Computer Networks

Dr. Robert Simon

Department of Computer Science

George Mason University

Fairfax, VA 22030

simon@cs.gmu.edu

CS 101 April 2013

Why am I here?

My goal:

- Introduce the field and some of the jargon
- Give you some sense of why we think it is a good subfield
 - Beyond the guaranteed job security
- How we do research (so that other people care about it)

Overview:

- What are current networks?
- What works well?
- What is the bleeding edge?
- Some GMU research efforts

Internet

A closer look at network structure:

Access networks, physical media: wired, wireless communication links ■ Network core: > Interconnected routers Network of networks input line 1 switch core input line N processor output line N

GMU

Distributed Systems

End systems (hosts)

- Run application programs
- The "edge of network"

Client/server model

- Client host requests, receives service from always-on server
- Web browser/server; email client/ server

Peer-peer model

- Minimal (or no) use of dedicated servers
- Skype, BitTorrent, etc.

Wireless network

An Entire Networking Course in one slide

Network Connections

Stack Connections

Copied from Wikimedia Commons

Current trends

What can glue together everything that can communicate??

Wired, August 2010: *The Web is dead(???)*

End of the PC

Vendors shipped 158.5 million smart phones in Q4 2011, up 57% on the 101.2 million units shipped in Q4 2010. This bumper quarter took total global shipments for the whole of 2011 to 487.7 million units, up 63% on the 299.7 million smart phones shipped throughout 2010. By comparison, the global client PC market grew 15% in 2011 to 414.6 million units, with 274% growth in pad shipments. Pads accounted for 15% of all client PC shipments in 2011.

Worldwide s	mart phone and	d client PC shi	pments	
Shipments and	growth rates by	category, Q4 20	11 and full year	2011
	Q4 2011	Full year 2011		
	shipments	Growth	shipments	Growth
Category	(millions)	Q4'11/Q4'10	(millions)	2011/2010
Smart phones	158.5	56.6%	487.7	62.7%
Total client PCs	120.2	16.3%	414.6	14.8%
- Pads	26.5	186.2%	63.2	274.2%
- Netbooks	6.7	-32.4%	29.4	-25.3%
- Notebooks	57.9	7.3%	209.6	7.5%
- Desktops	29.1	-3.6%	112.4	2.3%
Source: Canalys es	timates © Canalys 20	12		

Internet of Smart Objects and the Internet of Everything

Exploit spatially and temporally dense coupling to physical world

Some Definitions

Wireless Sensor Networks

- Designed for physical sensing, actuator control, local processing and wireless communication
- Devices combine sensors, cpu, communication, power supply in a small package called a "MOTE."
- Sensors include temperature, heat, light, chemicals, etc.
- The motes are the infrastructure

Robert Simon/GMU

Two Smart RIFD Commercial Examples

- Jennic Coin Cell Powered Active RFID Tag
 - 802.15.4 Ad hoc networking
 - http://www.jennic.com/files/ support_documentation/JN-RM-2055-JN5148-Coin-Cell-Active-RFID-Tag.pdf
 - Motion detection using an acceleration switch
 - CR2032 210-mAh coin cell powered (or similar)
 - Reservoir capacitors for pulsed operation
 - Optional serial EEPROM for Tag context storage
 - Optional low-power 32-kHz precision reference crystal

KSW Technic *VarioSense* Hybrid Power Tag — http://www.ksw-microtec.de

integrated circuit (IC)	KSW-VarioSens® Chip		
operating frequency	13,56 MHz		
air interface protocol	ISO 15693-3		
memory	7680 bit EEPROM splited memory for customer data and monitored temperatures with time stamp 512 bit system memory		
data protection / security	3 level password		
data retention	longer than 10 years according to IC specification		
temperature range / accuracy	-5°C to +30°C with ±1 K (typical ±0,3 K) -20°C to +50°C with ±1,75 K (typical ±0,6 K)		
operating environment	-20°C to +50°C (limited mechanical stress and reduced battery lifetime at temperature below -5°C); higher than 30% relative humidity		
timer accuracy	better than ±5%		
battery life time	max 1 year (battery life time depends on the operation condition)		

Machine-to-Machine Traffic Increase 22-Fold Between 2011 and 2016

What's enabling this growth?

