
Max 283
OfType 281
Open 196
OpenReader 147, 149
OrderBy 280, 281, 297
partial 291
query builder 278–284,

281–282
ReadXML 110–111
ReadXmlSchema 110
Refresh 273
RefreshConstraints 85
Rollback 196–197
Save 202–203
Select

inefficiency of 98–99

Dwonloaded from: iDATA.ws

	 nullable types	 401

sorting rows 100
Select query builder

methods 280
SelectValue 281
SetEntitySetAccessRule

376
Skip 281
SqlConnectionStringBuilder

148
SqlDataAdapter.Fill 171,

173–174
SqlDataAdapter.FillSchema

174
ThenBy 297
Top 281
ToTable 103, 105
Union 281, 282
UnionAll 281, 282
Update 180
Where 281, 282, 283, 284
WriteXML 108–110

Microsoft Access, provider
class libraries for 126

Microsoft Distributed
Transaction
Coordinator (MSDTC)
204

Microsoft Excel, provider
class libraries for 126

Microsoft Internet Explorer
8, accessing XML 379

Microsoft Internet
Information Service
(IIS) 370

Microsoft SQL Server.
See SQL Server

Choosing Data Source dia-
log box and 11

relationship to ADO.NET
7

sharing terms with ADO.
NET 4

Microsoft SQL Server 2005.
See SQL Server 2005

Microsoft SQL Server 2008
Express Edition

connection keys for 123
naming the server 12

Microsoft Visual Studio.
See Visual Studio

Min function 90, 252, 301
MissingMappingAction

properties 187
MissingSchemaAction prop-

erties 188–189
Model Browser 240
modeling terms of relation-

al databases
cardinality 76

models, Entity Framework
building 218–219
definition of 215

modifying
application configuration

file settings 13
databases through entity

objects 274–277
DataTable names 29
FullName values 158
RowFilter 101
rows in DataTables 43–45
RowStateFilter 101
Sort 101
TableName properties 19

mod operator in REST 380
monitoring errors 50
mouse

selecting properties with
234

.xsd extension for tables
created by 28

Move Via a Thumbnail View
control in Entity Data
Model Designer 229

MSDTC (Microsoft
Distributed
Transaction
Coordinator) distrib-
uted transactions
204

MSL (Mapping Specification
Language) 218, 219,
226, 235

mul operator in REST 380
MultipleActiveResultSets

key 124

N

Name property of the
ObjectSet 280

Namespace properties, in
DataTable classes
111–113

namespaces
feature in XML 111–113
grouping of related enti-

ties 217
SqlClient 127
SqlTypes 145

navigation property, Entity
Framework definition
of 216

NChar function 323
ne operator in REST 380
Nested property, in child

tables 113
new {} (anonymous type

definition) 294
NewGuid function 251
NewRow method, generat-

ing table-specific
data rows 38, 57

nexted results 146
nondata results, returning

System.DBNull for
141

None, as EntitySetRights
member 376–384

nonqueries, running 137–
138

non-Unicode strings 249
Normalization process 21
Nothing values 290
NOT operator 250, 296
not operator in REST 380
nullable types 290

