
Some Basic Computer Concepts

Binary

• Decimal is base 10, with symbols 0–9

• 1907: 7 1s digit 7 x 10^0
 0 10s digit 0 x 10^1
 9 100s digit 9 x 10^2
 1 1000s digit 1 x 10^3

• Binary is base 2, with symbols 0, 1

• 1100: 0 1s digit 0 x 2^0
 0 2s digit 0 x 2^1
 1 4s digit 1 x 2^2
 1 8s digit 1 x 2^3

Binary

• Figure out the binary number 1101

 1 1s digit 1 x 1 = 1
 0 2s digit 2 x 0 = 0
 1 4s digit 4 x 1 = 4
 1 8s digit 8 x 1 = 8
 TOTAL: 13

• Just as in decimal, leading zeros don’t mean anything.

 002341 = 2341

 001010 = 1010

Binary

• Practice

 110101 11010110
 0001101 01110100
 111 11110000
 1000 01101101
 1111111
10000000
 1000001

• How many unique numbers can be expressed with four binary digits?

Answer: 16

0000	 	 0
0001	 	 1
0010	 	 2
0011	 	 3
0100	 	 4
0101	 	 5
0110	 	 6
0111	 	 7
1000	 	 8
1001	 	 9
1010	 	 10
1011	 	 11
1100	 	 12
1101	 	 13
1110	 	 14
1111	 	 15

6-digit Binary Numbers

000000

000001

000010

000011

000100

000101

000110

000111

001000

001001

001010

001011

001100

001101

001110

001111

110000

110001

110010

110011

110100

110101

110110

110111

111000

111001

111010

111011

111100

111101

111110

111111

010000

010001

010010

010011

010100

010101

010110

010111

011000

011001

011010

011011

011100

011101

011110

011111

100000

100001

100010

100011

100100

100101

100110

100111

101000

101001

101010

101011

101100

101101

101110

101111

Some Questions

• If you have n binary digits, how many different numbers can you represent (as
a function of n) ?

• How many binary digits must be used to represent the number 1017?

• In general how many binary digits must be used to represent a number m?

• How do you represent -14?

Bits, Bytes, Words, Etc.

• Computers use strings of binary to represent values.

• Length Example Java Name Combinations

1 0 boolean (Bit) 2
8 01001010 byte 256
16 short 65536
32 int 4294967296
64 long 18446744073709551616

• The amount a CPU fetches at a time is known as a word.

• On most CPUs, a word is 32 bits (or 4 bytes!).

• What is 4 bits called?

Signed and Unsigned

• If you use the 256 combinations to represent the numbers 0 through 255, you
are using the byte UNSIGNED.

• If you use the 256 combinations to represent the numbers -128 through 127,
you are using the byte SIGNED.

• Length Java Name Lowest Highest
8 byte -128 +127
16 short -32768 +32767
32 int -2147483648 +2147483647
64 long -9223372036854775808 +9223372036854775807

• Are these signed or unsigned?

Computer Architecture

• Most computers are organized around a BUS
A network that allows various devices to talk to one another

• The primary device on the bus is the Central Processing Unit or CPU
The CPU is pulsed by a clock which keeps things in sync. A 2GHz CPU is
pulsed by a clock 2 billion times a second.

• The CPU communicates with other devices on the bus:

Memory

Peripheral Controllers: hard drive controller, DVDdrive controller, video card,
USB controller, etc.

Architecture

Disk

Arithmetic-Logic Unit

(ALU)

Control Unit

Registers

Memory

(Video)(Hard Drives)

I/O Controllers

The Bus

CPU

Clock

Memory

• Computer memory is a very long string of bits

• There are two common kinds of memory:

“Random Access” (read/write) memory

“Read-Only” memory.

• Cache? FLASH?

The CPU

• The CPU contains registers: a few internal slots of superfast memory in
which it may store things temporarily.

• One register is the program counter, which says where to get the next
instruction.

• The CPU performs the following loop, which takes a few clock cycles: the
Decode-Execute Cycle:

• Request the instruction from memory as indicated by the program counter.

• Decode the instruction, increment the program counter.

• Perform the instruction

An Instruction

• An instruction may be stored as a 32-bit number, like this:

00000000 0101 00100 00011 0100 01101000

01101000 Instruction name: “Add two registers”

0100 Register 4

0011 and Register 3

0010 put the sum in a register

0101 put it in Register 5

00000000 padding to make an even 32 bits

Some Instructions

• Read 32 bits from a location of memory into a register

• Divide one register into another, storing in a third register

• Do the cosine of a register, storing in another register

• Write a register’s bits to a location in memory

• Write 32 bits to a controller (to video memory maybe)

• Change the program counter to a very different location

• Copy a chunk of memory from one location to another

CPUs

• There are many many CPU designs
Intel 8086 family (Pentium, etc.)
PowerPC family (G5, Cell, etc.)
Sun SPARC family
ARM family (Intel XScale, StrongARM, ARM7)
Motorola 680x0 family
... on and on

• Each CPU family has a different set of instructions

• Each CPU family has different capabilities

• It’s complicated

Different Ways of Writing Code

• Hand-write binary CPU instructions (machine code) (yeesh, are you nuts?)

