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In a simple cellular automata model it is shown that self-organization of spatial pattern in a community

of strong competitors may generate a previously unrecognized mechanism of species richness

determination. Employing some well-known general properties of interspecific competition, we

elaborate a theoretical framework that generates both spatial mosaics and spiral waves within the

same conceptual framework, dependent on the covariance of competition. We demonstrate that the

qualitative nature of the spatial pattern depends on the ‘‘balance’’ of competition and that the number

of species retained in the community depends on this spatial patterning.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Two issues that have secured semi-canonical status in ecolo-
gical theory are first, that species richness tends to be related to
niche diversification and second, spatial patterns are sometimes a
consequence of forces inherent to the ecosystem. Species richness
related to niche diversity is a direct result of expanding the classic
Lotka–Volterra equations into their multiple species form and
equating niche differences with competition coefficients
(MacArthur and Levins, 1967; May, 1973). Self-organized spatial
patterns emerge from coupling local dynamics to some form of
diffusion, the most common forms being similar to Turing’s
famous effect (Turing, 1952; Segel and Jackson, 1972; Alonso
et al., 2002). Here we consider the intersection of these two
issues. We examine the process of self-organization of spatial
pattern in a community of strong competitors and show how the
details of the self-organizing process generate a previously
unrecognized mechanism of species richness determination.

The existence of spatial pattern in biological communities is
familiar. Many organisms, especially sessile forms, exist in dramatic
nonrandom patterns, a phenomenon well-known to early naturalists.
Such patterns can take a variety of forms, many of which are clearly a
consequence of underlying habitat characteristics, but some of which
are thought to be patterned at larger scales as a result of dynamic
interactions at a local scale. A variety of biological phenomena can
easily give rise to many such patterns (Nowak and May, 1992;
ll rights reserved.

eer),

cript.
Bascompte and Solé, 1995; Tilman and Kareiva, 1997; Dieckmann
et al., 2000), from physiological models in which patterns of vegeta-
tion are formed based on the spatial details of water usage
(Klausmeier, 1999), to predator prey models that generate patches
showing certain characteristics of criticality (Pascual et al., 2001;
Vandermeer et al., 2008), and many other examples. Of particular
interest are the models that examine patterns formed from the
process of competition.

Although the literature is large and eclectic, it is nevertheless
possible to generalize about the general patterns formed in spatial
competition using a dichotomous classification. Some studies find
the emergence of a mosaic of relatively discrete patches that
retain a general qualitative structure for long periods of time even
if not formally stable (Durrett and Levin, 1994, 1998; Bascompte
and Solé, 1995; Sheratt, 2006; Adler et al., 2007), a pattern
frequently referred to as a spatial mosaic. Other studies concen-
trate on the formation of so-called spiral waves (Boerlijst and
Hogeweg, 1991; Johnson and Seinen, 2002; Edwards and
Schreiber, 2010), based on the existence of intransitive loops
(i.e., species A, beats B and species B beats species C, but species C
beats species A). Here, employing some well-known general
properties of interspecific competition, we elaborate a theoretical
framework that generates both forms (mosaics and spiral waves)
within the same conceptual framework.

A related theoretical literature is concerned with the effect that
spatial pattern has on the process of competitive coexistence or
exclusion (e.g., Newhauser and Pacala, 1999). In an extensive
review of the literature on this topic, Bolker et al. (2003) conclude
that theoretical work falls into four broad categories, (1) weak
interspecific competition leading to spatial structure that in turn
possibly destabilizes stable systems, (2) a colonization/competition
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tradeoff, (3) the construction of a ‘‘spatial successional niche’’
through differential reproductive rates, and (4) interspecific com-
petition strong and short dispersal allow ‘‘local control of the
environment,’’ what has been referred to as the Phalanx strategy
(Lovett-Doust, 1981).

It is to this last situation that the current work applies. Originally
applied to the case of plant competition, the basic idea can be applied
to competition among any sessile (or even semi-sessile) organisms.
(Durret and Levin, 1994, 1998) convincingly demonstrated this idea
for a very general model. The idea is that at the edge of a
monospecific cluster of individuals, the only points that really count
in the dynamics are those that occur on the edge of the clump. This is
because points interior to the cluster are not subjected to any
interspecific competition at all. Thus at the border of two clusters
composed of species A and species B, there are only three qualitative
possibilities: (1) A dominates B, (2) B dominates A, or (3) A and B
engage in a competitive standoff where neither is capable of displa-
cing the other. Clearly, when possibility 3 occurs, the clusters will be
stationary, and when either possibility 1 or 2 occurs, one or the other
species will wipe out its competitor.