Dwonloaded from: iDATA.ws

402	 NULL values

NULL values
as default value 40
in aggregate functions

90
in C# 290
in Entity SQL language

250
in SqlDataReader 144
IsNullable property 157
ISNULL function and 64

O

ObjectContext
class 268
objects 221

object initializers 290
object layer

generation rules 234
managing 241

ObjectQuery
class 256–259
instance 280

ObjectQuery(Of T) class
268, 283, 315

Object Relational (O/R)
Designer 335–339

objects
DataColumn, adding to

DataTable 37
DataRow

AcceptChanges method
48

Delete method 48
removing 45–46

DataSet, creating 73–74
DataTable

creating 18
logical implementation

of 17–18
physical implementation

of 18
populating Columns

collection of 21–28
DataTableMapping 186

in Entity Framework
model, generating
220–221

LINQ to
about 291
filtering results with

Where clause 295
limiting data returned

299–300
projecting results with

Select clause 293–
295

selecting linked results
with Join keyword
297

sorting results with
OrderBy clause
296–297

starting queries with
From clause 293

summarizing data using
aggregates 301–302

using 291–292
ObjectContext 221
serializing data set and

Data Table 107–111
SqlDataAdapter 171
TransactionScope 206,

207
values appearing as 7

Object Services
about 267–268
accessing entity data

268–270
modifying entity data

271–278
using query builder meth-

ods 278–284
ObjectSet(Of TEntity) class

268, 315
object types, generic 39
ODBC

connection string build-
ers 126

employing savepoints and
202

implementation of com-
mand-related pro-
cessing 135

parameter class and 160
provider class libraries for

126–127
supporting nested results

146
OdbcCommand 136
OdbcDataAdapter class

170
ODBC providers 7
OdbcTransaction class 195
OfType method 281
OLE DB

connection string build-
ers 126

creating parameterized
queries for 167

employing savepoints and
202

implementation of com-
mand-related pro-
cessing 135

parameter class in 154,
160

provider class libraries for
126–127

supporting nested results
146

OleDbCommand 136
OleDbConnection 127, 133
OleDbDataAdapter class

170
OLEdbParameter 154
OLE DB providers 7
OleDbTransaction class 195
One-to-Many table rela-

tionships 76, 81–82
One-to-One table relation-

ships 76
Open Data Protocol 369–

370
Open method 196
OpenReader method 147,

149

Dwonloaded from: iDATA.ws

	 querying databases	 403

operators
Boolean 63
comparison 63
IN 63
LIKE 63

Optimistic concurrency
194

Oracle
as target specific platform

7
provider in prior versions

127
SELECT statements

FOR UPDATE clause 195
OrderBy clause

as query builder method
in EF 222

in applying Skip or Take
clauses 300

in LINQ 296–297
ORDER BY clause 248
OrderByDescending exten-

sion method 297
OrderBy extension method

297
OrderBy method 280, 281
O/R (Object Relational)

Designer 335–339
OR operator 250, 296
or operator in REST 380
outer joins 297
“out” parameters, creating

167
OUTPUT keywords

INSERT statements 141
OVERLAPS keyword 252

P

ParameterDirection
.InputOutput option 161
options 161
.Output option 161, 167
.ReturnValue option 161

Parameter instances, pur-
pose of 7

ParameterName property
157

parameters
developing queries with

153–161
implementing standard

queries 155–161
understanding 154–155
using parameters in

stored procedures
161–166, 179

Parameters collection 156,
157

parent-child
data, generating hierar-

chal 118
records, locating 79–81
relationships

enforcing cascade de-
letes 88

establishing 76–78
parent-column values

rules for updating or de-
leting 82

Parent fields
referencing in expressions

98
parentheses ()

