Teoria de Conjuntos Matemática Discreta I

Rodrigo Ribeiro

Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto

6 de janeiro de 2013

Motivação — (I)

Porque estudar Teoria de Conjuntos?

- Porque conjuntos são um conceito recorrente na ciência da computação:
 - Bancos de dados são formalmente descritos como conjuntos e operações sobre estes especificadas como operações sobre conjuntos.
 - Diversos algoritmos utilizam estruturas de dados que representam conjuntos.
 - Tipos em linguagens de programação podem ser vistos como um conjunto de valores que compartilham um determinado conjunto de operações.

Teoria de Conjuntos — (1)

Notação

- Usaremos letras maiúsculas para representar conjuntos e minúsculas para elementos.
- Pertinência:
 - $x \in A$: representa que o elemento x pertence ao conjunto A.
 - $x \notin A = \neg(x \in A).$
- Cardinalidade:
 - Representa o tamanho do conjunto. $|\{1,3,5\}| = 3$.
 - Posteriormente, formalizaremos esta noção.

Teoria de Conjuntos — (II)

Como Definir Conjuntos

- Listando seus elementos
 - Funciona bem para conjuntos com poucos elementos.
 - **E**x: $V = \{a, e, i, o, u\}$, $F = \{\text{laranja, maça, pêra}\}$

Teoria de Conjuntos — (III)

Como Definir Conjuntos

- Usar a forma $A = \{x \mid p(x)\}.$
 - Util para definir conjuntos possivelmente infinitos.
 - Traduzindo para lógica: $A = \forall x. x \in A \leftrightarrow p(x)$.
 - Notação útil para descrever conjuntos maiores (e possivelmente infinitos).
- Note que na notação $\{x \mid ...\}$ qualquer ocorrência da variável x em ... é considerada **ligada**

Teoria de Conjuntos — (IV)

Como Definir Conjuntos

- Utilizando uma definição recursiva.
- Ex.
 - Conjunto N.

$$0 \in \mathbb{N}$$

$$n \in \mathbb{N} \to n+1 \in \mathbb{N}$$

■ Palíndromos sobre 0, 1.

$$\lambda$$
, 0, 1 $\in \mathbb{P}$

$$w \in \mathbb{P} \to 0$$
 w $0 \in \mathbb{P}$

$$w \in \mathbb{P} \to 1w1 \in \mathbb{P}$$

Teoria de Conjuntos — (V)

Algumas observações...

- As maneiras de se definir conjuntos não são equivalentes.
 - Isto é, alguns conjuntos só podem ser definidos de uma forma.
 - Ex: $B = \{x \mid x \in \mathbb{R} \land 0 \le x \le 1\}$ não pode ser definido por enumeração e por uma definição recursiva.

Teoria de Conjuntos — (VI)

Mais observações...

- Para representar conjuntos por propriedades, devemos ter cuidado...
 - Paradoxo de Russel: Seja $S = \{X | X \notin X\}$. É verdade que $S \in S$?
 - Paradoxo do barbeiro: Em uma cidade, um barbeiro barbeia todas e somente as pessoas que não barbeiam a si próprias. Este barbeiro faz sua própria barba?

Teoria de Conjuntos — (VII)

Alguns conjuntos importantes...

- $\blacksquare \emptyset = \{\}$: conjunto vazio. Note que $x \in \emptyset = \bot$.
- N: conjunto dos números naturais. $\mathbb{N} = \{0, 1, 2, ...\}.$
- **Z**: conjunto dos números inteiros. $\mathbb{Z} = \{..., -1, 0, 1, ...\}.$
- Q: conjunto dos números racionais. $\mathbb{Q} = \{ \frac{x}{v} | x \in \mathbb{Z} \land y \in \mathbb{Z} \}.$
- R: conjunto dos números reais.

Teoria de Conjuntos — (VIII)

Operações sobre Conjuntos

- União: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Interseção: $A \cap B = \{x \mid x \in A \land x \in B\}$
- Complemento: $\overline{A} = \{x \mid x \in U \land x \notin A\}$.
 - O complemento só faz sentido se o universo de discurso (conjunto U) for claro.
- Diferença:

$$A - B = A \cap \overline{B} = \{x \mid x \in A \land x \notin B\}.$$

Teoria de Conjuntos — (VI)

Operações sobre Conjuntos

 Operações sobre conjuntos "herdam" diversas propriedades da álgebra booleana (onde ○ ∈ {∪, ∩}):

$$\begin{array}{ll}
A \circ A = A & A \circ B = B \circ A \\
(A \circ B) \circ C = A \circ (B \circ C) & \overline{(A \cap B)} = \overline{A} \cup \overline{B} \\
A \cup (B \cap C) = (A \cap B) \cup (A \cap C) & \overline{(A \cup B)} = \overline{A} \cap \overline{B} \\
A \cap (B \cup C) = (A \cup B) \cap (A \cup C) & A \cap \emptyset = \emptyset \\
A \cup \emptyset = A & A \cap \overline{A} = \emptyset \\
A \cup \overline{A} = U
\end{array}$$