Strong interspecific competition is likely to be characteristic of
many situations involving sessile organisms. Only a single tree
can occupy a particular site in a forest such that if the spatial
model considers the scale of an individual tree as the relevant
scale, competition must be strong by definition since there is no
possibility of local coexistence. Furthermore, if organisms are
roughly equivalent in their ecological requirements, for example
forest trees rather than forest ‘‘organisms,’’ or ants versus insects,
or insects versus all animals, the strength of competition is likely
to be large in both directions, giving rise to what Yodzis (1978)
has referred to as founder-controlled communities. In addition to
the strong competition framework, we frame the competitive
process in an effect/response framework, where a species can be a
strong competitor by being a good effect competitor (having a
good offense) and/or being a good response competitor (have a
good defense) (Goldberg and Fleetwood, 1987). In this work we
specifically consider a community of founder-controlled sessile
organisms where local competitive outcomes are a consequence
of relative values of effect and response competition.

We propose that spatial mosaics and related patterns are impli-
cated in the coexistence of species, a theme that already has received
substantial attention (Laird and Schamp, 2006, 2008). We first note
that the tendency to form mosaics in the first place is a function of
the balance, rather than the intensity, of competition, which is to say
the degree to which the competitive intensity felt by species A from
species B is balanced by an equal degree of competitive intensity felt
by species B from species A (in the Lotka–Volterra framework, this
would imply that aij is highly correlated with aji). This tendency in
turn suggests a conceptual framework in which the competitive
structure of a community can be conceived of as falling on a gradient
ranging from highly balanced to highly unbalanced, and, as we show
below, a strong mosaic structure spontaneously tends to form at the
balanced extreme and the likelihood of spiral waves much larger at
the unbalanced extreme. Finally we show that the number of
surviving species is directly related to the position of that competitive
structure on the gradient, with more species being maintained in the
community when a spatial mosaic is more likely to form, which is to
say, in the case of balanced competition.
Fig. 1. Illustrative competitive network. Numbers indicate relative strength of

Lotka–Volterra competition between any two of the three species, A, B, and C.

Arrowheads indicate competitive effect. Note that A is the best ‘‘effect’’ competitor

(with an effect of 2.0 on B and 1.5 on C for a total of 3.5) and C is the best

‘‘response’’ competitor (having to respond to 1.5 from A and 1.02 from B, for a total

of 2.52).
2. Methods

2.1. The model

As with other spatial models of competition, effective compe-
titive pressure occurs among neighboring cells in a spatial lattice
and a single cycle of competition involves deciding which of the
many species occupying a single point and its immediate neigh-
bors will be the winner, explicitly assuming that only one
individual is able to occupy a lattice point after the cycle.
Frequently a dispersal kernel is added to the model, and the
balance of dispersal ability and competitive ability becomes a
major determinant of the winner (Bolker et al., 2003). The model
described here includes only local dispersal—the entire competi-
tive process, from implicit dispersal to competitive outcome,
operates only in the Moore neighborhood.

A further complication arises with local density dependence. If
competition at a point depends on the occupancy of the lattice
points in the surrounding Moore neighborhood, at each competi-
tion cycle there will be up to 9 individuals contesting that point.
Some literature simply ranks species in order of ‘‘competitive
ability’’ and eliminates 8 of the individuals, leaving an individual
that belongs to the species with the largest competitive ability.
Clearly this is a problem in any realistic vision of competition
since, for example, species A might be higher on the competitive
ability spectrum than species B, but if there are 8 individuals of
species B and only one of species A, the latter could be over-
whelmed by numbers. Any realistic vision of interspecific com-
petition must allow for some local density-dependent effect
unless the differences in competitive abilities are extremely large.

To motivate our argument, consider the competition scenario
pictured in Fig. 1, where the numbers associated with the arrows
are Lotka–Volterra competition coefficients. From a knowledge of
the competition coefficients alone, it is clear that this is a case of
indeterminate competition, or in the classification scheme of
Yodzis (1978) a founder-controlled community (all competition
coefficients 41.0). Summing the relevant competition coeffi-
cients we see that species A has a total competitive effect of
3.5 on all other species (1.5 on C plus 2.0 on B), while species C
has a total effect of 2.51. On the other hand, species A must
respond to the effects of all the other species (i.e., both species B
and C which sum to 3.1) and C must respond to the effects of all
the others (which sum to 2.52). Based on these numbers alone we
might say that species A is a better ‘‘effect’’ competitor while
species C is a better ‘‘response’’ competitor, using the conceptual
framework of Goldberg and Fleetwood (1987) and Goldberg and
Landa (1991). The question then, if these three species all contest
for a single point, being that only one can survive, might we
expect A to win because it is a good effect competitor, or will C
win because it is a good response competitor?