in expression evaluation
63

using in Where clause
(LINQ) 296

Parent prefixes 94
partial methods 291
passing

instance of DataSet
173–174

SchemaType.Mapped 174
strings to Add method 74

PatIndex function 323
Pessimistic concurrency

194
physical implementation of

DataTable objects 18
Pi function 323
POST verb 382
Power function 251

PrimaryKey property, in
DataTable class 24–
25, 35

primary keys
adding 30
finding rows by 60–62

properties
creating from scalar

properties complex
234–235

editing 232
Entity Framework defini-

tion of 215
selecting 234

Properties panel, in DataSet
Designer 33

protecting records 193–
194

PUT verb 382

Q

queries. See also SQL que-
ries; See also LINQ
queries

developing parameter-
ized 153–161

implementing standard
queries 155–161

understanding need for
parameters 154–155

using stored procedures
161–166

Queryable extension meth-
ods 283–284

query builder methods
278–284

querying data 59–64
querying databases 135–

149
processing SQL queries

135–140
asynchronously 139–

141
creating command ob-

jects 136–137

Dwonloaded from: iDATA.ws

404	 querying data

processing queries
137–138

returning results 140–149
accessing field values

144–146
processing complicated

results 146–151
returning data rows

142–144
returning single values

141–142
running EF queries 222

querying data in Entity
Framework 245–264

about 245
running Entity SQL que-

ries 256–264
using an ObjectQuery

class 256–259
using

EntityClientProvider
260–265

using Entity SQL language
246–255

building custom collec-
tions 254

grouping and aggre-
gating entity data
252–254

user-defined functions
255

using functions 250–
252

using literals 249–251
using operators 250
writing basic queries

246
QuoteName function 323

R

Radians function 323
Rand function 323
range variable 293
“read locks” 198

ReadMultiple, as
EntitySetRights
member 376

ReadOnly, DataColumn
class property 24

ReadSingle, as
EntitySetRights
member 376

ReadXML method 110–111
ReadXmlSchema method

110
records, locking and pro-

tecting 193–195
Refactor complex types

233
REF function 255
RefreshConstraints method

85
Refresh method 273
relational databases

ADO.NET and 4
definition of concepts

215–216
establishing relationships

between 78–79
creating data relations

78–79
locating parent-child

records 79–81
types of relationships

76–78
modeling terms

cardinality 76
relationships

establishing, between
tables 76–81

understanding table
76–78

relaxed delegates 290
Replace function 251
Replicate function 323
RESTful, as HTTP transport

371
REST (Representational

State Transfer)
about 369, 370

accessing data services
using 377–384

configuring data rights
from 375–376

updating entities with
381–383

using operators in 380
Reverse function 251
Right function 251, 322
RIGHT OUTER JOIN key-

word 248
right outer joins 297
rollback changes to rows

51
rollback local transactions

209
Rollback method 196–197
Round function 251, 322
RowChanged event 51
RowChanging event 51
RowDeleted event 51
RowDeleting event 51
RowFilter, modifying 101
ROW function 255
row-level errors 51–52
rows

limiting operations on
101

returning data 142–144
roll back changes 51
searching rows

by primary key 60–62
with search criteria

62–64
tags in DataTable 113

Rows.Add method 40, 41,
42, 57

rows, data
adding process 37–41

creating rows 37–38
defining row values

38–40
storing rows in table

40–41
retrieving sets of 151

Dwonloaded from: iDATA.ws

	 SqlConnection 	 405

Rows.Find method, locat-
ing row by primary
key 60

RowStateFilter
modifying 101
setting properties 100

RowStates 47–48
rowversion columns 195
RowVersions 48–49
RTrim function 251
rules

defining update and de-
lete 85–87

for establishing data rela-
tionships 78

for updating or deleting
parent-column val-
ues 82

rules defining transactions
193–194

S

SaveChanges, calling 273
SaveFormData function

274–275, 276–277
Save method 202–203
savepoints, employing

202–203
scalar properties, creating

complex properties
from 234–235

schema language, using
MSL 226

schemas
Entity Framework and

changes in external
214

using XML, in Entity
Framework model
218

SchemaType.Mapped 174
searching

criteria 62–64
sorting results 64–67

Select clause

in Entity SQL language
246–248

in LINQ 293–295
SELECT command, adding

to SqlDataAdapter
184

SelectCommand property
171

Select method
entity SQL equivalent of

281
inefficiency of 98–99
searching many table col-

umns 62–64
sorting rows and 100

SELECT queries
returning data rows

142–144
returning simple results

141
using user-defined func-

tions 255
SELECT statements

Fill operations issuing
169–171

FOR UPDATE clause
(Oracle) 195

in transactions 198
of LINQ queries 278

SelectValue method 281
Self-Tracking EntityObject

Generator, ADO.NET
241

serializing DataSet and
DataTable objects
107–111

Server Explorer
accessing 32
Data Connections items in

32–33
O/R Designer and 336,

337–339
server identity functions

323
service layers 369–371

SetEntitySetAccessRule
method 376

SET function 252
setting, RowStateFilter

properties 100
Shift keys, selecting prop-

erties using 234
Sign function 323
single quotes (‘ ‘)

using BINARY keyword
with 250

using GUID keyword with
250

using strings with 249
Skip clause 300
SKIP keyword 253
Skip method 281
Solution Explorer

files added from
Connection Wizard
14

panel 234
sorting

DataView rows 100
results with the Order By

clause 296–297
search results 64–67

Sort, modifying 101
SoundCode function 323
source code object layer

managing 241
regenerating 233

Space function 323
SqlBulkCopy 127
SqlClient namespace 127
SqlCommandBuilder 180–

