
Agents

Finite-State Automata, Behaviors, Swarms, and such

What is an Agent?

• Acting in its World

• Self-contained

• Autonomous

• Acts in the world in response to information it is receiving from the world

• No joysticks

• “Agent” is a heavily abused term ...our database agent...

A Soccer Game-playing Agent

• Things move fast. You don’t
have time to Think Deeply

• There’s noise and randomness

• There’s an opposing team and
you don’t know how they play

• There are other players on your
team that you need to work with

• How would you program a soccer game-playing program?

Programming an Agent to Play Soccer

• How would you program this? Some possible paradigms:

Event-driven
Your program lies quiet until something “interesting” happens. This triggers a
function you have registered just for that particular interesting thing. The
function makes your robot do something.

Top-level Loop
Your program loops. Each loop it gathers the current sensor information and
runs a function which decides what to do. Is this different than event-driven?

Set Play
Your program has one function which performs many actions in sequence.

Multiple Threads
Several simultaneous specialized programs fight over control of your agent.

State-Action Rules

• More or less event-driven. You have functions registered for certain events
that may occur:

Event Function
If I cannot see the ball Rotate to the left 10°
If the ball is not directly in front of meRotate so that it is
If I am too far from the ball to kick it Move forward
If I am close enough to the ball Kick it towards the goal

while(True):
 sensors = getSensors()
 if (cannotSeeBall(sensors)):
 rotateToLeft(10)
 elif (ballNotDirectlyInFrontOfMe(sensors)):
 centerOnBall(sensors)
 elif (tooFarAway(sensors)):
 moveForward()
 else:
 kickTowardsGoal()

State-Action Rules

In Python.

Over- and Under-specification

• What if you have more than one function registered for an event?

• What if an event occurs for which you have no function registered?

A New Scenario

• You have been tasked to program an evil bloodthirsty
patrolling robot game enemy agent for the latest
EA game, “Dancing with the Stars: The Game”

• The bad guy patrols three rooms, A, B, and C.
You can’t go from A to C without going through B.
He now wants to go out the door.

• In room A there is a door, presently closed. He’s in room A right now.
In room C there is a switch. The switch opens the door.

• Your bad guy can only tell if the switch is turned on when he’s in room C.
Your bad guy can only tell if the door is open when he’s in room A.
Maybe “The Muppet Show: The Game” would have been better.

door

switch

A

B C

Provide a Set of Rules to Solve This

• I’m waiting.

• Possible events
In Room A and Door is Closed
In Room A and Door is Open
In Room B
In Room C and Switch is “Closed”
In Room C and Switch is “Open”

• Possible actions
Go to Room B
Go to Room A
Go to Room C
Open the Switch
Go out the Door

door

switch

A

B C

Why This Couldn’t Be Done

• What should you do in room B?

• Go to room A?

• Or go to Room C?

• What ability would have helped you make this decision?

door

switch

A

B C

Memory! We Need Memory!

• Let’s change the program to a four-column table:

Event Stored Action Change To

• “If Event has occurred, and my memory has the
following thing Stored, then perform the following
Action and possibly Change my memory To
something else.”

• The item being stored in memory is called the (Internal) State of the Agent

• Can you write the program now?

door

switch

A

B C

Memory! We Need Memory!

• Event Stored Action Change To
In A and Door Open who cares Go out Door “door open”
In A and Door Closed who cares Go to B “door closed”
In B “door closed” Go to C “door closed”
In B “door open” Go to A “door open”
In C and Switch Closed who cares Open Switch “door open”
In C and Switch Open who cares Go to B “door open”

door

switch

A

B C

Expanded to all Event / Stored Possibilities

• I replaced each don’t care with both a “door closed” and a “door opened” to
have a line for each possibility

• Event Stored Action Change To
In A and Door Open “door closed” Go out Door “door open”
In A and Door Open “door open” Go out Door “door open”
In A and Door Closed “door closed” Go to B “door closed”
In A and Door Closed “door open” Go to B “door closed”
In B “door closed” Go to C “door closed”
In B “door open” Go to A “door open”
In C and Switch Open “door closed” Go to B “door open”
In C and Switch Open “door open” Go to B “door open”
In C and Switch Closed “door closed” Open Switch “door open”
In C and Switch Closed “door open” Open Switch “door open”

A Two-State Finite-State Automata

“door

closed”

“door

open”

In B

Go to C

In B

Go to A

In A, Door

Closed

Go to B

In A, Door

Closed

In A, Door

Open

Go Out

In A, Door

Open

In C, Switch

Open

Go to B

In C, Switch

Open
In C, Switch

Closed

Open Switch

In C, Switch

Closed

state = “door open”
while(True):
 sensors = getSensors()
 if room(sensors) == “A” and door(sensors) == “open”:
 goOut()
 state = “door open”
 elif room(sensors) == “A” and door(sensors) == “closed”:
 goTo(“B”)
 state = “door closed”
 elif room(sensors) == “B” and state == “door open”
 goTo(“A”)
 elif room(sensors) == “B” and state == “door closed”
 goTo(“C”)
 elif room(sensors) == “C” and switch(sensors) == “closed”:
 openSwitch()
 state = “door open”
 else: // “c” and “open”
 goTo(“B”)

In Python (simplified)

Another Example: Collecting Cans

• Your robot can sense:
A can is in front of him
That that a can is within gripping distance
That he has a can in his gripper

• Your robot can:
Move forward
Turn randomly
Rotate to the left a little bit
Grip
Release

• Your robot wishes to:
Collect all the cans in the room into one big pile What’s the program?

