Introduction to Classes

A class packs a set of data (variables) together with a set of func-
tions operating on the data. The goal is to achieve more modular code
by grouping data and functions into manageable (often small) units.
Most of the mathematical computations in this book can easily be
coded without using classes, but in many problems, classes enable ei-
ther more elegant solutions or code that is easier to extend at a later
stage. In the non-mathematical world, where there are no mathemat-
ical concepts and associated algorithms to help structure the problem
solving, software development can be very challenging. Classes may
then improve the understanding of the problem and contribute to sim-
plify the modeling of data and actions in programs. As a consequence,
almost all large software systems being developed in the world today
are heavily based on classes.

Programming with classes is offered by most modern programming
languages, also Python. In fact, Python employs classes to a very large
extent, but one can — as we have seen in previous chapters — use the
language for lots of purposes without knowing what a class is. However,
one will frequently encounter the class concept when searching books
or the World Wide Web for Python programming information. And
more important, classes often provide better solutions to programming
problems. This chapter therefore gives an introduction to the class
concept with emphasis on applications to numerical computing. More
advanced use of classes, including inheritance and object orientation,
is the subject of Chapter 9.

The folder src/class contains all the program examples from the
present chapter.

337

338

7 Introduction to Classes

7.1 Simple Function Classes

Classes can be used for many things in scientific computations, but one
of the most frequent programming tasks is to represent mathematical
functions which have a set of parameters in addition to one or more
independent variables. Chapter 7.1.1 explains why such mathematical
functions pose difficulties for programmers, and Chapter 7.1.2 shows
how the class idea meets these difficulties. Chapters 7.1.3 presents an-
other example where a class represents a mathematical function. More
advanced material about classes, which for some readers may clarify
the ideas, but which can also be skipped in a first reading, appears in
Chapters 7.1.4 and Chapter 7.1.5.

7.1.1 Problem: Functions with Parameters

To motivate for the class concept, we will look at functions with pa-
rameters. The y(t) = vot — %gt2 function on page 1 is such a function.
Conceptually, in physics, y is a function of ¢, but y also depends on two
other parameters, vg and g, although it is not natural to view y as a
function of these parameters. We may write y(t; v, g) to indicate that
t is the independent variable, while vg and g are parameters. Strictly
speaking, g is a fixed parameter!, so only vy and t can be arbitrarily
chosen in the formula. It would then be better to write y(¢; vo).

In the general case, we may have a function of x that has n param-
eters p1,...,pn: f(z;p1,...,pn). One example could be

g(z; A a) = Ae™ .

How should we implement such functions? One obvious way is to
have the independent variable and the parameters as arguments:

def y(t, vO):
g =9.81
return vOxt - O0.5xgxt**2

def g(x, a, A):
return Axexp(-a*x)

Problem. There is one major problem with this solution. Many software
tools we can use for mathematical operations on functions assume that
a function of one variable has only one argument in the computer
representation of the function. For example, we may have a tool for
differentiating a function f(x) at a point z, using the approximation

1 As long as we are on the surface of the earth, g can be considered fixed, but in
general g depends on the distance to the center of the earth.

7.1 Simple Function Classes 339

coded as

def diff(f, x, h=1E-10):
return (f(x+h) - f(x))/h

The diff function works with any function f that takes one argument:

def h(t):
return t*x*4 + 4%t

dh = diff(h, 0.1)

from math import sin, pi
X = 2xpi
dsin = diff(sin, x, h=1E-9)

Unfortunately, diff will not work with our y(t, v0) function. Calling
diff(y, t) leads to an error inside the diff function, because it tries
to call our y function with only one argument while the y function
requires two.

Writing an alternative diff function for £ functions having two ar-
guments is a bad remedy as it restricts the set of admissible £ functions
to the very special case of a function with one independent variable and
one parameter. A fundamental principle in computer programming is
to strive for software that is as general and widely applicable as pos-
sible. In the present case, it means that the diff function should be
applicable to all functions f of one variable, and letting £ take one
argument is then the natural decision to make.

The mismatch of function arguments, as outlined above, is a major
problem because a lot of software libraries are available for operations
on mathematical functions of one variable: integration, differentiation,
solving f(z) = 0, finding extrema, etc. (see for instance Chapters 3.6.2
and 5.1.9,, and Appendices A and B). All these libraries will try to call
the mathematical function we provide with only one argument.

A Bad Solution: Global Variables. The requirement is thus to de-
fine Python implementations of mathematical functions of one variable
with one argument, the independent variable. The two examples above
must then be implemented as

def y(t):
g =9.81
return vO*xt - O.5*gkt**2

def g(t):
return Axexp(-a*x)

These functions work only if v0, A, and a are global variables, initialized
before one attempts to call the functions. Here are two sample calls
where diff differentiates y and g:

340

7 Introduction to Classes

3
diff(y, 1)

[oN
<
nn

A=1; a=0.1
dg = diff(g, 1.5)

The use of global variables is in general considered bad program-
ming. Why global variables are problematic in the present case can be
illustrated when there is need to work with several versions of a func-
tion. Suppose we want to work with two versions of y(¢;vg), one with
vg = 1 and one with vg = 5. Every time we call y we must remember
which version of the function we work with, and set vO accordingly
prior to the call:

vO
vO

1; r1
5; r2

y(t)
y(t)

Another problem is that variables with simple names like v0, a, and
A may easily be used as global variables in other parts of the program.
These parts may change our v0 in a context different from the y func-
tion, but the change affects the correctness of the y function. In such
a case, we say that changing v0 has side effects, i.e., the change affects
other parts of the program in an unintentional way. This is one reason
why a golden rule of programming tells us to limit the use of global
variables as much as possible.

Another solution to the problem of needing two vy parameters could
be to introduce two y functions, each with a distinct vy parameter:

def yi1(t):
g =9.81
return vO_1%t - 0.5*g¥t*x*2

def y2(t):
g =9.81
return vO_2%t - 0.5*gktx*2

Now we need to initialize v0_1 and v0_2 once, and then we can work
with y1 and y2. However, if we need 100 vy parameters, we need 100
functions. This is tedious to code, error prone, difficult to administer,
and simply a really bad solution to a programming problem.

So, is there a good remedy? The answer is yes: The class concept
solves all the problems described above!

7.1.2 Representing a Function as a Class

A class contains a set of variables (data) and a set of functions, held
together as one unit. The variables are visible in all the functions in the
class. That is, we can view the variables as “global” in these functions.
These characteristics also apply to modules, and modules can be used
to obtain many of the same advantages as classes offer (see comments

7.1 Simple Function Classes

in Chapter 7.1.5). However, classes are technically very different from
modules. You can also make many copies of a class, while there can
be only one copy of a module. When you master both modules and
classes, you will clearly see the similarities and differences. Now we
continue with a specific example of a class.

Consider the function y(t;vg) = vot — %th. We may say that vy and
g, represented by the variables v0 and g, constitute the data. A Python
function, say value(t), is needed to compute the value of y(t;vy) and
this function must have access to the data v0O and g, while t is an
argument.

A programmer experienced with classes will then suggest to collect
the data v0 and g, and the function value(t), together as a class. In
addition, a class usually has another function, called constructor for
initializing the data. The constructor is always named __init__. Every
class must have a name, often starting with a capital, so we choose Y
as the name since the class represents a mathematical function with
name y. Figure 7.1 sketches the contents of class Y as a so-called UML
diagram, here created with Lumpy (from Appendix E.3) with aid of the
little program class_Y_v1_UML.py. The UML diagram has two “boxes”,
one where the functions are listed, and one where the variables are
listed. Our next step is to implement this class in Python.

Y

_init__
value

g
vO0

Fig. 7.1 UML diagram with function and data in the simple class Y for representing
a mathematical function y(t;vo).

Implementation. The complete code for our class Y looks as follows in
Python:

class Y:
def __init__(self, v0):
self.v0 = vO
self.g = 9.81

def value(self, t):
return self.vO*t - 0.5%self.gkt**x2

A puzzlement for newcomers to Python classes is the self parameter,
which may take some efforts and time to fully understand.

341

Lorena Barba

Lorena Barba

342

7 Introduction to Classes

Usage and Dissection. Before we dig into what each in the class im-
plementation means, we start by showing how the class can be used to
compute values of the mathematical function y(¢; vp).