181, 194, 348
SqlCommand class

about 127, 136–137, 156
ExecuteNonQuery meth-

od 138, 143
instances 171
objects 139–140, 141–

142, 156–157
SqlCommand objects 146
SqlConnection 127, 132

Dwonloaded from: iDATA.ws

406	 SqlConnectionStringBuilder

SqlConnectionStringBuilder
146, 148, 158, 159,
318, 319, 340, 341

SqlDataAdapter 127
associating command

builder with 181–182
.Fill method 171, 173–174
.FillSchema method 174
importing database tables

through 189
.MissingMappingAction

property 187
.MissingSchemaAction

properties 188–189
objects 171
.SelectCommand property

175
support features of 170–

171
syncing data with 181–

185
SqlDataAdapter class 172,

188
SqlDataReader class

about 127
accessing field values

144–146
data access methods on

145–146
DBNull values in 144
in retrieving multiple re-

cord sets 146–150
scanning data sets with

143
using with

ExecuteNonQuery
method 143

SqlDataReader objects, cre-
ating 149

SqlDbType property 157
SqlFunctions class 323
SQL language

GROUP BY clause in ADO.
NET 95

types of statements 136–
137

SqlMetal.exe 343
SqlParameter class 157
SQL provider, LINQ to

about 291, 331
building models 337–339
components of 333–335
Entities provider vs. 332
using custom database

functions 339
SQL queries

processing 135–140
asynchronously 139–141
creating command ob-

jects 136–137
running nonqueries

138–139
returning results 140–149

accessing field values
144–146

processing complicated
results 146–151

returning data rows
142–144

returning single values
141–142

risks of building state-
ments with string ele-
ments 154

SQL query statements 136
“@” as placeholders in

155
SQL Server

ACID requirements and
193

command builder for
180–181

connecting via data pro-
viders 127–132

connection strings 122–
124, 125

creating parameterized
queries for 167

databases, communicating
with 122–125

employing savepoints on
202

Entity Framework support
for 215

Entity Framework vs. 245
LINQ to Entities support

in 332
ODBC connection strings

and 124
OLE DB connection strings

and 124
processing queries 135–

140
asynchronously 139–141
creating command ob-

jects 136–137
running nonqueries

137–138
provider class libraries for

126–127
provider-specific class

names 127
queries, wrapper for 150
returning query results

140–149
accessing field values

144–146
processing complicated

results 146–151
returning data rows

142–144
returning single values

141–142
SqlTransaction class in 195
support for Common

Language Runtime
(CLR) 324

table updates 195
Visual Studio 2010 Entity

Framework support
for 228

SQL Server 2005
INSERT statements in 141

SQL Server 2008 Express
Edition

connection keys for 123
naming the server 12

Dwonloaded from: iDATA.ws

	 transactions	 407

SQL Server Authentication
12

“SqlServer” functions in
Entity SQL language
251–252

SqlTransaction class 195
SqlTransaction instance

199
SqlTypes namespace 145
SqlValue property 157
SQRT function 322
Square function 323
SquareRoot function 323
SSDL (Store Schema

Definition Language)
217, 219, 226, 325

StandardDeviation function
323

StartsWith function 251
StatesByYear class 326
statistical functions 323
STDEV function 90, 253
STDEVP function 253
storage models (storage

layers)
in Entity Framework 217
linking properties from

multiple 237
linking with conceptual

models 226
modifying 236
using 219
using as conditions 237

stored procedures
about 137
calling 138
editing function imports

233–234
in Entity SQL language

246
managing entity data us-

ing 239–240
row-producing 142
table-valued, in EF model

229

update database-side
content from entity
changes 243

using parameters in
161–166

Store Schema Definition
Language (SSDL)
217, 219, 226, 325

storing
data in DataTables 37–57

adding data process
37–41

batch processing 46–49
examining in changing

data 42–44
removing data 45–46
validating changes

49–56
rows in tables 40–41

string concatenations 139
StringConvert function 323
string functions 251, 322
strings, Unicode and non-