• Write in a human-readable form of the instructions (assembly code)

• Assembler: changes your assembly code into CPU instructions

• Write in a high-level programming language like C/C++/Fortran

• Compiler: translates the language into CPU instructions

Different Ways of Writing Code

• Write in a high-level bytecode-compiling language like Java

• Bytecode Compiler: translates Java into instructions for a made-up CPU
(“bytecode”)

• Virtual Machine: automatically translates the bytecode into instructions
for your CPU when you run the program

• Write in a portable high-level online language like Python (or Lisp)

• Python Interpreter: translates the Python on-the-fly and performs it. Can
also take input as you type it.

• Bytecode Compiler: translates the Python into a byte code like Java’s
byte code. The bytecode can then be used in the interpreter faster
because it doesn’t have to spend as much energy translating it.

• Compiler: translates the Python into the machine code of your computer
so you can run it directly as an executable program.

Networks

• A local area network is a larger, slower bus that
connects immediate computers

• Computers communicate by sending packets
(chunks of binary) to one another

• Usually computers are all connected to a network
switch

• Each computer is assigned an IP address (a 32-bit
number) which uniquely identifies it on the network

• Example: 129.174.241.198 is zeus

• Computers on the same network have addresses in
the same numerical range (called a domain)

• Zeus is in GMU’s domain (129.174)

Networks

• Local area networks may themselves be connected to a
larger wide area network, and be part of its domain

• Wide area switches may be called
routers or gateways

• Wide area networks can be part of even
bigger wide area networks

• The internet is a big wide-area network

• It’s inconvenient to use IP addresses.
So we make up names for the computers
and their domains, called Internet Addresses.

• Internet Address: zeus.ite.gmu.edu

• Domain: gmu.edu

• “Top-Level” Domain: edu

Protocols

• Streams of packets from one computer to another on a network can take
various standard formats, known as protocols.

• Sending Email uses the protocol SMTP: Simple Mail Transfer Protocol

• Connecting to zeus via SSH or SFTP uses the protocols SSH: Secure Shell
and SFTP: Secure File Transfer Protocol

• Connecting to a World-Wide Web server to download a web page uses the
protocol HTTP: Hyper-Text Transfer Protocol

URLs

• A URL (Unique Resource Locator) is a way to uniquely locate a piece of
information on the world-wide web

• URLs often contain three parts:

The protocol to use to access the information
The internet address of the server providing the information
The location of the information on the server

• http://cs.gmu.edu/~eclab/projects/robots/flockbots/

http:// The protocol to use
cs.gmu.edu The address of the server
/~eclab/projects/robots/flockbots/ Where the information is on the server

Undergraduate Computer Resources at GMU

• Set up Email
(via MasonLive) I doubt you need instruction on this one.

• Get a UNIX Computer Account
mason.gmu.edu is a Sun Solaris server available for you. Several CS classes
(330, 480, etc.) will require usage of this machine.
 http://itusupport.gmu.edu/STG/masonaccount.asp

• Set up a Personal Website
You’ll use the UNIX computer account above.
 http://itusupport.gmu.edu/STG/webpage.asp

• Read Journal Articles / use protected Library facilities from OFF campus
 https://login.mutex.gmu.edu/login

• Find the GMU Computer Labs
 https://classtech.gmu.edu/lablocations.cfm

Undergraduate Computer Resources at IT&E

• Get a Linux Computer Account (more apropos to CS students)
You will first need to get the UNIX Computer Account from GMU to get this
additional account from IT&E. The machine is called zeus.ite.gmu.edu.
Various CS classes may require this machine.
 http://labs.ite.gmu.edu/index.php/FAQ/ClusterAccount

• Find the IT&E Computer Labs
These labs have machines which boot into Linux or Windows. When in Linux,
the machines share a filesystem with the Linux Cluster above.
 http://labs.ite.gmu.edu/

• Use VPN, print, FTP, access databases (Oracle etc.), and more...
 http://labs.ite.gmu.edu/index.php/FAQ/FAQ

Russian Peasant Multiplication

• To multiply two numbers A and B

• Iteratively divide A by two (taking
the floor if it’s odd) and multiply B
by 2 until A = 1

• Example: 22 x 12 = 264

22 x 12
11 x 24
5 x 48
2 x 96
1 x 192

• Add all of the “B” values for which
the corresponding “A” values were
odd.

• Example:

22 x 12 10110 x 1100
11 x 24 1011 x 11000
 5 x 48 101 x 110000
 2 x 96 10 x 1100000
 1 x 192 1 x 11000000

24 + 48 + 192 = 264

Why it works?
(2k+1)*n = k*(2n) + n

11000+110000+11000000 = 100001000

The Nim Game

A simple version of the nim game is played as follows: Two players
alternate in removing stones from three piles initially containing two, two,
and three stones, respectively. The player who picks up the last stone wins.
At any given turn a player can pick one or more stones from a single pile; at
least one stone has to be picked every time.

Examples:

How would you play? Would you like to play first?

0
00
000

0
000

00000

000
00000

0000000

0
00000

000000000

A Solution for the Nim Game

• Write all numbers in binary and XOR them

• If the result is 0 whoever play first loses, if the result is non-zero the first
player needs to pick as many stones as needed to make it zero

1
10
11

00

1
11

101

111

11
101
111

001

1
101

1001

1101

First player
to play loses

1
11
10

00

11
101
110

000

1
101
100

000

