
Boruvka’s Algorithm

Boruvka’s algorithm for the MST is this:

assumption: all edge lengths are different

C is a set of connected components, initially {{1 }, {2}, . . . , {|V|}}
X is the set of tree edges, initially empty

repeat

for each component c in C, find the shortest edge e leaving c, and add it to X

find the connected components of X

until |C| = 1 (there is only one component)

It takes linear time to do each iteration. Finding the connected components requires of
course linear time, but how do you find all shortest edges out of all components in linear
time?

Here is how: You process all edges one by one, and look up the component of each
endpoint of the edge. If they are the same, nothing to do. If they are different, you update
a number you keep for each connected component which is the length of the shortest edge
out of the component that you have seen so far.

Importantly, there are at most log |V | iterations: At each iteration the number of compo-
nents |C| is divided by two at least (can you see why?). So, this is an O(|E| log |V | algorithm,
very much like the others.

But among the three MST algorithms we have seen, this is the only one that we can
hope to parallelize. All others are very sequential (imagine a large graph whose MST is a
looooong path!).

Parallel Algorithms

Designing parallel algorithms requires a very different mindset than designing sequential
algorithms (as in the rest of CS170). In this lecture we’ll get a taste of this mindset.

Let us start with the simplest problem: Add n numbers together. Sequentially, this is
trivial:

sum = 0, for i = 0 to n-1 do sum = sum + a[i]

It takes O(n) time, and obviously it cannot be done better.

But how about in parallel? The best way to add n numbers in parallel, say the eight
numbers 4, 1, 3, 2, 5, 2, 9,and −1, is to build a circuit of adders, shaped as a binary tree:

0

4 1 3 2 5 2 9 -1

+ + + +

+ +

+

But now we can view this as a parallel algorithm! The input numbers initially reside in n
processors (bottom layer), call them processor 0, 1, 2, etc. Then n/2 of these processors (the
even-numbered ones) take the initiative and add their number to the one in the processor
following them. And so on. The output is in processor 0.

We are assuming here a very simple model of parallel computation. We have many
processors operating synchronously, that is, in complete unison. The processors have local
memory, but they can also access each other’s memory in one step.

Some sticky questions: Can two or more processors read the same memory cell at the
same step? How about write it? And what happens if the written values are different?
There are many possible models for this. Here we will simplify matters by assuming that the
answers are “Yes,” “Yes,” and “Any one of the values prevails.” This is called the CRACOW
model of parallel computation (for concurrent read, arbitrary concurrent write).

But is this a reasonable model? The answer is an unqualified “no.” Many parallel
machines are asynchronous (and synchronization of threads is tedious). Our model ignores
communication between processors: the processors in real parallel machines or systems are
connected through some interconnection network, and communication is costly. Also, sim-
ulating the CRACOW model on a real machine is not easy, and may take many steps for
each write operation, because most computer memory does not work this way.

Still, developing algorithms for this model is useful. By understanding how to solve
problems in parallel in this idealized model reveals the intricacies of parallel algorithms, and
creates algorithmic ideas which can then be mapped to actual parallel machines or systems.

We can now write pseudocode for the addition algorithm.

n processors named i = 0, 1, ... , n-1, holding the inputs in the field value

for each i pardo: (this means, do in parallel with tight synchrony)

offset = 1

repeat

j = i + offset

1

if j <= n value = value + j.value (j.value means value of remote processor

j)

offset = offset + offset (double the offset to go up in the tree)

*if offset does not divide i retire (i will have no work to do from now on)

until offset >= n

parend

output is 0.value

“Retire” means that we don’t use the processor any more. Notice how the *-ed instruction
ensures that the tree shrinks in size as time proceeds (as we go up), and so the total “work”
done by the algorithm is kept linear, as in the binary tree of adders.

In a sequential algorithm we ask “How much time does it take as a function of n?” In
parallel algorithms there are three questions to ask:

• How many processors does it use?

• How much parallel steps does it make?

• How much work does it do?

The work of a parallel algorithm is the total number of steps executed by all processors
at all times. In a circuit, the number of processors is the width of the circuit (the size of its
largest “row”); the number of parallel steps (or parallel time) is the depth of the circuit (the
number of rows, or the longest upward path), and the work is the total number of gates (call
it the “size” or “volume”) of the circuit.

In our addition example, there are n processors, log n parallel steps, and work n (omitting
O(·)’s). We may write P = n, T = log n,W = n. If we had omitted the * line of the
pseudocode, we would still have a correct algorithm with the same P and T , except that W
would be n log n.

Can it be done better? Work cannot be improved, obviously, but how about parallel
time? Can we add n numbers in parallel faster than log n?

