Rotations in 3D – The moment of inertia tensor

Alfredo Louro

The moment of inertia tensor 2
The angular momentum of a rigid body
Digression: A vector triple product
Back to the angular momentum
Using matrix notation \ldots \ldots \ldots \ldots \ldots
Tensors
Products of tensors and vectors
Products of tensors and vectors cont'd
The identity tensor
Back to the angular momentum – again
The moment of inertia tensor

The moment of inertia tensor

$ec{L} = \sum_i ec{r_i} imes m_i ec{v_i}$

The angular momentum of a rigid body

and for every particle in a rigid body

so

Digression: A vector triple product

This is so easy it can be done while riding in the **BAC**k of a **CAB**.

4 / 12

5 / 12

Back to the angular momentum

$$\vec{L} = \sum_i m_i \vec{r_i} \times (\vec{\omega} \times \vec{r_i})$$

 $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$

can be rewritten as

$$\vec{L} = \sum_{i} m_{i} r_{i}^{2} \vec{\omega} - \sum_{i} m_{i} \vec{r}_{i} (\vec{r}_{i} \cdot \vec{\omega})$$

The last term deserves a closer look.

Using matrix notation

Let's take a closer look at the term

Dropping the *i* for simplicity, and omitting the m_i for the moment, if we write $\vec{\omega}$ as a column array, this term can also be written as follows:

 $\sum_i \vec{r_i} (\vec{r_i} \cdot \vec{\omega})$

$$\begin{bmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} x(x\omega_x + y\omega_y + z\omega_z) \\ y(x\omega_x + y\omega_y + z\omega_z) \\ z(x\omega_x + y\omega_y + z\omega_z) \end{bmatrix}$$

6 / 12

$$i$$

 $ec{v_i} = ec{\omega} imes ec{r_i}$
 $ec{L} = \sum_i m_i ec{r_i} imes (ec{\omega} imes ec{r_i})$

3 / 12

Tensors

The matrix

$$\left[\begin{array}{ccc} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{array}\right]$$

is an instance of a tensor of rank 2, a generalization of the vector concept.

Because the elements of the matrix are formed by taking all the possible products of x, y, and z, it is written symbolically as

 $\vec{r}\vec{r}$

This kind of tensor, that can be written as the matrix formed by taking all possible products between components of two vectors, is called a **dyadic tensor**, or simply **dyad**.

7 / 12

Products of tensors and vectors

More generally, we can take two vectors \vec{a} and \vec{b} , and construct the dyad

$$\mathbb{I} = \vec{a}\vec{b} = \left[\begin{array}{ccc} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{array} \right]$$

If we multiply to the right with the array \vec{c}

$$\begin{bmatrix} a_x b_x & a_x b_y & a_x b_z \\ a_y b_x & a_y b_y & a_y b_z \\ a_z b_x & a_z b_y & a_z b_z \end{bmatrix} \begin{bmatrix} c_x \\ c_y \\ c_z \end{bmatrix} = \begin{bmatrix} a_x (b_x c_x + b_y c_y + b_z c_z) \\ a_y (b_x c_x + b_y c_y + b_z c_z) \\ a_z (b_x c_x + b_y c_y + b_z c_z) \end{bmatrix}$$

This can be written symbolically as

 $(\vec{a}\vec{b})\cdot\vec{c}$

which is really the same as $\vec{a}(\vec{b} \cdot \vec{c})$.

8 / 12

Products of tensors and vectors cont'd

Similarly, we can "dot multiply" a tensor $\mathbb{T} = \vec{a}\vec{b}$ by a vector to the left:

 $\vec{c} \cdot \mathbb{T} = \vec{c} \cdot (\vec{a}\vec{b}) = (\vec{c} \cdot \vec{a})\vec{b}$

And why not multiply by a vector to the left and the right simultaneously?

$$\vec{c} \cdot \mathbb{T} \cdot \vec{d} = \vec{c} \cdot (\vec{a}\vec{b}) \cdot \vec{d} = (\vec{c} \cdot \vec{a})(\vec{b} \cdot \vec{d})$$

The result is a scalar.

9 / 12

The identity tensor

The matrix

$$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

is the unit tensor 1, which satisfies for any \vec{a}

 $\mathbb{1}\cdot\vec{a}=\vec{a}$

10 / 12

Back to the angular momentum – again

$$\begin{split} \vec{L} &= \sum_{i} m_{i} r_{i}^{2} \vec{\omega} - \sum_{i} m_{i} \vec{r}_{i} (\vec{r}_{i} \cdot \vec{\omega}) \\ \vec{L} &= \sum_{i} m_{i} r_{i}^{2} \vec{\omega} - \sum_{i} m_{i} (\vec{r}_{i} \vec{r}_{i}) \cdot \vec{\omega} \\ \vec{L} &= \sum_{i} m_{i} [r_{i}^{2} \mathbb{1} - \vec{r}_{i} \vec{r}_{i}] \cdot \vec{\omega} \end{split}$$

11 / 12

The moment of inertia tensor

$$\vec{L} = \sum_i m_i [r_i^2 \mathbb{1} - \vec{r_i} \vec{r_i}] \cdot \vec{\omega}$$

We can write this as

Now we can write this as

or even better

$$\vec{L} = \mathbb{I} \cdot \vec{\omega}$$

where ${\ensuremath{\mathbb I}}$ is the moment of inertia tensor,

$$\mathbb{I} = \sum_{i} m_i [r_i^2 \mathbb{1} - \vec{r_i} \vec{r_i}]$$

Clearly, the angular momentum need not be parallel to the rotation axis generally.

12 / 12