
Building a Game-Playing AI

For Tic-Tac-Toe

Recursion, Trees, Adversarial Search (Min and Max)

Trees

• A data structure is an organization of data in a special way that is useful to
us. For example, an array is an collection of data in a sequence.

• In computer science, a tree
is a data structure consisting of two
kinds of data: nodes and edges. Each
edge connects two nodes together.
For each edge, one of those nodes is
called the parent and the other node is called the child.

• A node can be both a parent and a child.

• Nodes and edges can be labeled.
If the label is a number, we say the node
or edge has been weighted.

Parent
Node

Child
Node

Edge

Yo

Mama
BA 14.79 龍

Trees

• Nodes may have multiple children.

• Nodes may not have multiple parents.

Trees

• You may not have cycles in a tree.
That is, if you follow a path from
a child to a parent, and then
to its parent, etc. you can
never get back to the child.

• Every tree has one node which has no parent. It is called the root.

• Every tree has multiple nodes which have no children. They are called
leaves.

Tree

• It is traditional to draw a tree with
the root on the top and the leaf
nodes on the bottom (yes, trees
“grow down” in Computer Science).

• Here is a more elaborate tree. We’ve
the root and the leaf nodes so you
can see them.

George

Sinead

Bob
George

Jr.

George
III

George
V

Nigel

George
IV

Sally

Janet

Cathy
Janet

Jr.
Jacko

1923 1929
1930

1952 1954 1954 1955

1972 1979

2001 2003 2004

Print this tree

• You have the following functions:

root() provides you with the root node.

numChildren(node) gives you the number
of children to a node.

children(node) gives all the children of
the node node.

print(node) prints a node to the screen.

• Write some code which prints the nodes
out in the order shown at right (1—13). It
must work for any size/shape tree.

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

1923 1929
1930

1952 1954 1954 1955

1972 1979

2001 2003 2004

Recursion

• Print the parent
If there is more than one child of the parent
 For each child of the parent
 Print the child

• To print more than one child, we need to have a “do that again” concept
Print the parent
If there is more than one child of the parent
 For each child of the parent
 Do the same thing as all of this, but for the child

• Get rid of pronoun-like phrases (“all of this”) and instead name ourselves
This is Function Foo, and it operates on a node:
 Print the node
 If there is more than one child of the node
 For each child of the node
 do Function Foo using the child instead of the node

Recursion

• Convert to our pseudocode form:
Function foo(node):
 print(node)
 if (numChildren(node) > 0)
 for each child in children(node)
 foo(child)

• Now we need to start up foo:
foo(root)

• Recursion needs three things:
 A way for a function to include itself
 A base case: the rule which states when the self-inclusion should stop
 A starting point

Recursion in Action

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

1
George

6
Sinead

2
Bob

4
George

Jr.

5
George

III

9
George

V

8
Nigel

7
George

IV

10
Sally

11
Janet

3
Cathy

12
Janet

Jr.

13
Jacko

• The current node is: and old:
• Each piece of a tree gets labelled a

new color when we begin work on it

Tic-Tac-Toe is...

• A total information game
Everyone can see the entire state of the game at any time

• A non-stochastic game
There’s no chance involved

• A turn-based game
Each player takes a turn

• A zero-sum game
If I win, you lose

• A two-player game
Aha! Two can play at that game!

Min and Max

• Our two players are named Min and Max. Both Min and Max are trying to
win.

• Because Tic-Tac-Toe is a zero-sum two-player game, Min wins when Max
loses. So we may say that Max is trying to make Max win, and Min is trying
to make Max lose.

• That way we can think of the game in terms of a single variable: how well Max
is doing.

• We will denote “Max’s Turn” with ▲ and “Min’s Turn” with ▼.

All Possible Games

• The game starts out in the same way:

• Let’s let Max be X (sure, why not?). Here are all of his 9 possible moves.

• Min will be O. For the X move at top left, there are only 8 moves for Min.

xxx

x x x

x x x

o xo x x

o

x

o

x

o

x

o

x

o

x

o

Questions

• Initially, Max gets to make one of 9 moves.
For each such move, Min gets to make one of 8 countermoves.
For each such move, Max gets to make one of 7 countermoves.
...