In the Lotka–Volterra sense the question is not answerable
since the situation is one of indeterminate competition and thus
requires knowledge of relative population densities of the three
species. Assuming all competition is local, involving the indivi-
dual in the central cell plus all individuals in the Moore



J. Vandermeer, S. Yitbarek / Journal of Theoretical Biology 300 (2012) 48–5650
neighborhood the 8 immediately surrounding cells in this for-
mulation, each of the species has a population density ranging
from 0 to 9. There are, to be sure, obvious cases—if all nine
individuals belong to species A, the result at the central point will
be A. But what of other combinations of individuals? For example,
if there are NA individuals of species A, NB individuals of species B,
and NC individuals of species C, based on the competition
coefficients in Fig. 1, the following relations are reasonable
extrapolations of the LV framework (see Supplementary
material A). The total ‘‘effect competition’’ for species A will be
(2.0NBþ1.5NC)NA¼CE and the total ‘‘response competition’’ for A
will be 1.5NCþ1.6NB¼CR. We then take the total competition to
be CT¼CE/CR, and assert that the species with the largest CT will
indeed be the winner at that point (see Supplementary material
A). This is the basic framework that motivates the model we
develop and explore here, focusing on how different arrange-
ments of competitive interactions in the competition matrix
generate qualitatively distinct spatial patterns and what those
patterns may imply.

Combining these observations, we incorporate both density
dependence and the effect/response competition to compute
‘‘total competition’’ at a particular lattice point, for each of the
species occurring in its neighborhood. The winner at that point is
then the species with the greatest ‘‘total competition.’’ Our
formulation is arbitrary in that we seek only to devise an index
that is large when the relative values of effect and response are
large, and small when the relative values of effect and response
are small. We formulate the idea as a ratio between effect and
response, which is certainly not the only way of capturing the
biological idea, but is clearly intuitive and broadly consistent with
a Lotka–Volterra framework (see Supplementary material A).

Formally, in the model proposed here, the competitive effect of
species i at lattice point m,n is,

Eiðm,nÞ ¼
Xmþ1

x ¼ m�1

Xnþ1

y ¼ n�1

Niðx,yÞ
XS

j ¼ 1

Njðx,yÞaj,i ð1Þ

where Ni(m,n) is the population density (either 0 or 1) of species i,
aj,i is the relative strength of the competitive effect of species i on
species j. Note that the parameter a is conceptually related to the
Lotka–Volterra competition coefficient, but not identical to it
since this model framework is quite distinct from the dynamic
continuous time LV model (Supplementary material A). The
competitive response of species i at lattice point m,n is

Riðm,nÞ ¼
Xmþ1

x ¼ m�1

Xnþ1

y ¼ n�1

XS

j ¼ 1

Njðx,yÞai,j ð2Þ

whence the total competition for species i at a single point m,n in
the lattice, at any point in time, is

Ciðm,nÞ ¼ e Eiðm,nÞ

Riðm,nÞ
ð3Þ

where e is a stochastic force representing environmental varia-
bility in competitive outcome. The winning species at a point m,n

is the species with the highest C. Further description of the model
and its implementation is in Supplementary material A.

An alternative framework was also considered based on the
well-known game of Colonel Blotto. The results were almost
identical so are only reported in Supplementary material B.

2.2. Species diversity and covariance

To investigate the interplay of mosaic formation and species
diversity, we examined the qualitative structure of the competi-
tion matrix and the consequent generation of mosaics as an input
into the exclusion or coexistence of species. Characterizing the
qualitative structure of a competitive network is not an obvious
task. MacArthur was one of the first to suggest that the arrange-
ment of competition coefficients would be important to species
diversity, noting that the ‘‘connectivity’’ of a competitive network
would likely influence the species diversity (MacArthur, 1965).
Subsequently this basic idea became commonplace. It is not only
the intensity of competition but also the arrangement of the
coefficients in the competition matrix that is important in
determining species diversity (Levins, 1968; May, 1973). More
recently network theory has provided a number of useful metrics,
including more sophisticated measures of the ‘‘connectivity’’ of a
system (Solé et al., 2002). Here we follow the spirit of that
evolving literature and focus on the relationship between the
reciprocal pairs of competition coefficients, and especially on
their quasi-statistical properties. In particular, we focus on the
row and column sums of the competition matrix, classically
proposed as the obvious measures of the effect competition of
species i (the column sum of the ith column) and the response
competition of species i (the row sum of the ith row) (Goldberg
and Fleetwood, 1987). If the two are positively related, that is, if a
strong effect competitor implies a weak response competitor, the
covariance between the row sums and column sums will be
positive (i.e., if ai,j is large that means aj,i is also large). If, on the
other hand, a strong effect competitor implies a strong response
competitor, there will be a negative relationship between the
reciprocal pairs in the competition matrix and the covariance
between row sums and column sums will be negative (i.e. if ai,j is
large that means aj,i will be small). Thus, a large positive
covariance implies a tradeoff between effect and response com-
petition while a large negative covariance implies a competitive
hierarchy, or, put another way, a large positive covariance implies
a situation of ‘‘balanced’’ competition while a large negative
covariance implies a situation of ‘‘unbalanced’’ competition.

