Ordens Parciais Matemática Discreta I

Rodrigo Ribeiro

Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto

13 de fevereiro de 2013

Ordens Parciais — (I)

Considere as seguintes relações...

- $\blacksquare R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \le y\}.$
- $S = \{(X, Y) \in \mathcal{P}(A) \times \mathcal{P}(A) \mid X \subseteq Y\}.$
- Classificando-as podemos observar que são:
 - reflexivas.
 - transitivas.
 - anti-simétricas.

Ordens Parciais — (II)

Definições

Seja R uma relação binária sobre um conjunto A.

- Dizemos que *R* é uma pré-ordem se *R* é reflexiva e transitiva.
- Dizemos que R é uma ordem parcial se R é uma pré-ordem e anti-simétrica.
- Dizemos que R é uma ordem total se R é uma ordem parcial e a seguinte condição é verdadeira: $\forall x \ y.x \in A \land y \in A \rightarrow xRy \lor yRx$

Ordens Parciais — (III)

Exercícios

Quais das seguintes relações são ordens totais?

- $\blacksquare R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \le y\}.$
- $S = \{(X, Y) \in \mathcal{P}(A) \times \mathcal{P}(A) \mid X \subseteq Y\}.$
- $T = \{(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \mid x \text{ divide } y\}.$
- $U = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \ge y\}.$
- $V = \{(x, y) \in \mathbb{P} \times \mathbb{P} \mid x \text{ \'e um prefixo de } y\}.$

Ordens Parciais — (IV)

Considere...

- Seja $A = \{\text{re, rei, real, realidade, realeza}\} \subseteq \mathbb{P}$. Veja que o elemento "re" é relacionado com cada elemento e A de acordo com a relação V (prefixo de palavras).
- Podemos interpretar xRy como "x é menor ou igual a y".
- Desta forma podemos imaginar que "re" é o menor elemento de A!

Ordens Parciais — (V)

Definição

Seja R uma ordem parcial sobre A, $B \subseteq A$ e $b \in B$.

- b é o elemento mínimo de B se $\forall x.x \in B \rightarrow bRx$.
- b é um elemento minimal de B se $\neg \exists x.x \in B \land xRb$.

Ordens Parciais — (VI)

Definição

Seja R uma ordem parcial sobre A, $B \subseteq A$ e $b \in B$.

- b é o elemento máximo de B se $\forall x.x \in B \rightarrow xRb$.
- b é um elemento maximal de B se $\neg \exists x.x \in B \land bRx$.

Ordens Parciais — (VII)

Exemplos

- $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x \leq y\}$. $B = \{x \mid x \geq 7\} \text{ e } C = \{x \mid x > 7\}$. B, C possuem elementos mínimos e minimais?
- $S = \{(X, Y) \in \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \mid X \subseteq Y\}$. e $\mathcal{F} = \{X \subseteq \mathbb{N} \mid 2, 3 \in X\}$. \mathcal{F} possui elemento mínimo?

Ordens Parciais — (VIII)

<u>Te</u>oremas

Seja R uma ordem parcial sobre A, $B \subseteq A$.

- Se *B* possui um elemento mínimo, este é único.
- Se $b \in B$ é mínimo então ele também é minimal e é o único minimal de B.

Ordens Parciais — (IX)

Limites Inferiores e Superiores

Seja R uma ordem parcial em um conjunto A, B ⊆ A e a ∈ A. Dizemos que a é um limite inferior de B se ∀x ∈ B.aRx. De maneira análoga, a é um limite superior se ∀x ∈ B.xRa.

Ordens Parciais — (X)

Major Limite Inferior

Seja R uma ordem parcial em um conjunto A, B ⊆ A. Seja I o conjunto de todos os limites inferiores de B. Se I possui um elemento máximo, dizemos que este é o maior limite inferior de B.

Ordens Parciais — (XI)

Menor Limite Superior

Seja R uma ordem parcial em um conjunto A, B ⊆ A. Seja S o conjunto de todos os limites superiores de B. Se S possui um elemento mínimo, dizemos que este é o menor limite superior de B.

Ordens Parciais — (XII)

Exemplos

- Seja $L = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \le y\}$ uma ordem total sobre \mathbb{R} . Seja $B = \{\frac{1}{n} | n \in \mathbb{Z}^+\}$.
 - O menor limite superior de *B* é 1.
 - O maior limite superior de *B* é 0.