• How long is a game, in terms of number of moves?

• How many total games are there?

• Each node is a game situation! • (only one subtree shown
for brevity: but I kept the
other edges)

xx x

x x

x x x

This is a Tree!

o xo x x

o

x

o

x

o

x

o

x

o

x

o

x

xx x

x x

x x x

o xo x x

o

x

o

x

o

x

o

x

o

x

o

x

• Each level in the tree
is called a ply

• How many nodes does ply 3 have?

• Whose turn is it on odd plies?
Even plies?

Plies

xx x

x x

x x x

o xo x x

o

x

o

x

o

x

o

x

o

x

o

x

The Score of a Game Situation

• If Max has won in a given game
situation, the score is 1

• If Max has lost in a given game
situation, the score is -1

• If Max has tied in a given game
situation, the score is 0

x o o

x

x

o o o

x x

x

x o o

o x x

x x o

The Score of a Game Situation

• What about if the game’s not
completed? What’s the score now?

• Let us assume that Max is an intelligent
person. If there is a best move, he will
make it. Thus the score of this position
is the best score he can make out of it.

x o o

x ▲

x o o

x x

x o o

x x

x o o

x

x

x o o

x

x

x o o

x

x

The Score of a Game Situation

• Thus if Max is playing, we can define the
score of a game node as the maximum
score over all of its children nodes!

• Likewise, we assume Min is intelligent,
and so if Min is playing, he will try to
minimize Max’s score.

• So if Min is playing, can define the score
of a game as the minimum score over
all its children nodes.

x o o

x ▲ score=1

o o

x x

x

▼ score=-1

The Score of a Game Situation

• If the game has ended and Max has won:		 	 1

• If the game has ended and Min has won:	 	 	 -1

• If the game has ended in a draw:	 	 	 	 	 0

• If the game has not ended and it is Max’s turn: max(children(game))

• If the game has not ended and it is Min’s turn: min(children(game))

What We Want To Do

• The Computer is Max.

• His enemy (you) is Min.

• It’s Max’s turn. What should he do?

• Max calculates the score of the result of each of his moves:

• Max makes the move with the highest score:

xx x

x x

x x x

x

x

Calculating the Score

• We need a few functions:

max(x, y)
min(x, y) Return the max (min) of x and

children(game) Returns the children of the node game

maxWon(game)
minWon(game) Return whether max won, min won, or
draw(game) there was a draw

maxsTurn(game) Return whether or not it’s max’s or
minsTurn(game) min’s turn in the game at the moment

Calculating the Score

• It’s recursive!

Function score(game): will return to you a score for game
 If maxWon(game) return a 1
 If minWon(game) return a -1
 If draw(game) return a 0
 If maxsTurn(game)
 highest = -1
 for each child in children(game)
 highest = max(highest, score(child))
 return highest
 If minsTurn(game)
 lowest = 1
 for each child in children(game)
 lowest = min(lowest, score(child))
 return lowest

The Elements of Recursion

• Including Ourselves
Inside the score(...) function, we call score(child)

• Base Case
We don’t call score(child) if the game has ended (there’d be no children!)

• Starting Position
Function makeMove(game):
 bestGame = nothing
 bestScore = -1
 For each child in children(game)
 s = score(child)
 if s > bestScore
 bestScore = s, bestGame = child
 Make the move that resulted in bestGame

Things to Think About

• Tic-Tac-Toe is one thing. How about Chess? Go? Why are they harder?

• If we can’t search all the way to the end in Chess, how can we compute the
score of a node?

• Each time a function calls itself recursively, the programming language must
record this event so it can return to it later. Once we have returned to it we
can get rid of it. But while we’re holding onto these records (known
collectively as the call stack), if there are too many of them, eventually will
exhaust memory. Is this going to be a problem in our case?

• Some games (like Backgammon) include a degree of chance. How can we
modify this game?

