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Navier-Stokes Cavity Flow
» Run your code with:
- a 41 x 41 mesh, o075
dx =dy =0.05
0.60
- viscosity = 0.01
(giving Re=200) 043
- high-frequency 030
oscillations on the
0.15
pressure!
0.00
-0.15
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Navier-Stokes Discretized 1D Equations

» continuity un L gt
i+1 i—1
e ot Sl SRS}
2Ax
» momentum
uptt —up 41 (Wip)? = (W 1)®  1pi1 —pia N Ui = 207 + iy
At 2 2Azx p 2A2 Az?

» pressure correction:

2 2
- step i —uy n 1 (uiq)” — (uiq)® VU?-H = 2uj" +ui

At 2 2Ax N Ax?
- step 2 A _ 1Pt —piaa
At p 2Ax

College of Engineering 3




Navier-Stokes Pressure Equation

» step 2 gives: A
U Pit1 — Pi—1
uttl = ol el
‘ p 2Azx Tt

» use this expression in the discretized continuity equation:

1 [(—Atpiya—p; N At p; — pi—2 X
, 2Pi—Pi-2 o« ) _
2Ax < P 2Ax it p  2Ax Flhi
- rewrite
Pit2 =2pi+Pica _ p Uity Uiy _ 0
4Ax? At 2Ax
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Navier-Stokes Solution to the problem

» “staggered grid” => due to Harlow & Welch (1965)

THE PHYSICS OF FLUIDS VOLUME 8, NUMBER 12 DECEMBER 1965
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Navier-Stokes Staggered-grid equations

) ) uTL+1 _ u7'L+1
» continuity L2 im1/2
Ax
uttl, —ul 1Diry — s
» with a fractional step, we have i+1/2 i1/ Pkl T Pi
At p Az

» leading to the Poisson equation:

Pis1 —2pi+pica _ p _ Viyrjp T URi-1/2

Ax? At Az

This completely eliminades the probless of
sSmall-scale oscillations!
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Navier-Stokes in 2D

» 2D staggered grid

. p Ep‘+1,
] 2] ; (3 J :
7 i+1
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» Write “staggered-grid” finite difference approximations for:

ou
ot
ou?
ot
Ouv
dy
op
o
0%u
02
0%u
oy?

q

» horizontal velocity located at the mid-points of the vertical “cell edges’
and vertical velocity at the midpoints of the horizontal cell edges.

1—1 % 1+1 i—1 7 t+1




» to get, e.g., convection terms

i—1 7 1+1

Navier-Stokes Collocated vs. Staggered grid

» Cavity flow:

0.6
05
0.4
03
0.2
0.1

Step 11 0.0

41x41 mesh

dx=dy=0.05 —o1

nu=0.01 giving s

Re=200 -0.2
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historical notes

» HW'65 introduced “marker and cell method”
- included a ste of marker particles to follow free surfaces (now obsolete)

- current usage of "MAC method"

» projection method using a staggered grid
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Navier-Stokes Boundary Conditions

V-ui=0

ou

2@ Vi=-Vp+

ot
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» in practice, B.C.s are stipulated separately for the different types:
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On Boundary Conditions for
Incompressible Navier-Stokes
Problems

We revisit the issue of finding proper boundary conditions for the field equations describ-
ing incompressible flow problems, for quantities like pressure or vorticity, which often do
not have immediately obvious “physical” boundary conditions. Most of the issues are
discussed for the example of a primitive-variables lation of the inc
Navier-Stokes equations in the form of momentum equations plus the pressure Poisson
equation. However, analogous problems also exist in other formulations, some of which
are briefly reviewed as well. This review article cites 95 references.

[DOL: 10.1115/1.2177683]

Keywords: flow simulation, numerical methods, Navier-Stokes equations

S




» “fractional step method” or “projection method”

» the projector is not identical with the pressure

JOURNAL OF COMPUTATIONAL PHYSICS 59, 308-323 (1985)

Incompressible Navier-Stokes Equations
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Application of a Fractional-Step Method to ‘

u;’"—ﬁ,-_ n+1 4
S—i= Gl D.S
——

overall accuracy ol the splitting method is still second order. Note that ¢ is different -
from the original oressure: in fact, p=d + (41/2 Re) V6_All the cnatial derivatives ;
e ee———

» equation for p
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Ihe exproration of this problem of finding appropriate bouna-,
ary conditions for the pressure forms the core of the present paper.
As mentioned in our introduction, in addressing this question we

are dealing with a highly controversial issue. In order to do so.}
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INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 7, 11111145 (1987)
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ON PRESSURE BOUNDARY CONDITIONS FOR THE
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS*

PHILIP M. GRESHO

Lawrence Livermore National Laboratory, University of California, Livermore, California 94550, U.S.A.

AND
ROBERT L. SANI
CIRES and Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309, U.S.A.
B _—

(Ou/dt)+ VP =y Viu—u-Vu=f
and

these imply
V?P=V-f in Q

also .
oP/on=n*(f—(Cu/dt)) on T.

L ——

|
V-(@u/d)=0 in i
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cal example below, it is illegal to write down the momentum ,

equation (1) taken at the boundary and derive a pressure boundary

condition from it by simply projecting the result on the wall- §

normal coordinate 7. )

e ee——

—

Despite tne progress 1n understanding that had been achievea ,
by the contributions mentioned above, in 1987 Gresho and Sani

perpetuated and greatly contributed to the_confusion in this area
e — -—.__._..d

situation any more settled now? Untfortunately, the answer to that

question is negative: Improper pressure boundary conditions wcrc'
still presented in review articles in the 1990s [12,60], and they
found their way into some of the newest textbooks on computa-
tional fluid mechanics [13.611. j
- 20
JOURNAL OF COMPUTATIONAL PHYSICS 59, 308323 (1985)
» Final note ... |

Application of a Fractional-Step Method to
Incompressible Navier—Stokes Equations
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- . . . ‘
equations are evaluated at velocity nodes, and the continuity equation is enforced ;

for each cell. One important advantage of using the staggered mesh for incom-

pressible_flows_is_that ad hoc pressure boundary conditions are not required '
S ———
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wall as shown in Fig. 4. The vertical velocities are

simply reversed across the wall. Since D = 0 in the 1

Numerical C:

L

fluid cell, it follows that the vanishing of D’ is ac-

complished only if v = +u,, in contrast to the re- | mm,"“ ouee
quirement for u’ for a free-slip wall. \ . >
In summary: (a) for a free-slip wall normal ve- : ‘

locity reverses while tangential velocity remains the
same; (b) for a no-slip wall normal velocity remains
the same, while tangential velocity reverses.

For case (a) the pressure condition has been de- — —-—J
rived and has a simple form. For case (b) the no-slip
wall, if vertical

———

o = ¢, + g, bz £+ (2vu,/52). (11) jfwm si0€ | oursioe l

Tia. 4. Reflection of
feld variables near a
wall,