Unicode 249
strongly typed DataSets in

.NET Framework 214
Stuff function 323
sub operator in REST 380
subqueries, in Entity SQL

language 254
Substring function 64, 251
Sum function 89, 252, 301
synonyms, for Boolean op-

erators in Entity SQL
language 250

System.Data
Constraint classes 81–87
.DataTable 17, 18
namespace 3, 21

System.DBNull in C# 40
System.Object instances

144
System.Security library 3

T

TableAdapter instance 352,
360

TableAdapterManager in-
stance 352, 360

TableAttribute 334
TableCleared event 51
TableClearing event 51
TableDetails form 26
TableMapping rules, adjust-

ing 214
TableName properties,

modifying 19
TableNewRow event 51
tables. See DataTables
tabular data format, ma-

nipulating 4
tags for DataTable rows

113
Take clause 300
Tan function 323
testing

database connections
129, 131

tabular results of user
supplied query 145

update and delete rules
86

text templates 241
ThenByDescending exten-

sion method 297
ThenBy extension method

297
this keyword 280
TIME keyword 249
ToLower function 251
Toolbox, using with DataSet

Designer 29, 35
TOP

clause in Entity SQL lan-
guage 253

keyword 300
method 281

ToTable method 103, 105
ToUpper function 251
transactions

concurrency and 191–195

Dwonloaded from: iDATA.ws

408	 TransactionScope class

definition of 192
distributed, using 204–208
issuing savepoints within

203
using local 195–203, 209

TransactionScope class 204
TransactionScope object 206,

207
TransferDistributed function

206, 207
TransferLocal routine 199,

200
Trim function 64, 251
true keyword 249
Truncate function 323
truncate, using time and date

functions 251
TrustServerCertificate and

Encrypt keys 124
T-SQL query language 246,

253, 254–255

U

Unicode function 323
Unicode strings 249
UnionAll function 302
UnionAll method 281, 282
Union function 302
UNION keyword 252
Union method 281, 282
UniqueConstraint class

81–84
Unique Constraint dialog box

30–31
Unique, DataColumn class

property 24
UnitEditor_Load event han-

dler 181, 184
Update method 180–182
Update Model From

Database shortcut
command 233

UPDATE queries
adding in SqlDataAdapter

184
parameterized 199, 201

UpdateRule properties, set-
ting 82

UPDATE statements
building 274
generating automatically

180
update operations and

169–170, 171, 180
UpdateStatus.SkipCurrentRow

180
user configuration files, mod-

ifying settings in 13
user-defined

data type for entities 215
functions 255
functions (LINQ) 324–329,

339–342
UserName function 323

V

validation-based errors
51–56

VALUE keyword 248
Value property 157
Var function 90, 253, 323
VarP function 253, 323
“VCR” controls 353
views, indexed 98–105
Visual Basic