This is impossible, and it’s not hard to see why. Consider one of the processors. In the
beginning, at time zero, it is only aware of its own existence, for all it knows there is no
other processor in the universe. Then it takes a step. t becomes 1. During this step it may
access the memory of another processor, and so it becomes aware of the existence of that
processor. In the next step, it may access yet another, and now this other processor may
know about itself and somebody else. Or another processor may write a piece of information
on its memory (even if many processors try, by CRACOW only one will succeed), and so
our processor now may know what that processor knew. The point is that the number of
processors, including itself, of which our processor is aware —“has heard from” — at most
doubles at each step. After t steps, it is at most 2t. If t < log n, then no processor has not
heard from all inputs, and thus no processor cannot possibly know and output the sum. The
same argument establishes that log n parallel time is required for most tasks — just as time
O(n) is required for all reasonable sequential tasks.

2

For another application of the same idea, if instead of ‘‘value = value + j.value’’

we write ‘‘value = min (value, j.value),’’ then the head of the list ends up holding
the smallest value. This is how you find min and max of n numbers in log n parallel steps.

Question: How about the FFT of n numbers, how can it be implemented in parallel?

Well, the FFT is a circuit (remember Figure 2.10). By inspection, we see that P =
n, T = log n,W = n log n (this is the width, depth, and volume of the circuit, respectively).

And how about matrix multiplication? It can be done in parallel time log n and work n3

on n3 processors.

List ranking

Suppose that you have a linked list, and you want to compute the rank of each cell, the
length of the path from it to nil. This is easy to do, of course, except the obvious algorithms
are sequential. In fact, this problem feels “inherently sequential.” How on earth can you
telescope the rank of a node in a long list?

Here is a clever parallel algorithm that does this. The algorithm assumes that every cell
sits on a different processor, with local variables x and next. The local memory of other
processors can be accessed through pointers.

for each cell pardo: (this means, do in parallel with tight synchrony)

if next = nil x = 0 else x = 1

repeat

x = x + next.x

next = next.next

until next = nil

parend

Example: Here are the steps for a list of five cells.

3

1 1 1 1 0

2 2 2 1 0

4 3 2 1 0

4 3 2 1 0

Notice how, by the method of “pointer-jumping” and “path-doubling”, this algorithm
defeats any long list in only log n steps.

But the same idea does much more: Suppose your cells hold an initial value, call it x, and
you want to compute, for each cell, the sum of the values over the whole path to nil. This is
done by the same algorithm! Just omit the first line, the one that initializes x. (Check it.)
So, this algorithm is another n log n work way of adding numbers.

List ranking is one of the most useful parallel algorithms, often compared to depth-first
search and breadth-first search combined...

Brent’s Rule

In sequential algorithms, we account for the time required to solve an instance of size n, as a
function of n. In a parallel algorithm, we gauge the parallel time, the work and the number
of processors employed, again as a function of n.

Number of processors as a function of n? This seems very strange. In real life, we
are going to have a fixed parallel machine, or farm of machines, whose number of parallel

4

processors is known, and cannot be adjusted for each instance size.

There is a simple observation in this regard, known as Brent’s Rule 1 which tells us this:
Any parallel algorithm that solves a problem utilizing many processors, can be scaled back
easily to fewer processors.

Brent’s Rule: If a problem can be solved in parallel time T and work W with P processors,
then it can also be solved with p < P processors in the same work and time T + W

p
.

The proof proceeds with simulating every time step t of the processor-hogging algorithm,
in which wt processors were active, with dwt

p
e steps using p processors, and then noticing

that dwt

p
e ≤ wt

p
+ 1 and adding over the T steps (obviously,

∑
t wt = W).

This means that in parallel algorithms we should try to saturate the problem with pro-
cessors, even if we know that we will never have so many.

Connected components in parallel

Some problems are very easy to solve fast in parallel, because their sequential algorithm
is eminently parallelizable. We have seen a few so far. There are other problems which,
even though they can be solved very fast sequentially, we know of no algorithms that utilize
parallelism in any substantial way; such problems are called inherently sequential.

There is an intermediate class of problems, which can be solved very fast in parallel;
however, in order to do so we must forget all we know about how to solve these problems
sequentially. The sequential algorithms for these problems do not parallelize easily.

One of these problems is the problem of finding the connected components of a graph.
It is very easy to solve sequentially through depth-first search. However, a little reflection
will reveal that DFS is a very sequential algorithm (just recall the pre and post numbers
assigned to the nodes). To find the connected components of a graph in parallel, we must
develop a completely new algorithm, which is dramatically different. It is also instructive
about the difficulties in writing parallel algorithms.

We are given an undirected graph, say

1 2 4 3 9 11

5 6 8 7 10

Our goal is to find the connected components of this graph. That is, we want to compute
the graph into the following two “star” structures, in which every node points to the name
of its connected component. A star is a tree of depth one (see the figure).

1Discovered in 1973 by the Australian computer scientist Richard Brent — no connection to
http://articles.latimes.com/1997-04-16/entertainment/ca-49080 1 time-limits .

