
Physics 2213a, Modern Physics Professor Rick Trebino  

 

Problem Set #6 Atoms, Molecules & Lasers 

 

1. Show that the radial wave function R21 for n = 2 and ℓ = 1 satisfies 
the Schrödinger radial equation for hydrogen.  What energy 
results?  Is this consistent with the Bohr model? 

2. List all the possible quantum numbers (n, ℓ, mℓ) for the n = 7 level 
in atomic hydrogen. 

3. Prove that the degeneracy of an atomic hydrogen state having 
principal quantum number n is n2 if you ignore the spin 
quantum number.  What is it if you include the spin quantum 
number? 

4. Using all four quantum numbers (n, ℓ, mℓ, ms), write down all 
possible sets of quantum numbers for the 6f state of atomic 
hydrogen.  What is the total degeneracy? 

5. Find whether the following hydrogen atom transitions are 
allowed, and, if they are, find the energy and wavelength 
involved and whether the photon is absorbed or emitted: 
(a) (5, 2, 1, ½)  (5, 2, 1, -½) 
(a) (4, 3, 0, ½)  (4, 2, 1, -½) 
(a) (5, 2, -2, -½)  (1, 0, 0, -½) 
(a) (2, 1, 1, ½)  (4, 2, 1, ½) 

6. Calculate the probability of an electron in the ground state of the 
hydrogen atom actually being inside the proton (radius = 1 x 10-15 
m).  (Hint:  note that, because the proton is so much smaller than 
the electron’s wave function, r << a0, you can approximate the 
electron’s wave function as a constant over the entire proton.) 

7. For all the elements through neon, list the electron descriptions 
of these elements in their ground state using nℓ notation (for 
example, helium is 1s2). 

8. Consider the NaCl molecule, for which the moment of inertia is 
1.30 x 10-45 kg·m2.  If infrared light with a wavelength of 30 m is 
incident on a gas of free NaCl molecules, what are the allowed 
Raman-scattered wavelengths?  Hint: a wavelength of 30 m 



corresponds to a photon energy that’s less than the lowest 
vibrational and electronic transitions, so you only need to 
consider rotational transitions. 

9. A flashlamp pumps one third of the atoms of a two-level system 
into the excited state.  Will it lase?  If the same flashlamp pumps 
a three-level system with the same saturation intensity, what 
fraction of the atoms will be excited into level 2?  Will it lase? 
What about a four-level system?  Which of these systems will 
lase if the pump intensity is much larger than the saturation 
intensity? 

10. You’re now in a position to understand humankind’s best 
prospects for designing a Star Trek-style phaser!  Recall, from the 
second homework set, that diffraction causes a beam to broaden 
as it propagates a large distance, which is bad for a phaser 
because that means that the intensity decreases.  But all materials 
absorb light, and they’re, in fact, not simply absorbers, but 
“saturable absorbers.” In other words, they can only absorb so 
much light, and then they become transparent for high 
intensities.  If, for a two-level system in the low-intensity limit, 
the absorption coefficient is given by, 0 = N1, where N1 is the 
ground state population density and  is the absorption cross-
section (a constant), explain (in words) why a more precise 
expression for  that takes into account possible high intensities 
is  = N, where N = N1 – N2, and N2 is the excited-state 
population density.  Show, using a Taylor series expansion to 
first order in I, that, as a result, the absorption coefficient, , 
actually depends on the intensity, I(x,y), of an incident beam: 
x,y ≈  – I(x,y), where   is the usual absorption coefficient 
and is a new quantity that indicates how saturable the 
absorber is.   

What will be the intensity vs. x and y of a laser beam with spot 
size, w, after it propagates a very short distance z through a 
saturable absorber? 

Hint:  Start with a laser beam with a Gaussian transverse electric-
field profile, exp[-(x2 + y2)/w2], where w is the spot size.  Let its 
intensity on the z-axis at the entrance to the saturable absorber be 
I0.  Then approximate the resulting nasty-looking exponential 
inside an exponential: exp[ exp( )] exp[ (1 )]a b a b     .  Simplify and 



combine the exponentials.  Derive an expression for the new spot 
size, w’, of the beam after it propagates through the medium.  

This effect is called self-focusing, and it can compensate for 
diffraction, yielding what is often called a “light bullet.”  It can 
also cause intense laser beams to become even more intense and 
to damage materials.  


