Relações — Conceitos Básicos Matemática Discreta I

Rodrigo Ribeiro

Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto

6 de março de 2013

Relações — (I)

Produto Cartesiano

Sejam A e B dois conjuntos quaisquer. Então o produto cartesiano de A e B, $A \times B$ é definido como:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Relações — (II)

Exercício

Teorema: Sejam A, B e C conjuntos quaisquer.

Então $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Relações — (III)

Definição de Relação

Sejam A e B dois conjuntos quaisquer. Então $R \subseteq A \times B$ é dito ser uma relação de A em B.

Exemplos

- $A = \{1, 2\}, B = \{3, 4\} \in R = \{(1, 3), (1, 4)\}$
- P = conjunto de todas as pessoas e $R = \{(x, y) \mid x \text{ é filho de } y\}$

Relações — (IV)

Definições

Seja R uma relação de A em B então:

- O domínio de R, dom(R), é definido como: $dom(R) = \{a \mid \exists b.b \in B \land (a,b) \in R\}$.
- A imagem de R, ran(R), é definida como: $ran(R) = \{b \mid \exists a.a \in A \land (a,b) \in R\}$.
- A inversa de R, R^{-1} , é uma relação de B em A definida como: $R^{-1} = \{(b, a) \mid (a, b) \in R\}$.

Relações — (V)

Definições

Seja R uma relação de A em B então e S uma relação de B em C.

■ A composição de S e R, $S \circ R$, é definida como: $S \circ R = \{(a,c) \in A \times C \mid \exists b.b \in B \land (a,b) \in R \land (b,c) \in S\}$

Relações — (VI)

Exemplos

Considere os seguintes conjuntos:

- *E*: conjunto de estudantes da UFOP.
- C: conjunto de cursos da UFOP.
- *D*: conjunto de disciplinas da UFOP.
- P: conjunto de professores da UFOP.

Relações — (VII)

Exemplos...

e as seguintes relações sobre eles...

- \blacksquare $R_1 = \{(p, d) \in P \times D \mid p \text{ leciona a disc. } d\}.$
- $R_2 = \{(d, c) \in D \times C \mid d \text{ está no curso } c\}.$
- $R_3 = \{(e, d) \in E \times D \mid e \text{ está matr. em } d\}$.

Exercício

Descreva as seguintes relações:

- \blacksquare $R_2 \circ R_1$
- \blacksquare $R_2 \circ R_3$

Relações — (VIII)

Exercícios

Seja R uma relação de A em B, S uma relação de B em C e T uma relação de C em D. Prove que:

- $(R^{-1})^{-1} = R.$
- $T \circ (S \circ R) = (T \circ S) \circ R.$

Relações — (IX)

Definição

Seja A um conjunto qualquer. Dizemos que R é uma relação binária sobre A se $R \subseteq A \times A$.

Relações — (X)

Classificando Relações Binárias

Seja R uma relação binária sobre A.

- R é reflexiva se $\forall x.x \in A \rightarrow xRx$
- R é transitiva se $\forall x \ y \ z.x, y, z \in A \rightarrow xRy \land yRz \rightarrow xRz$.
- R é simétrica se $\forall x \ y.x, y \in A \rightarrow xRy \rightarrow yRx$
- R é anti-simétrica se $\forall x \ y.x, y \in A \rightarrow xRy \land yRx \rightarrow x = y.$

Relações — (XI)

Exercícios

Classifique as seguintes relações binárias:

$$\blacksquare R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \le y\}.$$

$$S = \{(A, B) \mid A \subseteq B\}.$$

 $T = \{(x, y) \mid x \text{ \'e um descendente de } y\}.$

Relações — (XII)

Exercícios

Seja R uma relação binária sobre A.

- Prove que se R é simétrica, então $R = R^{-1}$.
- Prove que se R é reflexiva, então R^{-1} também é reflexiva.