accessing data through
model-generated ob-
jects 268–270

accessing field values 144
adding aggregate columns

95
adding BindingNavigator

control to Windows
forms 353

adding columns to
DataTables 26–27

adding database tables
to DataSet Designer
32–33

adding DelimSubstring
method to System.
String class 279

adding expression columns
70

adding new entities
through objects 271–
272

adding relationships be-
tween two tables 79

adding rows to DataTables
41

adding tables to DataSets
75

building connection strings
125

ByRef parameter 255
calling

BeginExecuteNonQuery
method 140

calling Complete method
of TransactionScope
205–206

calling DeleteObject meth-
od 273

calling stored procedures
with parameters 165–
166

computing aggregate val-
ues 91, 93–94

configuring update com-
mands 175–177

creating custom tables
in DataSet Designer
28–32

creating data-pound WPF
applications 355–361

creating data service from
EF models 373–375

creating DataTables 20–21
creating DataViews 99–101
creating instances of

TransactionScope 204
creating new instance of

command builder 180
creating SQL Server con-

nections 128–129
defining row values 38–40

Dwonloaded from: iDATA.ws

	 Visual Basic	 409

defining update and
delete rules in Data
Relations 86–87

employing savepoints
203

finding rows by primary
key 61–62

generating DataView
tables from DataView
104–105

generating EF objects
221

generating summaries 97
generating XML from

DataSet 116–117
GetOrdinal method in

144
LINQ- specific language

features 8
locating parent-child re-

cords 81
Me keyword in 280
modifying databases

through entity ob-
jects 276–277

modifying existing prop-
erties 271

modifying rows in
DataTable 44

moving data into
DataSets 173–174

moving Data into
DataTables 172–174

nesting child tables 113
Nothing values 290
opening SQL Server con-

nections 130–131
processing database que-

ries in 148–149
processing local transac-

tions 200–202
processing with distrib-

uted transactions
207–208

ReadXml in 110

referencing parent fields
in expressions 98

retrieving entity
data through
ObjectQuery 258–
259

retrieving entity data
through provider
263–265

running nonqueries 138
selecting and sorting

DataRow objects
66–67

syncing data with
SqlDataAdapter
183–185

transactions on open da-
tabase connections
196

updating data in with pa-
rameters 159–160

updating DataTables 179
using batch processing

47
using BeginEdit 51
using ColumnMapping

property 114
using Commit and

Rollback methods
197–198

using CreateObjectSet
method 222

using DataRow class types
38

using DataRow.
HasVersion method
49

using Dataset Designer
with 27

using DataTableMapping
objects 186–187

using ExecuteReader
method to generate
data reader 260

using LINQ in

applying set operations
303

calling custom database
functions 327–328

creating implicit joins
306–307

filtering results with
Where clause 296

limiting data returned
299–300

projecting results with
Select clause 294–
295

querying LINQ to SQL
341–342

querying the data set
310–312

querying to Entities
319–321

selecting linked results
with Join keyword
298–299

sorting results with
OrderBy clause 297

starting queries with
From clause 293

summarizing data using
aggregates 301–302

to SQL provider struc-
ture 334–336

using database func-
tions 323

using EntityFunctions
class 323

Where clause not sup-
ported 321–322

using namespace ele-
ments 19

using namespace proper-
ties in 112–113

using query builder meth-
ods 284

using Rollback method
203

validating data 51–55
viewing source code 233

Dwonloaded from: iDATA.ws

410	 visual designer

WriteXML method in 109–
110

XML literals functionality
in 291

visual designer 332. See
also Object Relational
(O/R) Designer

Visual Studio
DataAdapterManager in

352
DataSet Designer and 28
design tool file extensions

217
editor 235
edmgen.exe in 220, 223
GetSchemaTable method

146
in ASP.NET and 362
IntelliSense in 326, 328
managing code generation

process 241
Mapping Details panel 226
Model Browser of 240
providers for 126
queryable methods 283
regenerating Visual Basic or

C# source code object
layer 233

support for building WPF/
XAML applications
354

Windows SDK in 336
Visual Studio 2005, strongly

typed DataSets in 214
Visual Studio 2008

ADO.NET Data Services in
369

LINQ to SQL provider in
332

.NET Framework and 213
Visual Studio 2010, creating

projects using 8–9
Visual Studio 2010 Entity

Framework 228
Visual Studio Express Edition

ASP.NET and 362

Database Explorer in 336,
337–339

Visual Studio IDE, menu
choices hidden in 14

Visual Studio Properties
panel, selecting asso-
ciations with 232

Visual Studio Toolbox 336

W

WCF (Windows
Communication
Foundation) Data
Services

about 369–370
as querying method in EF

222
as RESTful system 371
defining service rights

375–377
setting up 371–376

web browser content 362
WHEN clause, in Entity SQL

language 252
WHERE clause

as query builder method in
EF 222

comparison operators with-
in 250

Where clause, in LINQ 295,
306–307, 321–322

Where method 281, 282,
283, 284

Windows Communication
Foundation (WCF)
Data Services

about 369–370
as querying method in EF

222
as RESTful system 371
defining service rights

375–377
setting up 371–376

Windows forms, binding data
in 347–354

creating complex data-
bound forms 348–350

creating simple-bound
forms 351–352

understanding 352–354
Windows Presentation

Foundation (WPF),
binding data in 354–
362

Windows SDK 336
With clause 292
WITH (NOLOCK) hint 198
Wizards

ADO.NET Entity Data Model
371

Connection
creating a data source us-

ing 8–14
Data Source Configuration

355, 360
forgoing 13

Data Source Connection
27, 122–124, 126

Entity Data Model 218,
225–229, 325, 372

Generate Database 217
WPF (Windows Presentation

Foundation), binding
data in 354–362

wrappers for SQL Server que-
ries

SqlClient.SqlCommand class
150

Write..., as EntitySetRights
member 376

WriteXML method 108–110,
113

writing XML 108–110

X

XAML language 354, 360–
361

XML (Extensible Markup
Language)