Historically the covariance of the community matrix was
constructed as an input to the general formula for species
diversity generated by the structure of the community matrix,
conceptualizing the competition coefficients as quasi-random
variables subject to the operation of expectation (Levins, 1968,
1979). We used the row/sum component of the covariance
(Vandermeer, 1972) to measure the structure of a series of
randomly selected competition matrices.

We explored the behavior of the model through extensive
simulations so as to relate the covariance of the matrix to the
number of species remaining in the system after a short simula-
tion of 100 iterations. For these simulations we chose the matrix
containing the parameters aij from a uniform random distribution
over the range 0–1. Subsequently we adjusted the covariance of
this matrix by applying the formulas,

aijðadjustedÞ ¼ gð1�ajiÞ ð4aÞ

aijðadjustedÞ ¼ gðaijÞ ð4bÞ

aijðadjustedÞ ¼ gðajiÞ ð4cÞ

where aij(adjusted) is the competition coefficient used in the
simulations, i is not equal to j, and g is a uniformly distributed
random variable providing a range of average competition.
Eq. (4a) alone generates a negative covariance, Eq. (4b) alone
generates, on average, a zero covariance, and Eq. (4c) alone generates
a positive covariance. So as to insure a broad range of covariances,
Eqs. (4a)–(4c) were applied with equal probabilities for each pair of
coefficients in the generation of each competition matrix.

Thus, there are three sources of stochasticity introduced in the
model: first, the initial aij were taken from a uniform distribution
of random numbers {0,1.0}, making the initial competition matrix
a ‘‘random’’ matrix, second, the g was chosen from a uniform
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random distribution {1.0,1.2} to generate an additional stochastic
variability and third, the e was generated from a uniform random
distribution {1.0,1.05}. Thus, while the matrix A (containing
elements aij) initially contains a random assembly of elements
below the diagonal, the elements above the diagonal are either aij

or 1�aji. Adjusting with g4919 (equations (4)) introduces sto-
chasticity to the symmetry of the original A matrix, and adding
e41 (Eq. (3)) adds environmental stochasticity to the determina-
tion of competitive outcome. As indicated above, our results are
for g taken from a uniform random distribution ranging from
1.0 to 1.2 and for e taken from a uniform random distribution
ranging from 1.0 to 1.05. However, in a subsequent section, we
use g¼e¼1.0 to explore the question of transient behavior of the
whole system.

The model was run 300 times, 100 iterations each run, on a
100�100 lattice with periodic boundaries. This provided us with
a range of covariances from highly negative to highly positive, yet
still a random collection of aij since the original values were
drawn from a uniform random distribution. The algorithm for
constructing the matrix was (1) place random numbers selected
from a uniform distribution 0–1 in the matrix, (2) set the values
above the diagonal to either their reciprocal values below the
diagonal, or 1 minus those reciprocal values, or no change (i.e.,
according to Eqs. (4a)–(4c)), (3) add variability by multiplying by
a random number (uniform {1.0,1.2}) corresponding to g of
equation set 4. The algorithm for tracking the dynamics of the
system was, at each point in the lattice (1) compute response,
effect, and total competition for each species, (2) multiply the
total competition by e (uniform {1.0 to 1.05}). After all lattice
points had been visited, each was revisited and an occupying
species was assigned based on which of the 12 species had a
larger ‘‘total competition’’ (Eq. (3)) for that lattice. In terms of
classical cellular automata, updating was synchronous (simulta-
neous). All simulations were done beginning with five individuals
of each of 12 species allocated at random on a 100�100 lattice
with periodic boundaries.
Fig. 2. Two qualitatively distinct examples from the model on a 100�100 lattice. All c

the lattice. Color codes, including patterned colors, represent different species the six co

yields 12 species. Simulations based on Eqs. (1)–(3) in text, with competition matrix ran

negative covariance, i.e., a case of balanced versus unbalanced competition. The precise

(a) A strongly positive covariance generating a strong mosaic pattern. (b) A strongly neg

and open red, with the persistence of secondary loops involving open blue and cyan. (Fo

to the web version of this article.)
3. Results

3.1. Preliminary simulations

We begin with a set of preliminary runs to illustrate the
qualitative behavior of the model. For these illustrative prelimin-
ary runs we eliminated all stochastic factors except the initial
random allocation of the competition matrix (i.e., g¼e¼1). In
Fig. 2 we present two exemplary series of snapshots of a
100�100 lattice with 12 competing species after 20, 50, 80 and
100 iterations for a positive covariance Fig. 2a, and after 50, 100,
600 and 3000 iterations for a negative covariance.