A class creates a new data type, so now we have a data type Y of
which we can make objects of2. An object of a user-defined class (like
Y) is usually called an instance. We need such an instance in order to
use the data in the class and call the value function. An object of a
user-defined class (like Y) is usually called an instance. The following
statement constructs an instance bound to the variable name y:

y = Y(3)

Seemingly, we call the class Y as if it were a function. Actually, Y(3)
is automatically translated by Python to a call to the constructor
. in class Y. The arguments in the call, here only the num-
ber 3, are always passed on as arguments to _ after the self
argument. That is, vO gets the value 3 and self is just dropped in the
call. This may be confusing, but it is a rule that the self argument is
never used in calls to functions in classes.

With the instance y, we can compute the value y(t = 0.1;v9 = 3) by
the statement

init_

init

v = y.value(0.1)

Here also, the self argument is dropped in the call to value. To access
functions and variables in a class, we must prefix the function and vari-
able names by the name of the instance and a dot: the value function
is reached as y.value, and the variables are reached as y.v0 and y.g.
We can, for example, print the value of v0 in the instance y by writing

print y.vO

The output will in this case be 3.

We have already introduced the term “instance” for the object of
a class. Functions in classes are commonly called methods, and vari-
ables (data) in classes are called attributes. From now on we will use
this terminology. In our sample class Y we have two methods, __
and value, and two attributes, vO and g. The names of methods and
attributes can be chosen freely, just as names of ordinary Python func-
tions and variables. However, the constructor must have the name
otherwise it is not automatically called when we create new

init__

__init__,
instances.

You can do whatever you want in whatever method, but it is a
convention to use the constructor for initializing the variables in the

class such that the class is “ready for use”.

2 All familiar Python objects, like lists, tuples, strings, floating-point numbers, inte-

gers, etc., are in fact built-in Python classes, with names list, tuple, str, float,
int, etc.

Lorena Barba

7.1 Simple Function Classes

The self Variable. Now we will provide some more explanation of the
self parameter and how the class methods work. Inside the constructor
__init__, the argument self is a variable holding the new instance to
be constructed. When we write

self.v0 = vO
self.g = 9.81

we define two new attributes in this instance. The self parameter is
invisibly returned to the calling code. We can imagine that Python
translates y = Y(3) to

Y.__init__(y, 3)

so when we do a self.v0 = vO0 in the constructor, we actually initialize
y.v0. The prefix with Y. is necessary to reach a class method (just like
prefixing a function in a module with the module name, e.g., math.exp).
If we prefix with Y., we need to explicitly feed in an instance for the
self argument, like y in the code line above, but if we prefix with
y. (the instance name) the self argument is dropped. It is the latter
“instance name prefix” which we shall use when computing with classes.

Let us look at a call to the value method to see a similar use of the
self argument. When we write

value = y.value(0.1)
Python translates this to a call
value = Y.value(y, 0.1)

such that the self argument in the value method becomes the y in-
stance. In the expression inside the value method,

self.vO*t - 0.5*self.gkt*x*2

self is y so this is the same as
y.vOxt — O0.5xy.gxt**2

The rules regarding “self” are listed below:

e Any class method must have self as first argument?.

e self represents an (arbitrary) instance of the class.

e To access another class method or a class attribute, inside class
methods, we must prefix with self, as in self.name, where name is
the name of the attribute or the other method.

e self is dropped as argument in calls to class methods.

3 The name can be any valid variable name, but the name self is a widely established
convention in Python.

343

Lorena Barba

Lorena Barba

344

7 Introduction to Classes

It takes some time to understand the self variable, but more examples
and hands-on experience with class programming will help, so just be
patient and continue reading.

Ezxtension of the Class. We can have as many attributes and methods
as we like in a class, so let us add a new method to class Y. This
method is called formula and prints a string containing the formula of
the mathematical function y. After this formula, we provide the value
of vg. The string can then be constructed as

’vO*t - 0.5xgxt**2; v0=/g’ % self.v0

where self is an instance of class Y. A call of formula does not need
any arguments:

print y.formula()

should be enough to create, return, and print the string. However, even
if the formula method does not need any arguments, it must have a self
argument, which is left out in the call but needed inside the method to
access the attributes. The implementation of the method is therefore

def formula(self):
return ’vO*t - 0.5*g*t**2; v0=Yg’ % self.v0

For completeness, the whole class now reads

class Y:
def __init__(self, v0):
self.v0 = vO
self.g = 9.81

def value(self, t):
return self.vO*t - 0.5%self.g¥t**2

def formula(self):
return ’vO*t - 0.5xgxt**2; v0=Yg’ % self.v0

Example on use may be

y = Y(5)
t =0.2
v = y.value(t)

print ’y(t=lg; vO=lg) = %g’ % (t, y.vO, v)
print y.formula()

with the output

y(t=0.2; v0=5) = 0.8038
vO*t - 0.5xg*t**2; v0=5

Remark. A common mistake done by newcomers to the class construc-
tion is to place the code that applies the class at the same indentation
as the class methods. This is illegal. Only method definitions and as-
signments to so-called static attributes (Chapter 7.7) can appear in

7.1 Simple Function Classes

the indented block under the class headline. Ordinary attribute as-
signment must be done inside methods. The main program using the
class must appear with the same indent as the class headline.

Using Methods as Ordinary Functions. We may create several y func-
tions with different values of vg:

yi=Y(Q)
y2 = Y(1.5)
y3 = Y(-3)

We can treat yi.value, y2.value, and y3.value as ordinary Python
functions of t, and then pass them on to any Python function that
expects a function of one variable. In particular, we can send the func-
tions to the diff (£, x) function from page 339:

dyldt = diff(yl.value, 0.1)
dy2dt = diff(y2.value, 0.1)
dy3dt = diff(y3.value, 0.2)

Inside the diff (£, x) function, the argument f now behaves as a func-
tion of one variable that automatically carries with it two variables v0
and g. When £ refers to (e.g.) y3.value, Python actually knows that
f(x) means y3.value(x), and inside the y3.value method self is y3,
and we have access to y3.v0 and y3.g.

Doc Strings. A function may have a doc string right after the function
definition, see Chapter 2.2.7. The aim of the doc string is to explain
the purpose of the function and, for instance, what the arguments and
return values are. A class can also have a doc string, it is just the first
string that appears right after the class headline. The convention is
to enclose the doc string in triple double quotes """:

class Y:
"""The vertical motion of a ball."""

def __init__(self, v0):

More comprehensive information can include the methods and how the
class is used in an interactive session:

class Y:
nnn

Mathematical function for the vertical motion of a ball.

Methods:
constructor(v0): set initial velocity vO.
value(t): compute the height as function of t.
formula(): print out the formula for the height.

Attributes:
v0: the initial velocity of the ball (time 0).
g: acceleration of gravity (fixed).

345

346

7 Introduction to Classes

Usage:

>>> y = Y(3)

>>> positionl = y.value(0.1)
>>> position2 = y.value(0.3)
>>> print y.formula()

vO*t - 0.5*g*t**2; v0=3

7.1.3 Another Function Class Example

Let us apply the ideas from the Y class to the v(r) function specified
in (4.20) on page 230. We may write this function as v(r; 3, po,n, R)
to indicate that there is one primary independent variable (r) and four
physical parameters (3, uo, n, and R). The class typically holds the
physical parameters as variables and provides an value(r) method for
computing the v function:

class VelocityProfile:
def __init__(self, beta, mu0O, n, R):
self.beta, self.mu0O, self.n, self.R = beta, muO, n, R

def value(self, r):
beta mu0, n, R = self.beta, self.muO, self.n, self.R
= float(n) # ensure float divisions
= (beta/(2.0%mu0))**(1/n)*(n/(n+1))*\
(R**(1+1/n) - r**(1+1/n))
return v

There is seemingly one new thing here in that we initialize several
variables on the same line®*:

self.beta, self.muO, self.n, self.R = beta, muO, n, R

This is perfectly valid Python code and equivalent to the multi-line
code

self .beta = beta
self .mu0 = muO
=n
=R
In the value method it is convenient to avoid the self. prefix in the
mathematical formulas and instead introduce the local short names
beta, mu0, n, and R. This is in general a good idea, because it makes it
easier to read the implementation of the formula and check its correct-
ness.
Here is one possible application of class VelocityProfile:

4 The comma-separated list of variables on the right-hand side forms a tuple so this
assignment is just the usual construction where a set of variables on the left-hand
side is set equal to a list or tuple on the right-hand side, element by element. See
page 58.