about 107

Dwonloaded from: iDATA.ws

	 zoom controls	 411

accessing Framework
modeling layers 226

accessing through
Internet Explorer 8
379

axis properties 291
building WPF/XAML

applications 354,
360–361

columns, managing and
positioning 113–117

documents 370
embedded expressions

291
exporting DataSet file as

118
generation of 111–117

storing connection
strings 126

identifying namespaces
111–113

LINQ to 291
literals 291
nesting child tables 113
processing return data

from queries in 146
reading 110–111
schema dialects in Entity

Framework 216, 217
writing 108–110

xmlns attributes 112
XmlReadMode enumerated

values 110–111
XmlWriteMode arguments

109–110

Z

zoom controls in Entity
Data Model Designer
229

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

About the Author
Tim Patrick is an author and software architect with over 25 years of experience in software
development and technical writing. He has written seven books and several articles on pro-
gramming and other topics. In 2007, Microsoft awarded him with its Most Valuable Profes-
sional (MVP) award in recognition of the benefits his writings bring to Visual Basic and .NET
programmers. Tim earned his undergraduate degree in Computer Science from Seattle
Pacific University.

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Dwonloaded from: iDATA.ws

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!

To participate in a brief online survey, please visit:

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

Dwonloaded from: iDATA.ws

	Table of Contents
	Acknowledgments
	Introduction

	Getting to Know ADO.NET
	Introducing ADO.NET 4
	What Is ADO.NET?
	Why ADO.NET?
	Major Components of ADO.NET
	Extensions to ADO.NET
	Connecting to External Data
	Summary
	Chapter 1 Quick Reference

	Building Tables of Data
	Implementing Tables
	Logical and Physical Table Implementations
	The DataTable Class

	Adding Data Columns
	Dataset Designer
	Summary
	Chapter 2 Quick Reference

	Storing Data in Memory
	Adding Data
	Creating New Rows
	Defining Row Values
	Storing Rows in a Table

	Examining and Changing Data
	Removing Data
	Batch Processing
	Row State
	Row Versions

	Validating Changes
	Exception-Based Errors
	Validation-Based Errors

	Summary
	Chapter 3 Quick Reference

	Accessing the Right Data Values
	Querying and Sorting Data
	Finding Rows by Primary Key
	Selecting Rows with a Search Criteria
	Sorting Search Results
	Performing Case-Sensitive Lookups

	Using Expression Columns
	Summary
	Chapter 4 Quick Reference

	Bringing Related Data Together
	Collecting Tables into Sets
	Establishing Relationships Between Tables
	Understanding Table Relations
	Creating Data Relations
	Locating Parent and Child Records

	Defining Table Constraints
	Summary
	Chapter 5 Quick Reference

	Turning Data into Information
	Aggregating Data
	Generating a Single Aggregate
	Adding an Aggregate Column
	Aggregating Data Across Related Tables
	Referencing Parent Fields in Expressions

	Setting Up Indexed Views
	Creating a DataView
	Using a DataView

	Summary
	Chapter 6 Quick Reference

	Saving and Restoring Data
	Serializing DataSet and DataTable Objects
	Writing XML
	Reading XML

	Guiding XML Generation
	Identifying Namespaces
	Nesting Child Tables
	Managing and Positioning Columns

	Summary
	Chapter 7 Quick Reference

	Connecting to External Data Sources
	Establishing External Connections
	Using Connection Strings
	SQL Server Connection Strings
	OLE DB and ODBC Connection Strings
	Connection String Builders
	Storing Connection Strings

	Understanding Data Providers
	Connecting to SQL Server via a Data Provider
	Creating and Opening Connections
	Connection Pooling

	Summary
	Chapter 8 Quick Reference

	Querying Databases
	Processing SQL Queries
	Creating Command Objects
	Processing Queries
	Processing Asynchronously

	Returning Query Results
	Returning a Single Value
	Returning Data Rows
	Accessing Field Values
	Processing More Complicated Results