In Fig. 2a, the competition coefficients were arranged so as to
have a high positive covariance, which is to say effect and
response competition are negatively correlated, or the competi-
tion is ‘‘balanced’’, or there is a tradeoff between effect and
response competition a good effect competitor implies a poor
response competitor. Note the clear mosaic structure, in which
obvious monospecific patches appear at each stage. The way this
mosaic develops depends on starting conditions, of course, but
rapidly the patches that constitute the mosaic become fixed in
space due to the effective standoff that exists at the borders of the
patches. After only 100 iterations, the clumps are spatially fixed in
perpetuity.

In Fig. 2b the competition coefficients were arranged so as to
have a high negative covariance (highly negatively correlated
above and below the principle diagonal of the matrix) which is to
say effect and response competition are positively correlated, or
the competition is unbalanced (a good effect competitor implies a
good response competitor). A competitor that has a strong
competitive effect in the community, will also tend to have a
large competitive response, i.e., be unable to tolerate the effects of
other species. This means that species will be either good or poor
competitors on both the effect and response scales, which implies
the possibility of at least one intransitive loop, (discussed more
fully below) in the matrix. Note the presence of spiral waves,
ases were initiated with five individuals of each of 12 species placed randomly on

lors, red, black, green, blue, yellow and cyan, plus a patterned version of each color

domly set with application of equation 4 to create either a large or small positive or

matrices for these two simulations are presented in the Supplementary material D.

ative covariance with the chance existence of an intransitive loop open red, green

r interpretation of the references to color in this figure legend, the reader is referred
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generated by intransitive loops. In this particular case the end
state is a single intransitive loop (red, yellow and black) which
persist in perpetuity. The time scale for arriving at the permanent
species composition is dramatically different in the case of a
negative covariance compared to a positive covariance (compare
time frame differences between Fig. 2a and b).

We can thus view the overall pattern of competition as ranging
from an extreme in which there is a perfect balance between
effect and response, meaning a tradeoff between these competi-
tive classes, to an opposite extreme in which there is a perfect
imbalance between effect and response, suggesting intransitivity
somewhere in the community. The emergent spatial pattern is
dramatically different depending on that covariance.

The study of intransitive loops has recently attracted consider-
able attention, first because it is a way in which very strong
competition can be effectively moderated to allow the coexistence
of species that would otherwise not coexist (Vandermeer, 2011),
but second, because of its role in the creation of a backbone for
further community structure (Laird and Schamp, 2006, 2008).
Specifically, in continuous time dynamic models a single intransi-
tive loop can maintain a large number of species in perpetuity even
though competition coefficients among them are extremely high,
strongly violating Gause’s principle (Vandermeer, 2011). However,
in the spatial context, our simulation experiments suggest some-
thing rather more complicated happens. Although all species
involved in an intransitive loop are maintained in the system, the
species not involved in the loop tend to be rapidly removed by that
same intransitive loop. Thus, for example, in Fig. 2b, after 100
iterations there appear to be at least two intransitive loops—(1)
yellow, red, cyan; and (2) red, yellow, black. At time¼100, the
yellow, red and cyan form an intransitive loop, and the yellow, red
and black form another intransitive loop. By the 600th iteration,
one of those loops (the red/yellow/cyan), has completely taken
over the lattice. However, those three remain, apparently, in
perpetuity (see the picture for 3000 iterations).

3.2. Species diversity and mosaic formation

From the initial simulations described qualitatively above, it
seems that the preservation of many species goes along with the
formation of strong mosaics, while the elimination of most species
through competitive exclusion occurs when mosaics fail to form,
perhaps a consequence of the structure of the competition
Fig. 3. Relationship between the number of species remaining after 100 iterations

represented by Eqs. (1)–(3). Smooth black line connects mean values of ‘‘surviving speci

fit linear regression, significant at po0.001.
matrix—positive covariance yields a semi-permanent mosaic pat-
tern and preservation of species and a negative covariance results
in a pattern that is not permanent and thus results in much
competitive exclusion. To explore this generality more extensively,
we ran 300 simulations and calculated both the covariance
obtained from ‘‘a’’s randomly selected and adjusted to create a
large range of covariances as described above, and the number of
species surviving after 100 iterations. The results of these are
displayed in Fig. 3. Clearly species diversity is positively associated
with the covariance of the competition matrix, which is to say
species diversity is promoted by balanced competition, a tradeoff
between effect and response, whereas extinction is more common
in cases of negative covariances, largely associated with sometimes
complicated structures of intransitive loops.