7.1 Simple Function Classes

vl = VelocityProfile(R=1, beta=0.06, mu0=0.02, n=0.1)
plot vl versus r:

from scitools.std import *

r = linspace(0, 1, 50)

v = vi.value(r)

plot(r, v, label=C’r’, ’v’), title=’Velocity profile’)

Remark. Another solution to the problem of sending functions with
parameters to a general library function such as diff is provided in
Appendix E.5. The remedy there is to transfer the parameters as argu-
ments “through” the diff function. This can be done in a general way
as explained in that appendix.

7.1.4 Alternative Function Class Implementations

To illustrate class programming further, we will now realize class Y
from Chapter 7.1.2 in a different way. You may consider this section
as advanced and skip it, but for some readers the material might im-
prove the understanding of class Y and give some insight into class
programming in general.

It is a good habit always to have a constructor in a class and to
initialize class attributes here, but this is not a requirement. Let us
drop the constructor and make v0 an optional argument to the value
method. If the user does not provide v0 in the call to value, we use a v0
value that must have been provided in an earlier call and stored as an
attribute self.v0. We can recognize if the user provides v0 as argument
or not by using None as default value for the keyword argument and
then test if vO is None.

Our alternative implementation of class Y, named Y2, now reads

class Y2:
def value(self, t, vO=None):
if vO is not None:
self.v0 = vO
g =9.81
return self.vO*t - 0.5%gxt**2

This time the class has only one method and one attribute as we
skipped the constructor and let g be a local variable in the value
method.

But if there is no constructor, how is an instance created? Python
fortunately creates an empty constructor. This allows us to write

y = Y20

to make an instance y. Since nothing happens in the automatically
generated empty constructor, y has no attributes at this stage. Writing

347

348

7 Introduction to Classes
print y.vO
therefore leads to the exception
AttributeError: Y2 instance has no attribute ’v0’
By calling
v = y.value(0.1, 5)

we create an attribute self.v0 insde the value method. In general, we
can create any attribute name in any method by just assigning a value
to self.name. Now trying a

print y.vO
will print 5. In a new call,

v = y.value(0.2)

the previous v0 value (5) is used inside value as self.v0 unless a vO
argument is specified in the call.

The previous implementation is not foolproof if we fail to initialize
v0. For example, the code

Y20
y.value(0.1)

y
v

will terminate in the value method with the exception
AttributeError: Y2 instance has no attribute ’vO0’

As usual, it is better to notify the user with a more informative mes-
sage. To check if we have an attribute v0, we can use the Python
function hasattr. Calling hasattr(self, ’v0’) returns True only if the
instance self has an attribute with name ’v0’. An improved value
method now reads

def value(self, t, vO=None):
if vO is not None:
self.v0 = vO
if not hasattr(self, ’v0’):
print ’You cannot call value(t) without first ’\
’calling value(t,v0) to set vO’
return None
g =9.81
return self.vO*t — 0.5 g*t**2

Alternatively, we can try to access self.v0 in a try-except block, and
perhaps raise an exception TypeError (which is what Python raises if
there are not enough arguments to a function or method):

7.1 Simple Function Classes

def value(self, t, vO=None):
if vO is not None:
self.v0 = vO
g =9.81
try:
value = self.vOxt — 0.5 g¥t**2
except AttributeError:
msg = ’You cannot call value(t) without first ’
’calling value(t,v0) to set vO’
raise TypeError(msg)
return value

Note that Python detects an AttributeError, but from a user’s point
of view, not enough parameters were supplied in the call so a TypeError
is more appropriate to communicate back to the calling code.

We think class Y is a better implementation than class Y2, because
the former is simpler. As already mentioned, it is a good habit to
include a constructor and set data here rather than “recording data on
the fly” as we try to in class Y2. The whole purpose of class Y2 is just
to show that Python provides great flexibility with respect to defining
attributes, and that there are no requirements to what a class must
contain.

7.1.5 Making Classes Without the Class Construct

Newcomers to the class conecpt often have a hard time understanding
what this concept is about. The present section tries to explain in more
detail how we can introduce classes without having the class construct
in the computer language. This information may or may not increase
your understanding of classes. If not, programming with classes will
definitely increase your understanding with time, so there is no reason
to worry. In fact, you may safely jump to Chapter 7.3 as there are no
important concepts in this section that later sections build upon.

A class contains a collection of variables (data) and a collection
of methods (functions). The collection of variables is unique to each
instance of the class. That is, if we make ten instances, each of them
has its own set of variables. These variables can be thought of as a
dictionary with keys equal to the variable names. Each instance then
has its own dictionary, and we may roughly view the instance as this
dictionary?®.

On the other hand, the methods are shared among the instances. We
may think of a method in a class as a standard global function that
takes an instance in the form of a dictionary as first argument. The
method has then access to the variables in the instance (dictionary)
provided in the call. For the Y class from Chapter 7.1.2 and an instance

5 The instance can also contain static class attributes (Chapter 7.7), but these are
to be viewed as global variables in the present context.

349

350

7 Introduction to Classes

y, the methods are ordinary functions with the following names and
arguments:

Y.value(y, t)
Y.formula(y)

The class acts as a namespace, meaning that all functions must be
prefixed by the namespace name, here Y. Two different classes, say
C1 and €2, may have functions with the same name, say value, but
when the value functions belong to different namespaces, their names
C1l.value and C2.value become distinct. Modules are also namespaces
for the functions and variables in them (think of math.sin, cmath.sin,
numpy. sin).

The only peculiar thing with the class construct in Python is that
it allows us to use an alternative syntax for method calls:

y.value(t)
y.formula()

This syntax coincides with the traditional syntax of calling class meth-
ods and providing arguments, as found in other computer languages,
such as Java, C#, C++, Simula, and Smalltalk. The dot notation is
also used to access variables in an instance such that we inside a method
can write self.v0 instead of self[’v0’] (self refers to y through the
function call).

We could easily implement a simple version of the class concept
without having a class construction in the language. All we need is
a dictionary type and ordinary functions. The dictionary acts as the
instance, and methods are functions that take this dictionary as the
first argument such that the function has access to all the variables in
the instance. Our Y class could now be implemented as

def value(self, t):
return self[’v0’]*t - 0.5%self[’g’]*t**2

def formula(self):
print ’vOxt - 0.5*xg*xt*x2; v0=Yg’ % self[’v0’]

The two functions are placed in a module called Y. The usage goes as
follows:

import Y
y = {°v0’: 4, ’g’: 9.81} # make an "instance"
yl = Y.value(y, t)

We have no constructor since the initialization of the variables is done
when declaring the dictionary y, but we could well include some ini-
tialization function in the Y module

7.1 Simple Function Classes 351

def init(vO0):
return {’v0’: vO, ’g’: 9.81}

The usage is now slightly different:

import Y
y = Y.init(4) # make an "instance"
yl = Y.value(y, t)

This way of implementing classes with the aid of a dictionary and a
set of ordinary functions actually forms the basis for class implemen-
tations in many languages. Python and Perl even have a syntax that
demonstrates this type of implementation. In fact, every class instance
in Python has a dictionary __dict__ as attribute, which holds all the
variables in the instance. Here is a demo that proves the existence of
this dictionary in class Y:

>>> y = Y(1.2)
>>> print y.__dict__
{’v0’: 1.2, ’g’: 9.8100000000000005}

To summarize: A Python class can be thought of as some variables
collected in a dictionary, and a set of functions where this dictionary
is automatically provided as first argument such that functions always
have full access to the class variables.

First Remark. We have in this section provided a view of classes from
a technical point of view. Others may view a class as a way of modeling
the world in terms of data and operations on data. However, in sciences
that employ the language of mathematics, the modeling of the world
is usually done by mathematics, and the mathematical structures pro-
vide understanding of the problem and structure of programs. When
appropriate, mathematical structures can conveniently be mapped on
to classes in programs to make the software simpler and more flexible.

