CS170 First Midterm Review Sheet

March 11, 2013

DISCLAIMER: This document is intended as a study material for your first midterm; *it does not necessarily accurately reflect the content of your exam!* Think of this as a not necessarily comprehensive list of terms and ideas that your GSI's would study if they wanted to review what you have learned so far.

1 Preliminaries, Numbers, Notation.

- Asymptotic runtime notation– $O(t), \Theta(t), \Omega(t)$
- Binary representation of integers
- Expressing runtime with a recurrence relation
- Solving recurrence relations-tree method, Master Theorem
- Multiplying matrices
- Reductions (i.e. arguing that computing a^2 cannot take less time than computing ab)
- Hashing
- RSA
- Euclid's algorithm

1.1 Practice Problems.

Section 1 worksheet, the first homework, and the following book problems may be useful:

0.1 For practicing with big-O, Θ , and Ω notation.

 $1.33\,$ For a refresher of Euclid's algorithm and some runtime practice.

1.43 For RSA.

2 Divide and Conquer.

- Multiplying integers
- Strassen's Algorithm and matrix decomposition
- Binary Search
- Finding the median or kth-smallest element

2.1 Sorting.

- Mergesort
- Lower bound on comparison-based sorting

2.2 Fast Fourier Transform.

- Roots of unity
- Coefficient Representation of polynomials
- Value Representation of polynomials
- FFT Algorithm:
 - Evaluation
 - Interpolation

2.3 Practice Problems.

Section 2 worksheet, homework 2, and the following book problems may be useful:

- 2.1 For binary integer multiplication.
- 2.5 Practice solving recurrence relations.
- 2.12 Practice setting up recurrence relations.
- 2.9 Practice with FFT. If you feel shaky about the algorithm, trying to do this by hand might help.

3 Graph Search.

3.1 Definitions.

- Graph, Vertices, Edges, Weighted Edges, Directed Edges (Arcs)
- Directed (Acyclic) Graph
- Connected Component
- Strongly Connected Component
- Source, Sink
- Source Component, Sink Component

3.2 Algorithms.

- Depth-Firsth Search
 - Implementations
 - Runtime(s)
 - Limitations
 - Applications

- post and pre numbers, and lemmas involving their relative values after depth-first search
- Back, Cross, Tree, and Forward edges
- Shortest Path
- Negative cost cycle
- Breadth-First Search
 - Implementations
 - Runtime(s)
 - Limitations
 - Applications

- DAG Linearization (Topological Sort)
 - Implementations
 - Runtime(s)
 - Limitations
 - Applications
- Djikstra's Algorithm
 - Implementations
 - Runtime(s)
 - Proof of correctness
 - Limitations
 - Applications

• Bellman-Ford Algorithm

- Implementations
- Runtime(s)
- Proof of correctness
- Limitations
- Applications

3.3 Practice Problems.

Section 3,4 & 5 worksheets, homeworks 3 & 4, and the following book problems may be useful:

- 3.2 Practice depth-first search and related vocabulary.
- 3.5 Practice applications.
- 3.13 Practice with understanding connectivity in directed and undirected graphs.
- 4.1 Practice with Djikstra.
- $4.2\,$ Practice with Bellman-Ford .
- 4.14 Applications.
- 4.15 Applications.
- 4.21 Applications.

The following non-book problems might also be useful:

- 1. Explain the relationship between Djikstra's algorithm and BFS.
- 2. Explain why Bellman-Ford is different from Djikstra's algorithm (why it is able to find shortest paths in graphs with negative edges?)
- 3. Find an example that shows that Djikstra's algorithm cannot even handle negative-cost edges, not just negative-cost cycles.

4 Greedy Algorithms.

- Scheduleing
- Huffman Encoding
- Disjoint Sets (a.k.a. Union-Find) data structure

4.1 Minimum Spanning Trees

- Kruskal's Algorithm
- Prim's Algorithm
- Borouvka's Algorithm
- The Cut Property

- Variations of MST
 - Max Spanning Tree
 - Unique edge weights
 - etc.

4.2 Practice Problems.

Section 5 & 6 worksheets, homeworks 5 & 6, and the following book problems may be useful:

- 5.2 Practice with MST algorithms.
- 5.3 Connectivity and trees.
- $5.5\,$ MSTs.
- 5.13 Huffman encoding.
- 5.17 Huffman encoding.
- 5.23 MSTs.