	Summary
	Chapter 9 Quick Reference

	Adding Standards to Queries
	Developing Parameterized Queries
	Understanding the Need for Parameters
	Implementing Standard Queries
	Using Parameters with Other Providers

	Using Parameters in Stored Procedures
	Summary
	Chapter 10 Quick Reference

	Making External Data Available Locally
	Understanding Data Adapters
	Moving Data from Source to Memory
	Moving Data into a DataTable
	Moving Data into a DataSet

	Moving Data from Memory to Source
	Configuring the Update Commands
	Performing the Update
	Generating Update Commands Automatically

	Table and Column Mapping
	Summary
	Chapter 11 Quick Reference

	Guaranteeing Data Integrity
	Transactions and Concurrency
	Using Local Transactions
	Employing Savepoints

	Using Distributed Transactions
	Summary
	Chapter 12 Quick Reference

	Entity Framework
	Introducing the Entity Framework
	Understanding the Entity Framework
	Defining the Entity Framework’s Terms

	Understanding the Entity Framework’s Layers
	Understanding the Conceptual Model
	Understanding the Storage Model
	Understanding the Model Mappings

	Using the Entity Framework
	Building the Model
	Generating the Objects
	Instantiating the Context
	Running Framework Queries

	Summary
	Chapter 13 Quick Reference

	Visualizing Data Models
	Designing an Entity Framework Model
	Using the Entity Data Model Wizard
	Entity Data Model Designer
	Working with the Mapping Details Panel
	Using the Model Browser

	Managing the Object Layer
	Summary
	Chapter 14 Quick Reference

	Querying Data in the Framework
	Getting to Know Entity SQL
	Writing Basic Queries
	Using Literals, Operators, and Expressions
	Grouping and Aggregating Entity Data
	Using Features Unique to Entity SQL

	Running Entity SQL Queries
	Running Queries Using an ObjectQuery
	Running Queries Using a Provider

	Summary
	Chapter 15 Quick Reference

	Understanding Entities Through Objects
	Managing Entity Data Through Objects
	Accessing Entity Data Through Objects
	Modifying Entity Data Through Objects

	Using Query Builder Methods
	Queryable Extension Methods

	Summary
	Chapter 16 Quick Reference

	LINQ
	Introducing LINQ
	Getting to Know LINQ
	Using LINQ with .NET Objects
	Starting a Query with the From Clause
	Projecting Results with the Select Clause
	Filtering Results with the Where Clause
	Sorting Results with the Order By Clause
	Selecting Linked Results with the Join Keyword
	Limiting the Queried Content
	Summarizing Data Using Aggregates
	Applying Set Operations

	Summary
	Chapter 17 Quick Reference

	Using LINQ to DataSet
	Understanding the LINQ to DataSet Provider
	Writing Queries with LINQ to DataSet
	Summary
	Chapter 18 Quick Reference

	Using LINQ to Entities
	Understanding the LINQ to Entities Provider
	Writing Queries with LINQ to Entities
	Working with Entity and Database Functions
	Working with Custom Database Functions

	Summary
	Chapter 19 Quick Reference

	Using LINQ to SQL
	Understanding the LINQ to SQL Provider
	Comparing LINQ to SQL with LINQ to Entities
	Understanding the Components of LINQ to SQL

	Using the Object Relational Designer
	Using Custom Database Functions in Queries
	Summary
	Chapter 20 Quick Reference

	Presenting Data to the World
	Binding Data with ADO.NET
	Binding Data in Windows Forms
	Creating Complex-Bound Applications
	Creating Simple-Bound Applications
	Understanding Windows Forms Data Binding

	Binding Data in WPF
	Creating Data-Bound WPF Applications
	Understanding WPF Data Binding

	Binding Data in ASP.NET
	Creating Data-Bound ASP.NET Applications
	Understanding ASP.NET Data Binding

	Summary
	Chapter 21 Quick Reference

	Providing RESTful Services with WCF Data Services
	Getting to Know the Service Layers
	Introducing WCF Data Services
	Introducing REST

	Setting Up a Data Service
	Defining Service Rights

	Accessing a Data Service using REST
	Querying Entities with REST
	Updating Entities with REST

	Summary
	Chapter 22 Quick Reference

	Index