5

1

2 3 4 5 6 7 8

9

10 11

The algorithm uses |V |+ |E| processors, one for each vertex i and one for each undirected
edge [i, j] of the graph. The basic idea is this: Each vertex has a pointer P, initially pointing
to itself. We use the pointers to join the vertices in trees, then join these trees if they belong
to the same component, and “shorten” the trees by pointer jumping to make them stars.
This has to be done with extreme care so there are no cycles (on a cycle you can pointer-jump
forever...). We assume the vertices are numbers, and we use the numbers to avoid cycles:
We try to always join larger number to smaller numbers (note that the representative of
each component in the figure above is the smallest-numbered vertex of the component). But
more tricks are needed. For example, if we want to join vertices i and j we don’t simply
make P[i] = j. Instead we “hook” them together:

Hook(i,j): P[P[i]] = P[j]

This way, vertex i does not lose its connection to its current parent (typically, i will be
a leaf node in a star, and so the whole star will be joined). And furthermore, P[i] is joined
not to j but to the parent of j, thus decreasing the depth of the new tree formed.

Crucially, we will need to know when node i belongs to a star. This is done by all vertex
processors executing in parallel this procedure, called test-for-star:

star[i] = true

if P[P[i]] 6= P[i] then star[i] = false, star[P[P[i]]] = false

if not star[P[i]] star[i] = false

Here is the algorithm:

1. For each vertex i pardo P[i] = i parend

for each edge (i,j) pardo2

2. if i > j Hook(i,j) (here Hook is used for uniformity, P[i]=j would be enough)

3. if i is a singleton (that is, a node all by itself --- exercise: how do

we test this?) Hook(i,j)

parend

(at this point all vertices are in a tree with at least two vertices, assuming

no isolated nodes.)

repeat

for all edges i-j pardo

test-for-star

4. if star[i] and P(i) > P(j) Hook(i,j)

2If there is an edge between u and v, then two processors will consider this edge: one will have i = u and
j = v and the other will have i = v and j = u.

6

test-for-star

5. if star[i] and P(i) 6= P(j) Hook(i,j)

parend

6. for all vertices i pardo

P[i] = P[P[i]] (pointer-jumping)

parend

until pointer-jumping does nothing in the whole graph

The figure below shows the first execution of the steps 1 – 5 of the algorithm. Notice
that, for example, in step 2 many edge processors may try to hook a node, but only one will
succeed (thanks to CRACOW). The attempts are indicated in the figure.

Here is why this works:

• After the steps 1 – 3, it is clear that the pointers form a forest (many trees, no cycle
except for the self-loops on the roots), and there are no singletons (they were forced
to Hook in Step 3).

• From then on we execute the repeat loop. We need to show that no cycles are ever
introduced (this is our nightmare in this problem). Stars play an important role in the
argument. Stars are formed by pointer-jumping in non-star trees in Step 6 (pointer-
jumping has no effect in stars). There is no other way to form a new star, because the
Hook operations in Steps 4 and 5 join stars to other trees, and the new tree that is
formed has depth at least two.

• Step 5 never Hooks i to another star. This is because if j is in a star, that star must have
existed before Step 4 by the previous paragraph, and so it would have been Hooked
with i at that Step. In addition, Step 4 may Hook two stars, but in a hierarchical
manner (from larger roots to smaller roots). It follows that no Hooking in Steps 4
and 5 of an execution of the repeat loop can create a cycle, because Hookings happen
from large roots to small roots of stars, and then possibly to a non-stars (Step 5), from
which no other Hookings could have happened, and so the cycle cannot close.

• Notice also that if a star survives Steps 4 and 5, then it must be a whole component
of the graph (otherwise it would be connected to something else and would have been
Hooked). From now on it will be inactive, it has been discovered and waits for the
other components to finish.

• Notice also that every active tree has its depth reduced by at least 2/3 at each execution
of Step 6. This is because pointer-jumping reduces a tree’s height from h to dh/2e,
which is at most 2h/3 if h > 1 (which it is, because we are only considering active
trees). So, the sum of the heights of all active trees is multiplied by 2/3 each execution
of the while loop. So, the algorithm will eventually terminate after log n iterations.

• So, this algorithm correctly finds the connected components of any graph, and requires
|V |+ |E| processors, parallel time log |V |, and (|E|+ |V |) log |V | work.

7

6,8P

Step 5:

Step 4:

Step 3:

Step 2:

Step 1:

11,10P

8,7P

6,5 PP 11,9
P
4,2P2,1

P3,4

8,4

P

8,6P
P
8,2P

4,3

P9,11

P

8,4

8,2
P
P8,6

G:

8

11

5

1

10

11

11

3

92

6 9

5

7

6

5

2

1

1

11

4

2 10

3

4

7

7

8

3

4

6

86

9

5

10

4

7

2

6

2

4

3 10975

1

8

1

119

105

3421

6 8 7

3 111098

