
Lecturer: Omid Jafarinezhad

Sharif University of TechnologyDepartment of Computer Engineering 1

Fundamental of Programming (C)

Lecture 4

Input and Output

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 2

Outline
• printf

• scanf

• putchar

• getchar

• getch

• getche

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 3

Input and Output in C
• C has no built-in statements for IO

– The I/O library functions are in <stdio.h>

• All input and output is performed with streams
– A stream is a sequence of characters organized into lines

– Standard types of streams in C:
• stdin: input stream (normally connected to the keyboard)
• stdout: output stream (normally connected to the screen)
• stderr: error stream (normally connected to the screen)

To be, or not to be?

That is the question.

input file
oT

b eo

.
r

.
.

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 4

Formatted Output - printf
• This function provides for formatted output to the screen. The

syntax is:
printf ("format", var1, var2, …) ;

• The format includes, some text and conversion specifications

• A conversion specifier begins with the % character. After
the % character come the following in this order:
– [flags]: control the conversion (optional)
– [width]: the number of characters to print (optional)
– [.precision]: the amount of precision to print for a number type

(optional)
– [modifier]: overrides the size (type) of the argument (optional)
– [type]: the type of conversion to be applied (required)

– Example: %[flags][width][.precision][modifier]type

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 5

Conversion specifier: type
Type Output
d, i Type signed int
o Type unsigned int printed in octal
u Type unsigned int printed in decimal
x Type unsigned int printed in hexadecimal as dddd using a, b, c, d, e, f
X Type unsigned int printed in hexadecimal as dddd using A, B, C, D, E, F
f Type double printed as [-]ddd.ddd

e, E Type double printed as [-]d.ddde[-]dd where there is one digit printed before the decimal
(zero only if the value is zero); the exponent contains at least two digits. If type is E then the
exponent is printed with a capital E

g, G Type double printed as type e or E if the exponent is less than -4 or greater than or equal to
the precision, otherwise printed as type f. Trailing zeros are removed. Decimal point
character appears only if there is a nonzero decimal digit

c Type char; single character is printed
s Type pointer to array; string is printed according to precision (no precision prints entire string)
p Prints the value of a pointer (the memory address)
n The argument must be a pointer to an int. Stores the number of characters printed thus far
% A % sign is printed

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 6

Example: type
#include <stdio.h> // note: preprocessor does not need semicolon
/* Objective: Using conversion specifiers */
int main()
{ // start main

int i = 1234;
float m = 12.5, n = -12.5;

printf("%d %o %x %X\n", i, i, i, i);
printf("%f %f\n", m, n);
printf("%e %e %E\n", n, m, n);
printf("%g %g\n", m, n);
printf("%s\n", "string");
printf("-------\n");
printf("%d %d\n", i);
printf("%d\n", i, i);
printf("%d");
getch();
return 0; // indicates successful termination

} // end main

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 7

Example: type
#include <stdio.h>
/* Objective: Using conversion specifiers */
int main()
{ // start main

int i = 1234;
float m = 12.5, n = -12.5;
char c = 'A';
m = c;
printf("%f\n", 18); //meaningless; if 18 replace by 18.0 then it is OK.
printf("%f\n", c); //meaningless
printf("%f\n", m);
i = c;
printf("%d\n", i);
printf("%d\n", c);
i = m; // i = 65;
printf("%d\n", i);
printf("%d\n", m); //meaningless
printf("%d\n", 12.6); //meaningless
//printf("%s %s %s", i, m, c); // meaningless OR rumtime-error
getch();
return 0; // indicates successful termination

} // end main

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 8

Modifier
modifier type Effect

h d, i, o, u, x, X Value is first converted to a short int or unsigned short int.
h n Specifies that the pointer points to a short int.
l d, i, o, u, x, X Value is first converted to a long int or unsigned long int .
l n Specifies that the pointer points to a long int.
L e, E, f, g, G Value is first converted to a long double.