Second Remark. The view of classes in this section neglects very impor-
tant topics such as inheritance and dynamic binding, which we treat
in Chapter 9. For more completeness of the present section, we briefly
describe how our combination of dictionaries and global functions can
deal with inheritance and dynamic binding (but this will not make
sense unless you know what inheritance is).

Data inheritance can be obtained by letting a subclass dictionary do
an update call with the superclass dictionary as argument. In this way
all data in the superclass are also available in the subclass dictionary.
Dynamic binding of methods is more complicated, but one can think of
checking if the method is in the subclass module (using hasattr), and
if not, one proceeds with checking super class modules until a version
of the method is found.

352

7 Introduction to Classes

7.2 More Examples on Classes

The use of classes to solve problems from mathematical and physical
sciences may not be so obvious. On the other hand, in many adminis-
trative programs for managing interactions between objects in the real
world the objects themselves are natural candidates for being modeled
by classes. Below we give some examples on what classes can be used
to model.

7.2.1 Bank Accounts

The concept of a bank account in a program is a good candidate for
a class. The account has some data, typically the name of the account
holder, the account number, and the current balance. Three things we
can do with an account is withdraw money, put money into the account,
and print out the data of the account. These actions are modeled by
methods. With a class we can pack the data and actions together into
a new data type so that one account corresponds to one variable in a
program.
Class Account can be implemented as follows:

class Account:
def __init__(self, name, account_number, initial_amount):
self .name = name
self.no = account_number
self.balance = initial_amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def dump(self):

s = ’%s, %s, balance: %s’ % \
(self.name, self.no, self.balance)
print s

Here is a simple test of how class Account can ue used:

>>> from classes import Account

>>> al = Account(’John Olsson’, ’19371554951°, 20000)
>>> a2 = Account(’Liz Olsson’, ’19371564761°’, 20000)
>>> al.deposit(1000)

>>> al.withdraw(4000)

>>> a2.withdraw(10500)

>>> al.withdraw(3500)

>>> print "al’s balance:", al.balance

al’s balance: 13500

>>> al.dump()

John Olsson, 19371554951, balance: 13500

>>> a2.dump()

Liz Olsson, 19371564761, balance: 9500

The author of this class does not want users of the class to operate
on the attributes directly and thereby change the name, the account

7.2 More Examples on Classes

number, or the balance. The intention is that users of the class should
only call the constructor, the deposit, withdraw, and dump methods, and
(if desired) inspect the balance attribute, but never change it. Other
languages with class support usually have special keywords that can
restrict access to class attributes and methods, but Python does not.
Either the author of a Python class has to rely on correct usage, or a
special convention can be used: Any name starting with an underscore
represents an attribute that should never be touched or a method that
should never be called. One refers to names starting with an underscore
as protected names. These can be freely used inside methods in the
class, but not outside.

In class Account, it is natural to protect access to the name, no,
and balance attributes by prefixing these names by an underscore.
For reading only of the balance attribute, we provide a new method
get_balance. The user of the class should now only call the methods
in the class and not access any attributes.

The new “protected” version of class Account, called AccountP, reads

class AccountP:
def __init__(self, name, account_number, initial_amount):
self._name = name
self._no = account_number

self._balance = initial_amount

def deposit(self, amount):
self._balance += amount

def withdraw(self, amount):
self._balance -= amount

def get_balance(self):
return self._balance

def dump(self):

s = ’%s, %s, balance: %s’ % \
(self._name, self._no, self._balance)
print s

We can technically access the attributes, but we then break the
convention that names starting with an underscore should never be
touched outside the class. Here is class AccountP in action:

>>> al = AccountP(’John Olsson’, ’19371554951’, 20000)
>>> al.deposit (1000)

>>> al.withdraw(4000)

>>> al.withdraw(3500)

>>> al.dump()

John Olsson, 19371554951, balance: 13500

>>> print al._balance # it works, but a convention is broken
13500

print al.get_balance() # correct way of viewing the balance
13500

>>> al._no = 219371554955’ # this is a "serious crime"

Python has a special construct, called properties, that can be used to
protect attributes from being changed. This is very useful, but the

353

354

7 Introduction to Classes

author considers properties a bit too complicated for this introductory
book.

7.2.2 Phone Book

You are probably familiar with the phone book on your mobile phone.
The phone book contains a list of persons. For each person you can
record the name, telephone numbers, email adress, and perhaps other
relevant data. A natural way of representing such personal data in a
program is to create a class, say class Person. The attributes of the
class holds data like the name, mobile phone number, office phone
number, private phone number, and email address. The constructor
may initialize some of the data about a person. Additional data can be
specified later by calling methods in the class. One method can print
the data. Other methods can register additional telephone numbers
and an email address. In addition we initialize some of the attributes
in a constructor method. The attributes that are not initialized when
constructing a Person instance can be added later by calling appropri-
ate methods. For example, adding an office number is done by calling
add_office_number.
Class Person may look as

class Person:
def __init__(self, name,

mobile_phone=None, office_phone=None,
private_phone=None, email=None) :

self.name = name

self .mobile mobile_phone

self.office = office_phone

self.private = private_phone

self.email = email

def add_mobile_phone(self, number):
self.mobile = number

def add_office_phone(self, number):
self.office = number

def add_private_phone(self, number):
self.private = number

def add_email (self, address):
self.email = address

Note the use of None as default value for various attributes: the ob-
ject Nome is commonly used to indicate that a variable or attribute is
defined, but yet not with a sensible value.

A quick demo session of class Person may go as follows:

>>> pl = Person(’Hans Hanson’,

N office_phone=’767828283’, email=’h@hanshanson.com’)
>>> p2 = Person(’0le Olsen’, office_phone=’767828292’)

>>> p2.add_email (’olsen@somemail .net’)

>>> phone_book = [p1, p2]

7.2 More Examples on Classes

It can be handy to add a method for printing the contents of a Person
instance in a nice fashion:

def dump(self):
s = self.name + ’\n’
if self.mobile is not None:

s += ’mobile phone: ¥%s\n’ 7 self.mobile
if self.office is not None:
s += ’office phone: %s\n’ 7 self.office

if self.private is not Nome:

s += ’private phone: %s\n’ % self.private
if self.email is not None:

s += ’email address: Y%s\n’ % self.email
print s

With this method we can easily print the phone book:

>>> for person in phone_book:
person.dump ()

Hans Hanson
office phone: 767828283
email address: h@hanshanson.com

Ole Olsen
office phone: 767828292
email address: olsen@somemail.net

A phone book can be a list of Person instances, as indicated in
the examples above. However, if we quickly want to look up the phone
numbers or email address for a given name, it would be more convenient
to store the Person instances in a dictionary with the name as key:

>>> phone_book = {’Hanson’: pl, ’0lsen’: p2}
>>> for person in sorted(phone_book): # alphabetic order
phone_book [person] . dump ()

The current example of Person objects is extended in Chapter 7.3.5.

7.2.3 A Circle

Geometric figures, such as a circle, are other candidates for classes in a
program. A circle is uniquely defined by its center point (xg, yo) and its
radius R. We can collect these three numbers as attributes in a class.
The values of xg, yg, and R are naturally initialized in the constructor.
Other methods can be area and circumference for calculating the area
7R? and the circumference 27 R:

class Circle:
def __init__(self, x0, yO, R):
self.x0, self.y0, self.R = x0, yO, R

def area(self):
return pi*self.Rx**2

def circumference(self):
return 2*pi*self.R

355

356

7 Introduction to Classes

An example of using class Circle goes as follows:

>>> ¢ = Circle(2, -1, 5)

>>> print ’A circle with radius %g at (%g, %g) has area %g’ % \
o (c.R, c.x0, c.y0, c.area())

A circle with radius 5 at (2, -1) has area 78.5398

The ideas of class Circle can be applied to other geometric objects
as well: rectangles, triangles, ellipses, boxes, spheres, etc. Exercise 7.4
tests if you are able to adapt class Circle to a rectangle and a triangle.