Unlike the continuous case (Vandermeer, 2011) in which a
species not in the intransitive loop but competitively attacked by
a member of that loop is effectively saved periodically by the
oscillations in time of the species in the loop, in the discrete
spatial situation the intransitive loop creates spiral patterns that
effectively eliminate other species in the system. In this way, the
existence of an intransitive loop tends, in our model, to drama-
tically reduce the species diversity. It seems that most of the cases
of only 3 or 4 species persisting over the 300 simulations were
cases of an intransitive loop effectively eliminating all of the other
species in the system. Furthermore, a situation of competing
loops sometimes occurs, increasing diversity but only within the
intransitive loops themselves, e.g., six species in two three-
species intransitive loop, with an additional species permanently
connected to both loops.

The probability that an intransitive loop will emerge in a
randomly generated competition matrix is also indirectly related
to the covariance of the matrix. By stipulating that reciprocal
pairs must be negatively correlated (i.e., negative covariance), the
stage is set for the possibility of dominance to be exerted in an
intransitive fashion. So, for example, if it is stipulated that a12

must bebthan a21, and a23 must bebthan a32, a negative
covariance would suggest that a31 must bebthan a13 (consider-
ing these three species only) which would result in an intransitive
loop between the three species. Thus we see a general negative
relationship between more negative covariances and species
diversity (Fig. 3), due mainly to the existence of a competitive
hierarchy to be sure, but also, at least in some cases, due to the
existence of an intransitive loop.
and the covariance of the competition matrix. Simulations based on the model

es richness’’ as a function of bin midpoint �1.75, �1.25, etc. y, dashed line is best
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3.3. The transient nature of the species diversity pattern

Although the positive relationship between the covariance of
competition and species diversity is quite general (i.e., extensive
simulations with other parameter values always gave the same
qualitative results), it is clear that the pattern is transient.
Fig. 4. Pattern of surviving species richness as a function of covariance for different leng

covariance above 0.7) versus the transient behavior of all other species richness values (

eliminated but the competition coefficients being randomly allocated.
However, that transience is complicated. To see the underlying
pattern of the transient nature of the system, we removed the
stochastic factors (i.e., let g¼e¼1) and ran 100 simulations for
each of 50, 100, 150, and 200 time steps (iterations), the results of
which are shown in Fig. 4. With high positive covariance the rapid
formation of a fixed mosaic insures the maintenance of all
ths of simulations, illustrating the invariance of the mosaic structures (all values of

all values of covariance below 0.3). Values computed with stochastic effects g and e
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12 species in the system. As covariance decreases beyond about
0.3, one or more intransitive loops form and the species diversity
begins to decline. Thus, the transience is due to the lower values
of covariance. This dual approach to a permanent state is also
visible in Fig. 2, where the lattices were chosen so as to illustrate
the rapid formation of a mosaic when the covariance is positive
(Fig. 2a) and the much slower elimination of most, or many,
species by an intransitive loop when the covariance is negative
(Fig. 2b).

The dual nature of the transience creates the potential for a zone
of alternative stable states. As illustrated in Fig. 4, in the range of
covariances between about 0.3 and 0.7 it is possible to either form a
fixed mosaic (with the permanence of all 12 species), or a spiral-like
pattern with reduced species diversity. However, this alternative
state situation only occurs after the system has been running for a
relatively long period of time. Depending on the organism, 200
iterations may be short (i.e., 200 months for a forest) or long (200
day for a bacteria community), so it is not possible to specify the
expectation of a pattern of a simple positive relationship between
covariance and species diversity (e.g., Figs. 3 or 4a) or a double
plateau with a zone of alternative states (e.g., Fig. 4c or d). The
generalization that species diversity, in a closed community, will
increase with increasing covariance is true. But the nature of that
increase may be either smooth or abrupt. This rather odd relation-
ship is a consequence of a differential transient state depending on
the covariance.
4. Discussion