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 9

Width
• The width of the field is specified here with a decimal value

• If the value is not large enough to fill the width, then the
rest of the field is padded with spaces (unless the 0 flag is
specified)

• If the value overflows the width of the field, then the field
is expanded to fit the value

• If a * is used in place of the width specifer, then the next
argument (which must be an int type) specifies the width of
the field.
– printf("%*f", 7, 98.736);

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 10

Example
int i = 1234;

float m = 12.5;

float n = -12.5;

printf("%d%d%d\n", i, i, i);

printf("%3d %5d %8d\n", i, i, i);

printf("%3s %5s\n", "test", "c");

printf("%3f %5f %12f\n", m, n, n);

printf("%3g %6g %8g\n", m, n, n);

432143214321

432143214321

ctset

000005.21-000005.21-000005.21

5.21-5.21-5.21

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 11

Precision
• The precision begins with a dot (.) to distinguish itself from the

width specifier

• The precision can be given as a decimal value or as an asterisk (*)

– If a * is used, then the next argument (which is an int type) specifies
the precision

– when using the * with the width and/or precision specifier, the width
argument comes first, then the precision argument, then the value to
be converted

– printf("%*.*f", 7, 2, 98.736);

• Precision does not affect the c type

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 12

Precision
.precision Result

(none) • Default precision values:
• 1 for d, i, o, u, x, X types. The minimum number of digits to appear
• 6 for f, e, E types. Specifies the number of digits after the decimal point

• For g or G types all significant digits are shown
• For s type all characters in string are print

. or .0 • For d, i, o, u, x, X types the default precision value is used unless the value is
zero in which case no characters are printed

• For f, e, E types no decimal point character or digits are printed
• For g or G types the precision is assumed to be 1

.n • For d, i, o, u, x, X types then at least n digits are printed (padding with zeros if
necessary)

• For f, e, E types specifies the number of digits after the decimal point
• For g or G types specifies the maximum number of significant digits to print

For s type specifies the maximum number of characters to print

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 13

Example
include <stdio.h>
/* Objective: example of conversion specifiers */
int main()
{

int i = 1234;
float m = 123.525;

printf("%7.3f %7.2f %7.1f %7.0f %7.5f\n", m, m, m, m, m);
printf("%4d %5.2d %5.6d %8.5d\n", i, i, i, i);
printf("%3s %12.5s %.13s\n", "programming", "programming", "programming");

getch();
return 0; // indicates successful termination

} // end main

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 14

Flags

- Value is left justified (default is right justified). Overrides the 0 flag
+ Forces the sign (+ or -) to always be shown. Default is to just show the - sign.

Overrides the space flag
space Causes a positive value to display a space for the sign. Negative values still show

the - sign
Alternate form:

0 For d, i, o, u, x, X, e, E, f, g, and G leading zeros are used to pad the field width
instead of spaces. This is useful only with a width specifier. Precision overrides this
flag

Conversion Character Result

o Precision is increased to make the first digit a zero

X or x Nonzero value will have 0x or 0X prefixed to it

E, e, f, g, or G Result will always have a decimal point

G or g Trailing zeros will not be removed

Several flags may be combined in one conversion specifier

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 15

Example
#include <stdio.h>
/* Objective: example of conversion specifiers */
int main()
{

int i = 1234;
float m = 123.0;

printf("%#7.0f %g %#g\n", m, m, m);
printf("%d %07d %-7d %+d %d %d\n", i, i, i, i, i, -i);
printf("%o %#o %x %#x\n", 025, 025, 0x25, 0x25);
printf("%+0d %09d %+09d\n", 445, 445, 445);

getch();
return 0; // indicates successful termination

} // end main

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 16

Escape sequence
ASCII Code Escape sequence Represents

7 \a alert (bell)

92 \\ backslash

8 \b backspace

63 \? question mark

12 \f formfeed

39 \' single quote

10 \n newline

34 \" double quote

13 \r carriage return

- \ooo octal number

9 \t horizontal tab

- \xhh hexadecimal number

11 \v vertical tab

0 \0 null character

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 17

Escape sequence
printf("1\t10\n"); // \n = code(10) code(13)

printf("2\t20\n");

printf("5\\9\n");

printf("programming\rc\n");

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 18

printf return value
• The return value is the number of values that

were read, or the value of EOF (-1) if an input
failure occurs

printf("\nn = %d\n", printf("C/C++"));

printf("\nn = %d\n", printf("%d", -1234));

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 19

Formatted input - scanf
• Input formatting scanf("format", arguments);

– Input all types of data
– Input specific characters
– Skip specific characters

• Format: an input field is specified with a conversion specifer which begins with the
% character. After the % character come the following in this order:

– [*] Assignment suppressor (optional).