Remark. There are usually many solutions to a programming problem.
Representing a circle is no exception. Instead of using a class, we could
collect g, yg, and R in a list and create global functions area and
circumference that take such a list as argument:

x0, y0O, R =2, -1, 5
circle = [x0, yO, R]

def area(c):
R = c[2]
return pi*R**2

def circumference(c):
R = c[2]
return 2*pi*R

Alternatively, the circle could be represented by a dictionary with keys
’center’ and ’radius’:

circle = {’center’: (2, -1), ’radius’: 5}

def area(c):
R = c[’radius’]
return pi*R¥*2

def circumference(c):
R = c[’radius’]
return 2*pi*R

7.3 Special Methods

Some class methods have names starting and ending with a double
underscore. These methods allow a special syntax in the program and
are called special methods. The constructor __init__ is one example.
This method is automatically called when an instance is created (by
calling the class as a function), but we do not need to explicitly write
__init__. Other special methods make it possible to perform arithmetic
operations with instances, to compare instances with >, >=, 1=, etc., to
call instances as we call ordinary functions, and to test if an instance

is true or false, to mention some possibilities.

7.3 Special Methods

7.3.1 The Call Special Method

Computing the value of the mathematical function represented by class
Y on page 341, with y as the name of the instance, is performed by
writing y.value(t). If we could write just y(t), the y instance would
look as an ordinary function. Such a syntax is indeed possible and
offered by the special method named __call__. Writing y(¢) implies a
call

y.__call__(¢)

if class Y has the method __call__ defined. We may easily add this
special method:

class Y:

def call__(self, t):

return self.vO*t - 0.5%self.g*t**x2

The previous value method is now redundant. A good programming
convention is to include a __call__ method in all classes that represent
a mathematical function. Instances with __call__ methods are said
to be callable objects, just as plain functions are callable objects as
well. The call syntax for callable objects is the same, regardless of
whether the object is a function or a class instance. Given an object a,
callable(a) returns True if a is either a Python function or an instance
with a __call__ method.

In particular, an instance of class Y can be passed as the f argument

to the diff function on page 339:

y = Y(v0=5)
dydt = diff(y, 0.1)

Inside diff, we can test that f is not a function but an instance of
class Y. However, we only use f in calls, like £ (x), and for this purpose
an instance with a __call__ method works as a plain function. This
feature is very convenient.

The next section demonstrates a neat application of the call operator
__call__ in a numerical algorithm.

7.3.2 Example: Automagic Differentiation

Problem. Given a Python implementation f (x) of a mathematical func-
tion f(z), we want to create an object that behaves as a Python func-
tion for computing the derivative f’(z). For example, if this object is
of type Derivative, we should be able to write something like

357

358

7 Introduction to Classes

>>> def f(x):
return x**3

>>> dfdx = Derivative(f)
>>> x = 2

>>> dfdx (x)
12.000000992884452

That is, dfdx behaves as a straight Python function for implementing
the derivative 322 of 3 (well, the answer is only approximate, with
an error in the 7th decimal, but the approximation can easily be im-
proved).

Maple, Mathematica, and many other software packages can do ex-
act symbolic mathematics, including differentiation and integration. A
Python package SymPy for symbolic mathematics is free and simple
to use, and could easily be applied to calculate the exact derivative of
a large class of functions f(x). However, functions that are defined in
an algorithmic way (e.g., solution of another mathematical problem),
or functions with branches, random numbers, etc., pose fundamental
problems to symbolic differentiation, and then numerical differentia-
tion is required. Therefore we base the computation of derivatives in
Derivative instances on finite difference formulas. This strategy also
leads to much simpler code compared to exact symbolic differentiation.

Solution. The most basic, but not the best formula for a numerical
derivative is (7.1), which we reuse here for simplicity. The reader can
easily switch from this formula to a better one if desired. The idea
now is that we make a class to hold the function to be differentiated,
call it £, and a stepsize h to be used in the numerical approximation.
These variables can be set in the constructor. The __call__ operator
computes the derivative with aid of the general formula (7.1). All this
can be coded as

class Derivative:

def __init__(self, f, h=1E-9):
self.f = £
self.h = float(h)

def __call__(self, x):

f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

Note that we turn h into a float to avoid potential integer division.
Below follows an application of the class to differentiate two func-
tions f(z) = sinx and g(t) = t3:

>>> from math import sin, cos, pi
>>> df = Derivative(sin)

>>> x = pi

>>> df (x)

-1.000000082740371

>>> cos(x) # exact

-1.0

7.3 Special Methods

>>> def g(t):
.. return t**3

>>> dg = Derivative(g)

>>> t =1

>>> dg(t) # compare with 3 (exact)
3.000000248221113

The expressions df (x) and dg(t) look as ordinary Python functions
that evaluate the derivative of the functions sin(x) and g(t). Class
Derivative works for (almost) any function f(x).

Application. In which situations will it be convenient to automatically
produce a Python function df(x) which is the derivative of another
Python function £ (x)? One example arises when solving nonlinear al-
gebraic equations f(z) = 0 with Newton’s method and we, because
of laziness, lack of time, or lack of training do not manage to derive
f'(x) by hand. Consider the Newton function from page 248 for solving
f(z) = 0. Suppose we want to solve

f(z) =10°(z - 0.9)%(z - 1.1)> =0

by Newton’s method. The function f(x) is plotted in Figure 7.2. The

0.6 4

04 | 1

0.2 4

0.9 0.95 1 1.05 1.1 1.15
Fig. 7.2 Plot of y = 10°(z — 0.9)%(x — 1.1)3.

following session employs the Derivative class to quickly make a deriva-
tive so we can call Newton’s method:

>>> from classes import Derivative

>>> from Newton import Newton

>>> def f(x):

. return 100000*(x — 0.9)**2 * (x - 1.1)**3

>>> df = Derivative(f)
>>> Newton(f, 1.01, df, epsilon=1E-5)
(1.0987610068093443, 8, -7.5139644257961411e-06)

359

360

7 Introduction to Classes

The output 3-tuple holds the approximation to a root, the number of
iterations, and the value of f at the approximate root (a measure of
the error in the equation).

The exact root is 1.1, and the convergence toward this value is very
slow® (for example, an epsilon tolerance of 10719 requires 18 iterations
with an error of 1073). Using an exact derivative gives almost the same
result:

>>> def df_exact(x):
. return 100000% (2% (x-0.9)*(x-1.1)**3 + \
(x-0.9) #*2x3% (x-1.1) **2)

>>> Newton(f, 1.01, df_exact, epsilon=1E-5)
(1.0987610065618421, 8, -7.5139689100699629e-06)

This example indicates that there are hardly any drawbacks in using a
“smart” inexact general differentiation approach as in the Derivative
class. The advantages are many — most notably, Derivative avoids po-
tential errors from possibly incorrect manual coding of possibly lengthy
expressions of possibly wrong hand-calculations. The errors in the in-
volved approximations can be made smaller, usually much smaller than
other errors, like the tolerance in Newton’s method in this example or
the uncertainty in physical parameters in real-life problems.

7.3.3 Example: Automagic Integration

We can apply the ideas from Chapter 7.3.2 to make a class for com-
puting the integral of a function numerically. Given a function f(x),
we want to compute

F(z;a) = /x f(t)dt.

The computational technique consists of using the Trapezoidal rule
with n intervals (n + 1 points):

n—1
r 1 i 1
/ f(#)dt = h <2f(a) + D fla+ih) + 2f(x>> . (72)
a i=1
where h = (z — a)/n. In an application program, we want to compute
F(z;a) by a simple syntax like

def f(x):
return exp(-x**2)*sin(10%x)

6 Newton’s method converges very slowly when the derivative of f is zero at the roots

of f. Even slower convergence appears when higher-order derivatives also are zero,
like in this example. Notice that the error in x is much larger than the error in the
equation (epsilon).

7.3 Special Methods 361

a=0; n= 200
F = Integral(f, a, n)
print F(x)

Here, f(x) is the Python function to be integrated, and F(x) behaves
as a Python function that calculates values of F(x;a).

A Simple Implementation. Consider a straightforward implementation
of the Trapezoidal rule in a Python function:

def trapezoidal(f, a, x, n):
h = (x-a)/float(n)
I = 0.5%f(a)
for i in iseq(l, n-1):
I += f(a + ixh)
I += 0.5%f(x)
I x=h
return I

The iseq function is an alternative to range where the upper limit is
included in the set of numbers (see Chapters 4.3.1 and 4.5.6). We can
alternatively use range(1, n), but the correspondence with the indices
in the mathematical description of the rule is then not completely
direct. The iseq function is contained in scitools.std, so if you make
a “star import” from this module, you have iseq available.

