Rotations in 3D — The moment of inertia tensor
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The moment of inertia tensor 2 /12

The angular momentum of a rigid body
I_: = Z 772 X mZUZ

and for every particle in a rigid body

SO
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Digression: A vector triple product

Ax (BxC)=B(A-C)—C(A-B)

This is so easy it can be done while riding in the BACk of a CAB.
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Back to the angular momentum

L= m x (& x 75)
i
can be rewritten as
L= mi}d =Y m(F - o)
i i

The last term deserves a closer look.
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Using matrix notation
Let's take a closer look at the term

> 7ilfi @)
i

Dropping the ¢ for simplicity, and omitting the m; for the moment, if we write & as a column array,
this term can also be written as follows:

22wy xz Wy (2wy + Ywy + 2w;)
ry y? yz wy | = | ylewy + ywy + 2w,)
rz yz 22 W, 2(Twy + Yywy + 2w;)

6/ 12




Tensors

The matrix

2 xy w2

zy Y yz
rz yz 22

is an instance of a tensor of rank 2, a generalization of the vector concept.

Because the elements of the matrix are formed by taking all the possible products of x, y, and z, it is
written symbolically as

r
This kind of tensor, that can be written as the matrix formed by taking all possible products between
components of two vectors, is called a dyadic tensor, or simply dyad.
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Products of tensors and vectors
More generally, we can take two vectors @ and b, and construct the dyad
a1b1 a1b2 a1b3
T=db= agbl a2b2 agbg
agbl a3b2 agbg
If we multiply to the right with the array ¢
agby azby agb, C g (bpcz + bycy + )
ayby ayb, ayb, cy | = | ay(byey + bycy + b ;)
azb, asb, a.b, Cy az(bycy + bycy + b.cy)
This can be written symbolically as
(ab) - ¢
which is really the same as @(b - 7).
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Products of tensors and vectors cont’d
Similarly, we can “dot multiply” a tensor T = ab by a vector to the left:
¢-T=2¢ (ab)=(2-a)b
And why not multiply by a vector to the left and the right simultaneously?
¢ T-d=¢c-(ab)-d=(-a)b-d)
The result is a scalar.
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The identity tensor

The matrix
100
010
0 0 1
is the unit tensor 1, which satisfies for any @
1-d=d
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Back to the angular momentum — again
L= miald =Y m(Fi - o)
i i
Now we can write this as
L= miid =Y m(fifi) - &
i i
or even better
L= Zmi[rgll — 7] - &
i
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The moment of inertia tensor
L= miri1 - 7f] - @
i
We can write this as
L=1-&
where [ is the moment of inertia tensor,
I = Zmi[rg]l — 7375
i
Clearly, the angular momentum need not be parallel to the rotation axis generally.
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