Another Example: Collecting Cans

• The general idea:

• Turn until I see a can.
Home in on the can
Grab the can
Look for another can
Home in on that can
Release the first can next to it
Rotate a bit randomly

• How would you write this as a set of simple rules?

Acquiring

else

forward

Looking 2

else

turn

next to can

grab,
turn random angle

can see a can

forward

next to can

release,
turn random angle

Acquiring 2

else forward

Looking

else
turn

can see a can

forward

can't see
can

turn

lost canturn

lost
can

turn

can't see can

turn

Start

• Note that the agent’s “State” often
is closely related with the “job”
the agent is presently working on.

• By the way, four states
are just a convenience: this can
actually be done with a single state!

Other Uses

• Finite-State Automata aren’t
just used to move simple robot
or game agents around.
They’re often used to construct
machines which detect a
sequence:

• Example: Given a sequence of
letters, does the sequence
contain three X’s in a row?

• Example: a coin-operated
vending machine uses a Finite-
state Automaton to determine
how much money you’ve put in.

Looking for
first X

Found The
First One

Found The
Second One

Success!

next character
is an 'X'

next character
is an 'X'

next character
is an 'X'

next character
is NOT an 'X'

next character
is NOT an 'X'

next character
is NOT an 'X'

Start

Failure!

nothing
left

nothing
left

nothing
left

• How?

What Can’t Finite-State Automata Do?

• Stuff that requires arbitrarily large amount of memory

• Stuff that requires recursion

• Simultaneous Actions (but it’s easy to augment)

• Probabilistic Actions (but it’s easy to augment)

If blah blah
is true

State A

State B

State C

do the
thing

do the
other thing

90% of the time

10% of the time

Distributed and Multiagent Systems

• A distributed system is commonly one where you have available to you
multiple computational resources (computers say) and you’re trying to figure
out how to get them to perform some task together.

• Parallel or cluster computing
Distributed ad-hoc wireless networks
Distributed sensor networks

• A multiagent system is a distributed system where the resources are agents
who don’t know enough about what the other agents are doing to work in
lock-step. How can they avoid stepping on each others’ toes?

• Multirobotics, game-playing agents
Web agents

Multiple Soccer Players

• Each of your soccer players
is an agent.

• Your team of agents opposes
another team of agents.

• Each agent must determine
what he has to do to best help
his team at any given time.

• Example: my teammate has the ball. Should I get open so he can kick to
me? Should I get to a pre-agreed location? Should I stay back and defend
my goal?

The Prisoner’s Dilemma

• A two-player game. You are both in jail. Each of you can rat out the other
person (Defect) or to refuse to rat him out (Cooperate).

• You don’t know what the other person will do, and you can’t talk to him.

• If you both Cooperate, you are both released after 1 year (score -1 each).

• If either of you Cooperates and the other Defects, the defector is released
now (score 0) and the cooperator goes to prison for 3 year (score -3).

• If both of you Defect (rat on each other!) you both go to prison for 10 years
(score -10).

• Now: imagine you keep landing in jail! What if you repeatedly play this
game? Is there a strategy you should follow to minimize your years in jail?

In Game Theory Form

Agent 2Agent 2

Cooperate Defect

Agent 1

Cooperate 1, 1 0, -3

Agent 1

Defect -3, 0 -10, -10 yes,
it’s a matrix

Tit-for-Tat

• The first time, cooperate.

• Then do whatever my partner did last time.

• What if there is noise in the system? That is, sometimes, rarely, you
accidentally do the opposite of what you had intended?

Swarms What if there are lots of agents?

Flocking

• You have a swarm of thousands of simulated agents and you’d like them to
produce a realistic flocking behavior.
 Who would ever want that?

• How might we do this?

• How might we do this where each agent determines what to do on his own?

The “Boids” Flocking Algorithm: by Craig Reynolds

• Each agent gathers the locations of agents in his neighborhood, then uses
these locations to compute some vectors:

• Cohesion Vector: a vector towards the middle
 of those agents (“I want to go with them!”)

• Avoidance Vector: a vector away from the agents:
closer agents have a stronger effect (“I need space!”)

• Consistency Vector: a vector in the direction
everyone else is going.

• Also...
Momentum Vector: the direction I went last time.
Random Vector: a random vector

• Add up these five vectors, and that’s the direction I’ll go.

• Ands build up pheromone
deposits along trails to work
collectively as agents.

• We can simulate foraging
behaviors in simulation, using:

• Two pheromones

• Each ant follows the same
two-state finite state
automaton and a simple
equation for updating
pheromone deposits.

Ants and
Pheromones