Class Integral must have some attributes and a __call__ method.
Since the latter method is supposed to take x as argument, the other
parameters a, f, and n must be class attributes. The implementation
then becomes

class Integral:
def __init__(self, f, a, n=100):
self.f, self.a, self.n =f, a, n

def __call__(self, x):
return trapezoidal(self.f, self.a, x, self.n)

Observe that we just reuse the trapezoidal function to perform
the calculation. We could alternatively have copied the body of the
__call__ method. However, if we al-
ready have this algorithm implemented and tested as a function, it is
better to call the function. The class is then known as a wrapper of
the underlying function. A wrapper allows something to be called with
alternative syntax. With the Integral(x) wrapper we can supply the
upper limit of the integral only — the other parameters are supplied
when we create an instance of the Integral class.

An application program computing fozﬂ sin z dxr might look as fol-
lows:

trapezoidal function into the

from math import sin, pi

G = Integral(sin, 0, 200)
value = G(2xpi)

362

7 Introduction to Classes

An equivalent calculation is

value = trapezoidal(sin, 0O, 2xpi, 200)

Remark. Class Integral is inefficient (but probably more than fast
enough) for plotting F'(z;a) as a function z. Exercise 7.22 suggests to
optimize the class for this purpose.

7.3.4 Turning an Instance into a String

Another special method is __str__. It is called when a class instance
needs to be converted to a string. This happens when we say print a,
and a is an instance. Python will then look into the a instance for a
__str__ method, which is supposed to return a string. If such a special
method is found, the returned string is printed, otherwise just the name
of the class is printed. An example will illustrate the point. First we
try to print an y instance of class Y from Chapter 7.1.2 (where there is

no __str__ method):

>>> print y
<__main__.Y instance at 0xb751238c>

This means that y is an Y instance in the __main__ module (the main
program or the interactive session). The output also contains an ad-
dress telling where the y instance is stored in the computer’s memory.

If we want print y to print out the y instance, we need to define the
__str__ method in class Y:

class Y:

def __str__(self):

return ’vO*t - 0.5*gkt**2; v0=Yg’ ' self.v0

replaces our previous value method. Python programmers with the
experience that we now have gained will therefore write class Y with
special methods only:

Typically, __str__ replaces our previous formula method and __call

class Y:
def __init__(self, v0):
self.v0 = vO
self.g = 9.81

def __call__(self, t):
return self.vO*t - 0.b5*self.g¥t**2

def __str__(self):
return ’vO*t - 0.5*g*t**2; v0=Yg’ ’ self.v0

Let us see the class in action:

7.3 Special Methods

>>> y = Y(1.5)

>>> y(0.2)

0.1038

>>> print y

vO*t - 0.5*g*t**x2; v0=1.5

What have we gained by using special methods? Well, we can still only
evaluate the formula and write it out, but many users of the class will
claim that the syntax is more attractive since y(t) in code means y(t)
in mathematics, and we can do a print y to view the formula. The
bottom line of using special methods is to achieve a more user-friendly
syntax. The next sections illustrate this point further.

7.3.5 Example: Phone Book with Special Methods

Let us reconsider class Person from Chapter 7.2.2. The dump method in
that class is better implemented as a __str__ special method. This is
easy: We just change the method name and replace print s by return
S.

Storing Person instances in a dictionary to form a phone book is
straightforward. However, we make the dictionary a bit easier to use if
we wrap a class around it. That is, we make a class PhoneBook which
holds the dictionary as an attribute. An add method can be used to

add a new person:

class PhoneBook:
def init__(self):

self.contacts = {} # dict of Person instances

def add(self, name, mobile=None, office=None,
private=None, email=None):
p = Person(name, mobile, office, private, email)
self.contacts[name] = p

A __str__ can print the phone book in alphabetic order:

def __str__(self):
s:)l
for p in sorted(self.contacts):
s += str(self.contacts[p])
return s

call

To retrieve a Person instance, we use the with the person’s

name as argument:

def call__(self, name):

return self.contacts[name]

The only advantage of this method is simpler syntax: For a PhoneBook
b we can get data about NN by calling b(’NN’) rather than accessing
the internal dictionary b.contacts[’NN’].

We can make a simple test function for a phone book with three
names:

363

364

7 Introduction to Classes

b = PhoneBook()

b.add(’0le Olsen’, office=’767828292’,
email=’olsen@somemail .net’)

b.add(’Hans Hanson’,
office=’767828283’, mobile=’995320221’)

b.add(’Per Person’, mobile=’906849781°)

print b(’Per Person’)

print b

The output becomes

Per Person
mobile phone: 906849781

Hans Hanson
mobile phone: 995320221
office phone: 767828283

Ole Olsen
office phone: 767828292
email address: olsen@somemail.net

Per Person

mobile phone: 906849781
You are strongly encouraged to work through this last demo program
by hand and simulate what the program does. That is, jump around
in the code and write down on a piece of paper what various variables
contain after each statement. This is an important and good exercise!
You enjoy the happiness of mastering classes if you get the same output
as above. The complete program with classes Person and PhoneBook
and the test above is found in the file phone_book.py. You can run this
program, statement by statement, in a debugger (see Appendix D.1)
to control that your understanding of the program flow is correct.

Remark. Note that the names are sorted with respect to the first
names. The reason is that strings are sorted after the first character,
then the second character, and so on. We can supply our own tailored
sort function, as explained in Exercise 2.44. One possibility is to split
the name into words and use the last word for sorting;:

def last_name_sort(namel, name2):
lastnamel = namel.split() [-1]
lastname2 = name2.split() [-1]
if lastnamel < lastname?2:
return -1
elif lastnamel > lastname?2:
return 1
else: # equality
return O

for p in sorted(self.contacts, last_name_sort):

7.3 Special Methods

7.3.6 Adding Objects

Let a and b be instances of some class C. Does it make sense to write
a + b? Yes, this makes sense if class C has defined a special method
add

class C:

__add__(self, other):

The __add__ method should add the instances self and other and
return the result as an instance. So when Python encounters a + b, it
will check if class C has an __add__ method and interpret a + b as the

call a.__add__(b). The next example will hopefully clarify what this
idea can be used for.

7.3.7 Example: Class for Polynomials

Let us create a class Polynomial for polynomials. The coefficients in the
polynomial can be given to the constructor as a list. Index number %
in this list represents the coefficients of the 2* term in the polynomial.
That is, writing Polynomial([1,0,-1,2]) defines a polynomial

140-2—1-2242-22=1—22+223.

Polynomials can be added (by just adding the coefficients) so our class
may have an __add__ method. A __call__ method is natural for evalu-

ating the polynomial, given a value of x. The class is listed below and
explained afterwards.

class Polynomial:
def __init__(self, coefficients):
self.coeff = coefficients

def __call__(self, x):
s =0
for i in range(len(self.coeff)):
s += self.coeff [i]*x**i

return s

def __add__(self, other):
start with the longest list and add in the other:
if len(self.coeff) > len(other.coeff):
sum_coeff = self.coeff[:] # copy!
for i in range(len(other.coeff)):
sum_coeff[i] += other.coeff[i]
else:
sum_coeff = other.coeff[:] # copy!
for i in range(len(self.coeff)):
sum_coeff [i] += self.coeff[i]
return Polynomial (sum_coeff)

365

366

7 Introduction to Classes

Implementation. Class Polynomial has one attribute: the list of coef-
ficients. To evaluate the polynomial, we just sum up coefficient no. ¢
times 2 for i = 0 to the number of coefficients in the list.

The __add__ method looks more advanced. The idea is to add the
two lists of coefficients. However, it may happen that the lists are of
unequal length. We therefore start with the longest list and add in the
other list, element by element. Observe that sum_coeff starts out as
a copy of self.coeff: If not, changes in sum_coeff as we compute the
sum will be reflected in self.coeff. This means that self would be
the sum of itself and the other instance, or in other words, adding two
instances, p1+p2, changes p1 — this is not what we want! An alternative
implementation of class Polynomial is found in Exercise 7.32.