Structuring communities through competitive interactions has
long been a popular research topic leading to a large and diverse
literature (Levins, 1968; Tilman, 2004; Roughgarden, 1983;
Goldberg and Fleetwood, 1987; Perfecto, 1994). Much of that
literature has been focused on the underlying argument that
different species occupy different niches, thus making interspe-
cific competition weak enough so that Lotka/Volterra/Gause
competitive coexistence is a sufficient paradigm to account for
species coexistence. But when competition coefficients are very
large, that same classical theory predicts competitive exclusion.
The resulting paradox of the plankton (Hutchinson, 1961) has
always been something of a conundrum, recently receiving
renewed attention mainly because of Hubbell’s analysis of com-
petitive neutrality (Hubbell, 2001). In the case of most sessile
organisms (e.g., most plant communities, ants restricted by nest
site location, corals, barnacles) it is likely the case that competi-
tion is either neutral or strong (i.e., with LV competition coeffi-
cients equal to or greater than 1.0 since no two individuals can
occupy the same physical space). As noted earlier, a useful
categorization of these competitive scenarios was provided by
Yodzis (1978) who placed competitive communities along a
continuum based on the average competition coefficient, ranging
approximately from very small competition coefficients domi-
nance-controlled communities to very large competition coeffi-
cients founder-controlled communities. This categorization
permits a more focused approach to research on competition
and community structure.

An alternative point of view suggests that species with
equivalent niches might be arranged such that those that are
competitively dominant are also weak in their dispersal patterns,
the so-called competition/colonization tradeoff (Hurtt and Pacala,
1995; Higgins and Cain, 2002; Calcagno et al., 2006). Regardless of
the importance of this issue, our focus in this article is on local
interactions only. Relaxing the assumption of this local restriction
is the subject of work currently in progress (Yitbarek and
Vandermeer, in preparation).
In this work we have considered communities deriving pattern
from local interactions alone and those that can be described as
founder-controlled (those with generally very high competition
coefficients), for which classical ecological theory holds that com-
petitive exclusion should be the rule, although the vagaries of
nonlinear and stochastic forces render that point of view approx-
imate at best (Levins, 1979; Armstrong and McGehee, 1980). Yet
most of the early literature effectively assumed a well-mixed
community, that is, one in which individuals were free to disperse
without limits, or, more formally, species interactions without
geometry. Especially when considering sessile organisms, such an
assumption is unwarranted. It is thus of interest to ask what changes
to the underlying theory of founder-controlled communities will
emerge if a specific geometry, in this case a spatial structure, is
imposed on the system. A rich literature exploring this issue has
emerged (e.g., Neuhauser and Pacala, 1999; Bolker et al., 2003;
Chesson, 2004; Durrett and Levin, 1998; Kerr et al., 2002; Laird and
Schamp, 2006, 2008; Rohani et al., 1997).

To approach this question, and motivated by field work on
ground-foraging ants (Yitbarek et al., 2011; Perfecto and
Vandermeer, 2011), we employ a simple cellular automata model,
in which competitive interactions are all local (the object cell and
the surrounding 8 cells, commonly referred to as the Moore
neighborhood), and species win in competition based on their
general competitive ability. Distinct from some other models (e.g.,
Laird and Schamp, 2006; Kerr et al., 2002), our model incorporates
the idea of the effect/response tradeoff in competition.

Our most general conclusion regarding mosaic formation is
that when space is involved, it is not so much the intensity of
competition that matters, but rather its balance, which we
measure with the covariance of the competition matrix. With a
highly symmetrical matrix (i.e., balanced competition), a strong
pattern of distinct clusters of monospecific individuals emerges as
a stable formation, the classic idea of a mosaic pattern in which
individuals of each species mainly exist within monospecific
clumps (Fig. 2a). The intensity of competition matters little except
at the extremely low end for this pattern to emerge.

Mosaic patterns have been reported for many sessile organ-
isms in several different contexts (Blünthgen and Stork, 2007;
Majer, 1972; Ribas and Schoereder, 2002). It is frequently difficult
to discern whether or not such patterns are self-organized as they
are in our model or whether they emerge from underlying habitat
conditions. Here we provide a conceptual framework indicating
the conditions, in a founder-controlled community structured by
competition, under which a strong mosaic pattern will be
expected from self-organization alone (i.e., a large positive covar-
iance of the competition matrix).

