

Introduction to Data Mining CS 101, Spring 2013

Huzefa Rangwala Assistant Professor, Computer Science George Mason University <u>Email: rangwala@cs.gmu.edu</u> Website: <u>www.cs.gmu.edu/~hrangwal</u>

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar

Roadmap for Today

- Welcome & Introduction
- Introduction to Data Mining
 - Examples, Motivation, Definition, Methods
- A million \$ competition
 - Recommender Systems

What do you think of data mining?

• Please could you write down examples that you know of or have heard of on the provided index card.

• Also write down your own definition.

Election 2012 Data Mining

Inside the Secret World of the Data Crunchers Who Helped Obama Win

Read more:

http://swampland.time.com/2012/11/07/inside-the-secret-world-of-quants-and-datacrunchers-who-helped-obama-win/#ixzz2luhEmNcB

Mining Truth From Data Babel --- Nate Silver

http://www.nytimes.com/2012/10/24/books/nate-silvers-signal-and-the-noise-examines-predictions.html?_r=0

Data Deluge

http://www.economist.com/node/15579717

Large-scale Data is Everywhere!

- There has been enormous data growth in both commercial and scientific databases due to advances in data generation and collection technologies
- New mantra
 - Gather whatever data you can whenever and wherever possible.
- Expectations
 - Gathered data will have value either for the purpose collected or for a purpose not envisioned.

Pump sites Deaths from choler

Business Data 💙

Geo-spatial data

Computational Simulations

Why Data Mining? Commercial Viewpoint

Lots of data is being collected and warehoused

- Web data
 - Yahoo has 2PB web data
 - Facebook has 400M active users
- purchases at department/ grocery stores, e-commerce
 - Amazon records 2M items/day
- Bank/Credit Card transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Why Data Mining? Scientific Viewpoint

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 NASA EOSDIS archives over
 I-petabytes of earth science data / year
 - telescopes scanning the skies
 Sky survey data
 - High-throughput biological data
 - scientific simulations
 - terabytes of data generated in a few hours
- Data mining helps scientists
 - in automated analysis of massive datasets
 - In hypothesis formation

Mining Scientific Data - Fields

Past decade has seen a huge growth of interest in mining data in a variety of scientific domains

- Astroinformatics
- Neuroinformatics
- Quantum Informatics
- Health Informatics

- Evolutionary Informatics
- Veterinary Informatics
- Organizational Informatics
- Pharmacy Informatics
- Social Informatics
- Ecoinformatics
- Geoinformatics
- Chemo Informatics

My Favorite Data Mining Examples

- Amazon.com, Google, Netflix
 - Personal Recommendations.
 - Profile-based advertisements.
- Spam Filters/Priority Inbox
 - Keep those efforts to pay us millions of dollars at bay.
- Scientific Discovery
 - Grouping patterns in sky.
 - Inferring complex life science processes.
 - Forecasting weather.
- Security
 - Phone Conversations, Network Traffic

Data Mining Definitions

- Non-trivial extraction of implicit, previously unknown and potentially useful information from data (normally large databases)
- Exploration & analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns.
- Part of the Knowledge Discovery in Databases Process.

What is (not) Data Mining?

- What is not Data Mining?
 - Look up phone number in phone directory
 - Query a Web search engine for information about "Amazon"

- What is Data Mining
 - Certain names are more prevalent in certain US locations (O' Brien, O' Rurke, O' Reilly... in Boston area)
 - Group together similar documents returned by search engine according to their context (e.g. Amazon rainforest, Amazon.com,

Classification Example

	co	regorical	ategorica	continuou	rs clae	ç
T	id	Refund	Marital Status	Taxable Income	Cheat	
1		Yes	Single	125K	No	
2		No	Married	100K	No	
3		No	Single	70K	No	
4		Yes	Married	120K	No	
5		No	Divorced	95K	Yes	
6		No	Married	60K	No	
7		Yes	Divorced	220K	No	
8		No	Single	85K	Yes	
9		No	Married	75K	No	
1	0	No	Single	90K	Yes	

Refund	Marital Status	Taxable Income	Cheat		
No	Single	75K	?		
Yes	Married	50K	?		
No	Married	150K	?	X	
Yes	Divorced	90K	?		
No	Single	40K	?		
No		0.017	2		Tost

Illustrating Clustering

Intracluster distances are minimized Intercluster distances are maximized

Euclidean Distance Based Clustering in 3-D space.

Illustrating Document Clustering

- Clustering Points: 3204 Articles of Los Angeles Times.
- Similarity Measure: How many words are common in these documents (after some word filtering).

Category	Total Articles	Correctly Placed
Financial	555	364
Foreign	341	260
National	273	36
Metro	943	746
Sports	738	573
Entertainment	354	278

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered: **{Milk} --> {Coke}**

Urban Legend

- Classic Association Rule Example:
 - If a customer buys diaper and milk, then he is very likely to buy beer.
 - Any plausible explanations ? 😳

Deviation/Anomaly Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud
 Detection
 - Network Intrusion
 Detection

What else can Data Mining do ?