A subtraction method __sub__ can be implemented along the lines
of __add__, but is slightly more complicated and left to the reader
through Exercise 7.33. A somewhat more complicated operation, from
a mathematical point of view, is the multiplication of two polynomials.
Let p(z) = Ef\io ¢t and q(z) = Z;V:o d;x? be the two polynomials.
The product becomes

M N M N
(Z cixi> Z dj:z:j = Z Z cl-dj:v”j .
=0

i=0 i=0 57=0

The double sum must be implemented as a double loop, but first the
list for the resulting polynomial must be created with length M + N +1
(the highest exponent is M + N and then we need a constant term).
The implementation of the multiplication operator becomes

def __mul__(self, other):
self.coeff
other.coeff
len(c) - 1
len(d) - 1
result_coeff = zeros(M+N-1)
for i in range(0, M+1):
for j in range(0, N+1):
result_coeff[i+j] += c[il*d[j]
return Polynomial (result_coeff)

c
d
M
N

We could also include a method for differentiating the polynomial
according to the formula

n n
d el i1
% CGIr = 1C;x .
=0 i=1

If ¢; is stored as a list c, the list representation of the derivative, say
its name is dc, fulfills dc[i-1] = i*c[i] for i running from 1 to the
largest index in c. Note that dc has one element less than c.

There are two different ways of implementing the differentiation
functionality, either by changing the polynomial coefficients, or by re-

7.3 Special Methods

turning a new Polynomial instance from the method such that the
original polynomial instance is intact. We let p.differentiate() be an
implementation of the first approach, i.e., this method does not return
anything, but the coefficients in the Polynomial instance p are altered.
The other approach is implemented by p.derivative (), which returns a
new Polynomial object with coefficients corresponding to the derivative
of p.
The complete implementation of the two methods is given below:

def differentiate(self):
"""Differentiate this polynomial in-place."""
for i in range(1l, len(self.coeff)):
self.coeff[i-1] = ixself.coeff[i]
del self.coeff[-1]

def derivative(self):
"""Copy this polynomial and return its derivative."""
dpdx = Polynomial(self.coeff[:]) # make a copy
dpdx.differentiate()
return dpdx

The Polynomial class with a differentiate method and not a
derivative method would be mutable (see Chapter 6.2.3) and al-
low in-place changes of the data, while the Polynomial class with
derivative and not differentiate would yield an immutable object
where the polynomial initialized in the constructor is never altered”.
A good rule is to offer only one of these two functions such that
a Polynomial object is either mutable or immutable (if we leave
out differentiate, its function body must of course be copied into
derivative since derivative now relies on that code). However,
since the main purpose of this class is to illustrate various types of
programming techniques, we keep both versions.

Usage. As a demonstration of the functionality of class Polynomial, we
introduce the two polynomials

pi(z) =1—x, po(x) =2 — 62" — 25,

>>> pl = Polynomial([1, -1])
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 = pl + p2

>>> print p3.coeff

(1, 0, 0, 0, -6, -1]
>>> p4 = plxp2

>>> print p4.coeff

o, 1, -1, o, -6, 5, 1]
>>> p5 = p2.derivative()

7 Technically, it is possible to grab the coeff variable in a class instance and alter
this list. By starting coeff with an underscore, a Python programming convention
tells programmers that this variable is for internal use in the class only, and not to
be altered by users of the instance, see Chapters 7.2.1 and 7.6.2.

367

368

7 Introduction to Classes

>>> print p5.coeff
[1, 0, 0, -24, -5]

One verification of the implementation may be to compare p3 at (e.g.)
x = 1/2 with p1(z) + pa(2):

>>> x = 0.5

>>> pl_plus_p2_value = pl(x) + p2(x)
>>> p3_value = p3(x)

>>> print pl_plus_p2_value - p3_value

Note that p1 + p2 is very different from p1(x) + p2(x). In the former
case, we add two instances of class Polynomial, while in the latter case
we add two instances of class float (since p1(x) and p2(x) imply calling
__call__ and that method returns a float object).

Pretty Print of Polynomials. The Polynomial class can also be equipped
with a __str__ method for printing the polynomial to the screen. A

first, rough implementation could simply add up strings of the form
+ self.coeff[i]*x"i:

class Polynomial:

def __str__(self):

s = 7
for i in range(len(self.coeff)):

s += 7 + Ygxx~%d’ ¥ (self.coeff[i], i)
return s

However, this implementation leads to ugly output from a math-
ematical viewpoint. For instance, a polynomial with coeflicients
[1,0,0,-1,-6] gets printed as

+ 1*xx70 + 0*x"1 + 0*x"2 + —-1*%x"3 + -6*x"4

A more desired output would be
1 - x°3 - 6%x"4

That is, terms with a zero coefficient should be dropped; a part >+ -’ of
the output string should be replaced by ’- ’; unit coefficients should
be dropped, i.e., > 1*’ should be replaced by space ’ ’; unit power
should be dropped by replacing ’x~1 ’ by ’x ’; zero power should be
dropped and replaced by 1, initial spaces should be fixed, etc. These
adjustments can be implemented using the replace method in string
objects and by composing slices of the strings. The new version of the
__str__ method below contains the necessary adjustments. If you find
this type of string manipulation tricky and difficult to understand, you
may safely skip further inspection of the improved __str__ code since
the details are not essential for your present learning about the class
concept and special methods.

7.3 Special Methods

class Polynomial:

def __str__(self):
s=)7
for i in range(0, len(self.coeff)):
if self.coeff[i] != O:
s += 7 + Yg*x~%d’ % (self.coeff[i], i)

fix layout:

s = s.replace(’+ -’, - ?)

s = s.replace(’x70’, ’1°)

s = s.replace(’ 1x’, ’)

s = s.replace(’x"1 ’, ’x)

s = s.replace(’x"1’, ’x’)

if s[0:3] == > + ’: # remove initial +
s = s[3:]

if s[0:3] == > - ’: # fix spaces for initial -
s ==’ + s[3:]

return s

Programming sometimes turns into coding (what one think is) a gen-
eral solution followed by a series of special cases to fix caveats in the
“general” solution, just as we experienced with the __str__ method
above. This situation often calls for additional future fixes and is often
a sign of a suboptimal solution to the programming problem.

Pretty print of Polynomial instances can be demonstrated in an in-

teractive session:

>>> pl = Polynomial([1, -1])

>>> print pl

1-x"1

>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p2.differentiate()

>>> print p2

1 - 24%x"3 - 5%x74

7.3.8 Arithmetic Operations and Other Special Methods

Given two instances a and b, the standard binary arithmetic operations
with a and b are defined by the following special methods:

e a+b:a.__add__(b)
e a-b:a.__sub__(b)
e axb :a.__mul__(b)
e a/b:a.__div__(b)
°

a*xb : a.__pow__(b)
Some other special methods are also often useful:

the length of a, len(a): a.__len__()

the absolute value of a, abs(a): a.__abs__()
a==Db:a.__eq__(b)

a>b:a.__gt__(b)

a>b:a.__ge__(b)

a<b:a.__1t__(b)

369

370

7 Introduction to Classes

a<=b:a.__le__(b)

a !=b:a.__ne__(b)

-a:a.__neg__Q)

evaluating a as a boolean expression (as in the test if a:) implies
calling the special method a.__bool__(), which must return True
or False — if __bool__ is not defined, __len__ is called to see if the
length is zero (False) or not (True)

We can implement such methods in class Polynomial, see Exercise 7.33.
Chapter 7.5 contains many examples on using the special methods
listed above.

7.3.9 More on Special Methods for String Conversion

Look at this class with a __str__ method:

>>> class MyClass:
def init__(self):

self.data = 2
def __str__(self):

return ’In __str__: %s’ % str(self.data)

>>> a = MyClass()
>>> print a
In __str__: 2

Hopefully, you understand well why we get this output (if not, go back
to Chapter 7.3.4).

But what will happen if we write just a at the command prompt in
an interactive shell?

>>> a
<__main__.MyClass instance at 0xb75125ac>

When writing just a in an interactive session, Python looks for a special
method __repr__ in a. This method is similar to __str__ in that it
turns the instance into a string, but there is a convention that __str__
is a pretty print of the instance contents while __repr__ is a complete
represention of the contents of the instance. For a lot of Python classes,
including int, float, complex, list, tuple, and dict, __
__str__ give identical output. In our class MyClass the __repr__ is
missing, and we need to add it if we want

repr__ and

>>> a

to write the contents like print a does.
Given an instance a, str(a) implies calling a.__str__() and repr(a)
implies calling a.__repr__(). This means that

7.3 Special Methods 371

>>> a
is actually a repr(a) call and

>>> print a

is actually a print str(a) statement.
A simple remedy in class MyClass is to define

def __repr__(self):
return self.__str__() # or return str(self)

However, as we explain below, the __repr__ is best defined differently.