Teoria de Conjuntos — (VII)

Exercício

Mostre que a seguinte identidade é válida utilizando operações algébricas sobre conjuntos:

$$[A \cup (B \cap C)] \cap \{ [\overline{A} \cup (B \cap C)] \cap \overline{(B \cap C)} \} = \emptyset$$

Teoria de Conjuntos — (VIII)

Relações entre Conjuntos

- Continência: $A \subseteq B = \forall x.x \in A \rightarrow x \in B$.
- Subconjunto próprio: $A \subset B = A \subseteq B \land \exists x.x \in B \land x \notin A$.
- Igualdade: $A = B : A \subseteq B \land B \subseteq A$. $A = B : \forall x.x \in A \leftrightarrow x \in B$.

Teoria de Conjuntos — (IX)

Conjuntos de Conjuntos

- Damos o nome de família a um conjunto que possua como elementos outros conjuntos.
- Um exemplo de família é o conjunto das partes ou conjunto potência, que representa o conjunto de todos os subconjuntos de um determinado conjunto A. Denota-se o conjunto das partes por P(A).
- Ex: $\mathcal{P}(\{\infty, \in\}) = \{\emptyset, \{\infty\}, \{\in\}, \{\infty, \in\}\}.$

Teoria de Conjuntos — (X)

Operações sobre Famílias

- Seja \mathcal{F} uma família de conjuntos. Definimos a união e interseção de \mathcal{F} como:
 - União: $\bigcup \mathcal{F} = \{x \mid \exists A. (A \in \mathcal{F} \land x \in A)\}.$
 - Interseção: $\bigcap \mathcal{F} = \{x \mid \forall A. (A \in \mathcal{F} \rightarrow x \in A)\}.$

Teoria de Conjuntos — (XI)

Operações sobre Famílias

- **EX:** $\mathcal{F} = \{\{1, 2, 3, 4\}, \{2, 3, 4, 5\}, \{3, 4, 5, 6\}\}$
 - $\bigcup \mathcal{F} = \{1, 2, 3, 4\} \cup \{2, 3, 4, 5\} \cup \{3, 4, 5, 6\} = \{1, 2, 3, 4, 5, 6\}.$
 - $\bigcap \mathcal{F} = \{1, 2, 3, 4\} \cap \{2, 3, 4, 5\} \cap \{3, 4, 5, 6\} = \{3, 4\}.$

Teoria de Conjuntos — (XII)

Famílias Indexadas

- Suponha que desejamos definir o conjuntos dos 100 primeiros números primos. Seja p_i o i-ésimo número primo. Então: $\mathbb{P} = \{p_1, p_2, ..., p_{100}\}$.
- Outra maneira de se fazer essa mesma definição é utilizando uma família indexada. Uma família indexada é uma família definida em termos de um conjunto índice

Teoria de Conjuntos — (XIII)

Famílias Indexadas

- Seja $I = \{i \mid i \in \mathbb{N} \land i \leq 100\}$. Então, o conjunto \mathbb{P} pode ser definido como $\mathbb{P} = \{p_i \mid i \in I\}$.
- Seja $I = \{1, 2, 3\}$ e $\mathcal{F} = \{A_i \mid i \in I\}$ e $A_i = \{i, i + 1, i + 2, i + 3\}$. Temos que $\mathcal{F} = \{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}, \{4, 5, 6\}\}$.

Teoria de Conjuntos — (XIV)

Operações Sobre Famílias Indexadas

Seja \mathcal{F} uma família indexada por um conjunto I. Então:

Teoria de Conjuntos — (XV)

Famílias Indexadas — Exemplo

- Seja $I = \{1, 2, 3\}$ e $\mathcal{F} = \{A_i \mid i \in I\}$ e $A_i = \{i, i + 1, i + 2, i + 3\}$.
- lacktriangle Calcule $\bigcap \mathcal{F}$ e $\bigcup \mathcal{F}$

Teoria de Conjuntos — (XVI)

Representação de Pertinência

- Como representar a seguinte afirmativa utilizando-se lógica: $y \in \{x \mid P(x)\}$, onde P(x) é uma fórmula qualquer da lógica de predicados que pode envolver x?
- Simples. Se $y \in \{x \mid P(x)\}$ é verdade, então P(y) também o é!

Teoria de Conjuntos — (XVII)

Exercícios

Represente as seguintes fórmulas utilizando apenas símbolos lógicos, variáveis, constantes $e \in$.

- $\mathbf{x} \in \mathcal{P}(A)$.
- $\blacksquare \bigcap \mathcal{F} \not\subseteq \bigcup \mathcal{G}.$
- $\mathbf{x} \in \mathcal{P}(\bigcup \mathcal{F}).$
- $x \in \bigcup \{ \mathcal{P}(A) \mid A \in F \}.$