– [width] Defines the maximum number of characters to read (optional).

– [modifier] Overrides the size (type) of the argument (optional).
• Similar to printf modifier

– [type] The type of conversion to be applied (required).

– Example: %*[width][modifier]type

• Arguments: pointers to variables where input will be stored (address of variables)

% * 12 L g

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 20

scanf
• These functions take input in a manner that is specified by the format

argument and store each input field into the following arguments in a left
to right fashion

• Each input field is specified in the format string with a conversion specifier
which specifies how the input is to be stored in the appropriate variable

• Other characters in the format string specify characters that must be
matched from the input, but are not stored in any of the following
arguments

• If the input does not match then the function stops scanning and returns

• A whitespace character may match with any whitespace character (space,
tab, carriage return, new line, vertical tab, or formfeed) or the next
incompatible character

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 21

type
• It also controls what a valid convertible

character

– what kind of characters it can read so it can
convert to something compatible

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 22

type Input

d Type signed int represented in base 10. Digits 0 through 9 and the sign (+ or -)

i Type signed int. The base (radix) is dependent on the first two characters. If the first character is a digit from 1 to 9, then it is base
10. If the first digit is a zero and the second digit is a digit from 1 to 7, then it is base 8 (octal). If the first digit is a zero and the
second character is an x or X, then it is base 16 (hexadecimal)

o Type unsigned int. The input must be in base 8 (octal). Digits 0 through 7 only

u Type unsigned int. The input must be in base 10 (decimal). Digits 0 through 9 only

x, X Type unsigned int. The input must be in base 16 (hexadecimal). Digits 0 through 9 or A through Z or a through z. The characters 0x
or 0X may be optionally prefixed to the value

e, E,
f, g, G

Type float. Begins with an optional sign. Then one or more digits, followed by an optional decimal-point and decimal value.
Finally ended with an optional signed exponent value designated with an e or E

s Type character array. Inputs a sequence of non-whitespace characters (space, tab, carriage return, new line, vertical tab, or
formfeed). The array must be large enough to hold the sequence plus a null character appended to the end

[...] Type character array. Allows a search set of characters. Allows input of only those character encapsulated in the brackets (the
scanset). If the first character is a carrot (^), then the scanset is inverted and allows any ASCII character except those specified
between the brackets. On some systems a range can be specified with the dash character (-). By specifying the beginning
character, a dash, and an ending character a range of characters can be included in the scan set. A null character is appended to
the end of the array

c Type character array. Inputs the number of characters specified in the width field. If no width field is specified, then 1 is assumed.
No null character is appended to the array

p Pointer to a pointer. Inputs a memory address in the same fashion of the %p type produced by the printf function.

n The argument must be a pointer to an int. Stores the number of characters read thus far in the int. No characters are read from
the input stream

% Requires a matching % sign from the input

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 23

Example
int main()

{

int i;

float f;

scanf("%d %f", &i, &f);

// space between conversion specifer is important for char type

scanf("%d%f", &i, &f);

printf("i = %d, f = %f", i, f);

system("PAUSE");

return 0;

}

5.015

5.015

5

5.01

Number Space Number

Number Tab Number

Number Enter Number

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 24

Example
int main()

{

char c1, c2, c3;

int i, j;

scanf("%c %c %c", &c1, &c2, &c3);

scanf("%c%c%c", &c1, &c2, &c3);

scanf("%c -%c-%c", &c1, &c2, &c3);

scanf("%c - %c - %c", &c1, &c2, &c3);

scanf("%d t %d", &i, &j);

scanf("%dt%d", &i, &j);

system("PAUSE");

return 0;

}

cba

c,b,a

d,c,b,a

?