At the other end of competitive balance are various degrees of
imbalance, including intransitive loops and competitive hierar-
chy. Competitive intransitivity has been reported for a number of
organisms that include sessile marine organisms (Jackson and
Buss, 1975), lizards (Sinervo and Lively, 1996), bacteria (Kerr
et al., 2002), and plant communities (Laird and Schamp, 2006).
Intransitive networks generally have been identified as an impor-
tant mechanism that can theoretically lead to the coexistence of
multi-species communities despite intense competition among
species (May and Leonard, 1975; Vandermeer, 2011). Such
intransitive loops are contrasted to their opposite, transitive
chains, which are the same as the classical competitive hierar-
chies based on ‘‘superior’’ competitive abilities of the best
competitor species over all the other species, then the superior
competitive ability of the next best competitor over all other
species except the first one, and so forth. In some work competi-
tion in multi-species communities has been thought of as falling
along a continuum from hierarchical organization to intransitive
competition (Laird and Schamp, 2008), which is distinct from our
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approach. We take the competition matrix to be metaphorically
similar to the Lotka–Volterra community matrix, but look only at
the local outcome of competition, similar to the competitive
outcomes matrix of Laird and Schamp (2006, 2008). However,
the latter authors focus their study on only the distinction
between transitive and intransitive arrangements, assuming
complete competitive inbalance in their competitive outcomes
matrix. Thus Laird and Schamp effectively study only half of the
framework presented in this work, the competitive imbalance
half. Restricting our model to only negative covariances and
focusing only on the question of intransitivity, we generate
qualitatively the same results as Laird and Schamp (see
Supplementary material C). Much of the other work implying
that intransitive loops are implicated in the preservation of
species diversity are concerned with smaller species assemblages
and, most importantly, are strictly concerned with the contrast
between intransitive loops and competitive hierarchy (Kerr et al.,
2002; Boerlijst and Hogeweg, 1991; Johnson and Seinen, 2002;
Edwards and Schreiber, 2010).

In addition to our use of the effect/response framework, our
simulations are generally short (e.g., 100 iterations for Fig. 3), since
we view our theory as relevant to transient states, albeit relatively
long term transients. On the other hand, in the completely determi-
nistic form of the model (i.e., with g and e both fixed at 1.0), both the
mosaic patterns and the spiral waves that are generated by
intransitive loops appear to be generally fixed in perpetuity as they
are in the examples given in Fig. 2. Indeed, repeating our experi-
ments for some larger communities the same general pattern
emerges in which a large negative covariance generates extinction
events very rapidly whereas the mosaic pattern maintains large
species diversity over a much longer period.

Both mosaic formation and intransitive competition are bound to
be influenced by the spatial scales at which interactions among
organisms occur in an ecosystem (Durrett and Levin, 1998), an
observation that has previously motivated significant theoretical
interest in the role of spatially structured populations and how they
relate to the coexistence of species (Frean and Abraham, 2001; Kerr
et al., 2002; Laird and Schamp, 2006). While a number of studies have
reported conditions under which coexistence may occur in the face of
local competition (Durrett and Levin, 1998; Frean and Abraham,
2001; Vellend and Litrico, 2008), other studies have emphasized the
importance of more regional forces to be important for coexistence
(Huisman and Weissing, 2001). The present study departs from
previous studies in emphasizing the intersecting importance of
spatially constrained populations and the balance of competitive
relationships in generating spatial patterns which, in turn, have an
important influence on the ultimate level of species diversity.
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Solé, R.V., Alonso, D., McKane, A., 2002. Self-organized instability in complex
ecosystems. Philos. Trans. R. Soc. London B 357, 667–681.

Tilman, D., 2004. Niche tradeoffs, neutrality, and community structure: a stochas-
tic theory of resource competition, invasion, and community assembly. Proc.
Natl. Acad. Sci. 101, 10854–10861.

Tilman, D., Kareiva, P., 1997. Spatial Ecology: The Role of Space in Population
Dynamics and Interspecific Interactions. Princeton University Press, Princeton, NJ.
Turing, A., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc.
London B 237, 37–72.

Vandermeer, J., 1972. On the covariance of the community matrix. Ecology 53,
187–189.

Vandermeer, J., 2011. Intransitive loops in ecosystem models: from stable foci to
heteroclinic cycles. Ecol. Complexity 8, 92–97.

Vandermeer, J., Perfecto, I., Philpott, S.M., 2008. Clusters of ant colonies and robust
criticality in a tropical agroecosystem. Nature 451, 457–459.

Vellend, M., Litrico, I., 2008. Sex and space destabilize intransitive competition
within and between species. Proc. R. Soc. London B 277, 1857–1864.

Yitbarek, S., Vandermeer, J., Allen, D., 2011. The combined effects of exogenous and
endogenous variability on the spatial distribution of ant communities in a
forested ecosystem. Environ. Entomol. 40, 1067–1073.

Yodzis, P., 1978. Competition for Space and the Structure of Ecological Commu-
nities. Springer-Verlag, Berlin.


	Self-organized spatial pattern determines biodiversity in spatial competition
	Introduction
	Methods
	The model
	Species diversity and covariance

	Results
	Preliminary simulations
	Species diversity and mosaic formation
	The transient nature of the species diversity pattern

	Discussion
	Acknowledgments
	Supplementary material
	References