- Moore's Law
 - Advances in hardware doubles power roughly every 18 months or so

- Bell's Law
 - New computing class every 10 years

Robert Simon/GMU

Research challenges, or how they work

Sensor network lifetime -- Deploy

Wakeup and Diagnosis What am I supposed to do?

Organize into clusters – who can I talk to?

Detect Events – Look for activity

Route data ---

Talk to nodes I cannot directly communicate with

Traditional Wireless Systems (Your cellphone, Wi-Fi, etc).

What are the challenges for embedded and sensor networks?

- Cannot adopt existing wireless distributed system technology
 - Must be able to automatically self-configure
 - Power constraints
 - May require energy harvesting
 - Storage constraints
 - Resource discovery and management complicated
 - Security constraints
 - AND: We want to run IP over everything!
- The above are the current research challenges system designers face

DEMO

Some GMU Embedded Systems Work

- Network and source coding
 - Not writing code but using correlated data for compression and error correction
- Routing and IPv6 over WSN networks
- Energy harvesting for multimedia WSNs (Joint work with Prof. Hakan Aydin)

RESEARCH Problem --- Utility Maximization for Sensor Networks

- Maximizing end-user perceived *utility* is of paramount importance to nextgeneration Wireless Sensor Networks (WSNs) applications.
- Utility often depends on application's sensing resolution (rate).
- Utility maximization is constrained by the limited battery capacity of sensor nodes.

A conflicting design goal: *Utility Maximization* or *Lifetime Maximization*?

Network Model

- A sensor network
 - \triangleright consists of N sensor nodes.
 - is organized into a **data collection tree**, rooted at a base station (*BS*).
- Each sensor node is connected to BS by a single routing path ρ_i .
- O Periodic data sensing and reporting at rate V_i is the internal rate of nodes.
- O Packet relaying for descendent nodes at external rate r_j .

• The total external rate at V_i :

$$\sum_{j:V_i\in\rho_j} r_j$$
.

• The total rate at V_i : $r_i + \sum_{j:V_i \in \rho_j} r_j$

An optimal algorithm

O Problem conversion:

$$Max \qquad U^{tot}$$

$$s.t. \qquad \forall V_i,$$

$$E_i^c \leq B_i$$

$$r_i \geq r^{min}$$

$$r_i + \sum_{j: V_i \in \rho_j} r_j \leq R_i^{cap}$$

$$E_i^c = e^{tx} \cdot (r_i + \sum_{j:V_i \in \rho_j} r_j) \cdot S + E^{rx} \le B_i$$

constant

$$r_i + \sum_{j:V_i \in \rho_j} r_j \le \underbrace{\frac{B_i - E^{rx}}{e^{tx} \cdot S}}$$

A simplified version with fewer constraints

$$Max U^{tot} = \sum_{i=1}^{N} U(r_i)$$

$$s.t. \forall V_i, r_i \ge r^{min}$$

$$\forall V_i, r_i + \sum_{j:V_i \in \rho_j} r_j \le CAPACITY_i$$

$$\forall V_i, r_i + \sum_{j:V_i \in \rho_j} r_j \le CAPACITY_i$$

$$CAPACITY_i = Min\left\{ \underbrace{R_i^{cap}}_{i}, \underbrace{\frac{B_i - E^{rx}}{e^{tx} \cdot S}} \right\}$$

Forwarding Energy capacity capacity

Observations

- This work involves security protocols, electrical engineering, algorithms, cryptography, networks, embedded programming, etc.
- Many interesting overlaps among different research approaches
- Much GMU Graduate/Undergraduate involvement in these areas