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 25

Example
int main()

{

int i;

scanf("%i", &i); // scanf("%d", &i);

printf("i = %d", i);

system("PAUSE");

return 0;

}

01

01=i

010

8=i

01x0

61=i

8310

11=i

1f540

73=i

01x0

0=i

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 26

Example
int main()

{

char c;

scanf("%c", &c);

printf("c = %c", c);

system("PAUSE");

return 0;

}

56

A=c

A

A=c

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 27

Example
int main()

{

unsigned short j;

short k;

scanf("%u %u", &k, &j);

printf("%u, %u", k, j);

printf("%d, %d", k, j);

system("PAUSE");

return 0;

}

2-2-

4355643556

2-2-

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 28

Example
int main()

{

short a, b, c, k;

scanf("%d %d %n %d", &a, &b, &k, &c);

system("PAUSE");

return 0;

}

69578.63201-

) = 10578.63201-Len(

K = 10

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 29

Assignment suppressor
• *: Causes the input field to be scanned but not

stored in a variable

int x, y;

scanf("%d %*c %d", &x, &y);
01/02

01/02

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 30

Width
• The maximum width of the field is specified

here with a decimal value

– If the input is smaller than the width specifier (i.e.
it reaches a nonconvertible character), then what
was read thus far is converted and stored in the
variable

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 31

Example
int main()

{

int i, j, k;

scanf("%3d %3d %3d", &i, &j, &k);

system("PAUSE");

return 0;

}

321

894653241

846656241

89466596241

cba

321

498356142

5666142

664695142

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 32

Example
int main()

{

int i;

float f;

char c;

scanf("%3d %5f %c", &i, &f, &c);

system("PAUSE");

return 0;

}

T578.63201

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 33

Example
• Consider the following code;

– scanf ("%d", &n);

– scanf ("%c", &op);

• Many students have done this, only to find the
program "just skips through" the second scanf.
Assume you type 45\n in response to the first
scanf. The 45 is copied into variable n. When
your program encounters the next scanf, the
remaining \n is quickly copied into the
variable op

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 34

scanf return value
• The scanf function returns an integer, which

indicates the number of successful conversions
performed
– lets the program check whether the input stream was in the proper

format

printf("%d", scanf("%d/%d/%d", &Month, &Day, &Year));

Input Stream Return Value

02/16/69 3

02 16 69 1

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 35

Arguments
• What’s wrong with the following?

int n = 0;
scanf("%d", n);

• Of course, the argument is not a pointer!
– scanf will use the value of the argument as an address
– What about a missing data argument?

scanf("%d");
– scanf will get an address from stack, where it expects

to find first data argument - if you're lucky, the
program will crash trying to modify a restricted
memory location

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 36

Arguments
• The number of arguments in a call to printf or

scanf depends on the number of data items being
read or written

• printf or scanf parameters pushed on the stack
from right to left

– int i = 5;

– printf("%d %d", ++i, ++i); // 7 6

– printf("%d %d", i++, i++); // 8 7

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 37

getchar and putchar
• get character from keyboard buffer

– Input from the keyboard is buffered in an input buffer managed by
the operating system

• getchar() is used to read in a character

– No input parameter

– Read first character after press Enter key

– Return the int data type. The value return correspond to the ASCII
code of the character read

• putchar() is used to display a character

– Required the char variable as input parameter

– Return the int data type. The value return correspond to the ASCII
code of the character displayed

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 38

getch and getche
• getch()

– Ignore keyboard buffer

– Without echo input character

• getche()

– Ignore keyboard buffer

– echo input character

Input and Output – Lecture 4

Sharif University of TechnologyDepartment of Computer Engineering 39

Example
printf("c = %c\n", getchar());

printf("c = %c\n", getch());

printf("c = %c\n", getche());

printf("toupper = %c\n", toupper(getche()));// ctype.h

printf("toupper = %c\n", tolower(getche()));// ctype.h