Dilbert

Recommender systems

We Know What You Ought To Be Watching This Summer

Collaborative filtering

- Recommend items based on past transactions of users
- Analyze relations between users and/or items
- Specific data characteristics are irrelevant
 - Domain-free: user/item attributes are not necessary
- Can identify elusive aspects

Customers who bought items in your Recent History also bought:

I Own It 이 Not interested 지수수수수수 Rate it Add to Cart Add to Wish List

Movie rating data

	Training data										
< _	user	movie	score								
	1	21	1								
	1	213	5								
	2	345	4								
	2	123	4								
	2	768	3								
	3	76	5								
	4	45	4								
	5	568	1								
	5	342	2								
	5	234	2								
	6	76	5								
	6	56	4								

user	movie	score		
1	62	?		
1	96	?		
2	7	?		
2	3	?		
3	47	?		
3	15	?		
4	41	?		
4	28	?		
5	93	?		
5	74	?		
6	69	?		
6	83	?		

Test data

Netflix Prize

- Training data
 - 100 million ratings
 - 480,000 users
 - 17,770 movies
 - 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: root mean squared error (RMSE)
 - Netflix Cinematch RMSE: 0.9514

Competition

0

- 2700+ teams
- **\$1** million grand prize for 10% improvement on Cinematch result
- \$50,000 2007 progress prize for 8.43% improvement

Overall rating distribution

Third of ratings are 4s Average rating is 3.68

From TimelyDevelopment.com

#ratings per movie

• Avg #ratings/user: 208

Most loved movies

Title	Avg rating	Count
The Shawshank Redemption	4.593	137812
Lord of the Rings: The Return of the King	4.545	133597
The Green Mile	4.306	180883
Lord of the Rings: The Two Towers	4.460	150676
Finding Nemo	4.415	139050
Raiders of the Lost Ark	4.504	117456
Forrest Gump	4.299	180736
Lord of the Rings: The Fellowship of the ring	4.433	147932
The Sixth Sense	4.325	149199
Indiana Jones and the Last Crusade	4.333	144027

Important RMSEs

	Global average: 1.1296	erroneous
	User average: 1.0651	
	Movie average: 1.0533	
Personalization		
+++++++	Cinematch: 0.9514; baseline	
	BellKor: 0.8693; 8.63% improvement	
	Grand Prize: 0.8563; 10% improvement	
	Inherent noise: ????	accurate

Challenges

- Size of data
 - Scalability
 - Keeping data in memory
- Missing data
 - 99 percent missing
 - Very imbalanced

From the makers of THE PRIVATE EYES

movie #16322

- Avoiding overfitting
- Test and training data differ significantly

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

users

- unknown rating

- rating between 1 to 5

users												
	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

users												
	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

Neighbor selection: Identify movies similar to 1, rated by user 5

users												
	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

Compute similarity weights:

s₁₃=0.2, s₁₆=0.3

users												
	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		2.6	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

Predict by taking weighted average: (0.2*2+0.3*3)/(0.2+0.3)=2.6

Properties of k-NN

- Intuitive
- No substantial preprocessing is required
- Easy to explain reasoning behind a recommendation
- Accurate?

k-NN on the RMSE scale

k-NN - Common practice

1. Define a similarity measure between items: s_{ij} 2. Select neighbors -- N(i;u): items most similar to i, that were rated by u 3. Estimate unknown rating, r_{ui} , as the weighted average: $\sum s_{ij} (r_{ij} - b_{ij})$

$$r_{ui} = b_{ui} + \frac{\sum_{j \in N(i;u)} s_{ij} (u_j - u_{ij})}{\sum_{j \in N(i;u)} s_{ij}}$$

baseline estimate for

r_{ui}

Latent factor models

Latent factor models

Estimate unknown ratings as inner-products of factors:

Estimate unknown ratings as inner-products of factors:

Estimate unknown ratings as inner-products of factors:

Latent factor models

.1	4	.2
5	.6	.5
2	.3	.5
1.1	2.1	.3
7	2.1	-2
-1	.7	.3

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

Properties:

- SVD isn't defined when entries are unknown → use specialized methods
- Very powerful model
 can easily overfit, sensitive to regularization
- Probably most popular model among contestants
 - 12/11/2006: Simon Funk describes an SVD based method
 - I 2/29/2006: Free implementation at timelydevelopment.com

Factorization on the RMSE scale

Combining multi-scale views

Results on Netflix Probe set

Seek alternative perspectives of the data

- Can exploit movie titles and release year
- But movies side is pretty much covered anyway...
- It's about the users!
- Turning to the third dimension...

Lessons

1.

What it takes to win:

- Think deeper design better algorithms
- 2. Think broader use an ensemble of multiple predictors
- 3. Think different model the data from different perspectives

At the personal level:

- I. Have fun with the data
- 2. Work hard, long breath
- 3. Good teammates

Rapid progress of science:

- I. Availability of large, real life data
- 2. Challenge, competition
- 3. Effective collaboration

movie #13043