Recreating Objects from Strings. The Python function eval(e) eval-
uates a valid Python expression contained in the string e, see Chap-
ter 3.1.2. It is a convention that __repr__ returns a string such that
eval applied to the string recreates the instance. For example, in case
of the Y class from page 341, __repr__ should return >Y(10)’ if the v0
variable has the value 10. Then eval(’Y(10)’) will be the same as if
we had coded Y(10) directly in the program or an interactive session.
Below we show examples of __repr__ methods in classes Y (page 341),
Polynomial (page 365), and MyClass (above):
class Y:
&éf __repr__(self):
return ’Y(v0=¥%s)’ % self.vO0

class Polynomial:

def __repr__(self):
return ’Polynomial (coefficients=Ys)’ % self.coeff

class MyClass:

def repr__(self):

return ’MyClass()’

With these definitions, eval(repr(x)) recreates the object x if it is of
one of the three types above. In particular, we can write x to file and
later recreate the x from the file information:

somefile is some file object
somefile.write(repr(x))
somefile.close()

data = somefile.readline()
x2 = eval(data) # recreate object

Now, x2 will be equal to x (x2 == x evaluates to true).

372

7 Introduction to Classes

7.4 Example: Solution of Differential Equations

An ordinary differential equation (ODE), where the unknown is a func-
tion u(t), can be written in the generic form

u'(t) = f(u(t),t). (7.3)

In addition, an initial condition, u(0) = ug, must be associated with
this ODE to make the solution of (7.3) unique. The function f reflects
an expression with v and/or t. Some important examples of ODEs and
their corresponding forms of f are given below.

1. Exponential growth of money or populations:
flu,t) = au, (7.4)

where « is a given constant expressing the growth rate of u.
2. Logistic growth of a population under limited resources:

u

) = (1 - 7) : 7.5

Pty = o (1- % (75)
where « is the initial growth rate and R is the maximum possible
value of u.

3. Radioactive decay of a substance:

f(u,t) = —au, (7.6)

where a is the rate of decay of u.
4. Body falling in a fluid:

f(uvt) = _b|u|u + 9, (77)

where b models the fluid resistance, g is the acceleration of gravity,
and w is the body’s velocity (see Exercise 7.25 on page 405).
5. Newton’s law of cooling:

fu,t) = —h(u — s), (7.8)

where u is the temperature of a body, h is a heat transfer coefficient
between the body and its surroundings, and s is the temperature of
the surroundings.

Appendix B gives an introduction to ODEs and their numerical solu-
tion, and you should be familiar with that or similar material before
reading on.

The purpose of the present section is to design and implement a
class for the general ODE u' = f(u,t). You need to have digested the
material about classes in Chapters 7.1.2, 7.3.1, and 7.3.2.

7.4 Example: Solution of Differential Equations

7.4.1 A Function for Solving ODEs

A very simple solution method for a general ODE on the form (7.3) is
the Forward Euler method:

Upg1 = Uk + At f(ug, tr) - (7.9)

Here, u; denotes the numerical approximation to the exact solution u
at time tg, At is a time step, and if all time steps are equal, we have
that t, = kAt, k=0,...,n.

First we will implement the method (7.9) in a simple program, tai-
lored to the specific ODE v’ = u (i.e., f(u,t) = win (7.3)). Our goal is
to compute u(t) for ¢ € [0, T]. How to perform this computation is ex-
plained in detail in Appendix B.2. Here, we follow the same approach,
but using lists instead of arrays to store the computed uy, ..., u, and
to, - - ., tn values. The reason is that lists are more dynamical if we later
introduce more sophisticated solution methods where At may change
during the solution so that the value of n (i.e., length of arrays) is not
known on beforehand. Let us start with sketching a “flat program”:

Integrate u’=u, u(0)=u0, in steps of dt until t=T

u0 =1
T=23
dt = 0.1

u=1[1]; t=10] # ulk] is the solution at time t[k]

u.append (u0)
t.append (0)
n = int(round(T/dt))
for k in range(n):
unew = ulk] + dt*ulk]

u.append (unew)
tnew = t[-1] + dt
t.append (tnew)
from scitools.std import plot
plot(t, w)

The new w1 and tx41 values, stored in the unew and tnew variables,
are appended to the u and t lists in each pass in the loop over k.

Unfortunately, the code above can only be applied to a specific ODE
using a specific numerical method. An obvious improvement is to make
a reusable function for solving a general ODE. An ODE is specified by
its right-hand side function f(u,t). We also need the parameters uy,
At, and T to perform the time stepping. The function should return
the computed uyg,...,u, and tg,...,t, values as two separate arrays
to the calling code. These arrays can then be used for plotting or data
analysis. An appropriate function may look like

def ForwardEuler(f, dt, u0O, T):
"""Integrate u’=f(u,t), u(0)=u0, in steps of dt until t=T."""
u=1[]; t =1[# ulk] is the solution at time t[k]
u.append (u0)

373

374

7 Introduction to Classes

t.append (0)
n = int(round(T/dt))
for k in range(n):
unew = ulk] + dtxf(ulk], t[k])

u.append (unew)
tnew = t[-1] + dt
t.append (tnew)
return numpy.array(u), numpy.array(t)

Here, £ (u, t) is a Python implementation of f(u,t) that the user must
supply. For example, we may solve v’ = u for t € (0, 3), with u(0) = 1,
and At = 0.1 by the following code utilizing the shown ForwardEuler
function:

def f(u, t):
return u

0.

= 1
, t = ForwardEuler(f, dt, u0, T)

compare numerical solution and exact solution in a plot:
from scitools.std import plot, exp
u_exact = exp(t)
plot(t, u, ’r-’, t, u_exact, ’b-’,
xlabel="t’, ylabel=’u’, legend=(’numerical’, ’exact’),
title="Solution of the ODE u’=u, u(0)=1")

Observe how easy it is to plot u versus t and also add the exact solution
u = e for comparison.

7.4.2 A Class for Solving ODEs

Instead of having the numerical method for solving a general ODE
implemented as a function, we now want a class for this purpose. Say
the name of the class is ForwardEuler. To solve an ODE specified by
a Python function f(u, t), from time t0 to some time T, with steps
of size dt, and initial condition u0 at time t0, it seems convenient to
write the following lines of code:

method = ForwardEuler(f, dt)
method.set_initial_condition(u0, tO0)
u, t = method.solve(T)

The constructor of the class stores £ and the time step dt. Then there
are two basic steps: setting the initial condition, and calling solve to
advance the solution to a specified time level. Observe that we do not
force the initial condition to appear at ¢ = 0, but at some arbitrary
time. This makes the code more general, and in particular, we can call
the solve again to advance the solution further in time, say to 27"

7.4 Example: Solution of Differential Equations

method.set_initial_condition(ul[-1], t[-1])
u2, t2 = method.solve(2x*T)
plot(t, u, ’r-’, t2, u2, ’r-’)

The initial condition of this second simulation is the final u and t values
of the first simulation. To plot the complete solution, we just plot the
individual simulations.

The task now is to write a class ForwardEuler that allow this type
of user code. Much of the code from the ForwardEuler function above
can be reused, but it is reorganized into smaller pieces in a class. Such
reorganization is known as refactoring (see also Chapter 3.6.2). An
attempt to write the class appears below.

class ForwardEuler:
nnn

Class for solving an ODE,
du/dt = f(u, t)
by the ForwardEuler method.

Class attributes:
t: array of time values
u: array of solution values (at time points t)
k: step number of the most recently computed solution
f: callable object implementing f(u, t)
dt: time step (assumed constant)
nnn
def __init__(self, £, dt):
self.f, self.dt = f, dt

def set_initial_condition(self, u0, t0=0):
self.u 1 # ulk] is solution at time t[k]
self.t [1 # time levels in the solution process

self.u.append(float(u0))
self .t.append(float (t0))
self .k = 0 # time level counter

def solve(self, T):
"""Advance solution in time until t <= T."""

tnew = 0

while tnew <= T:
unew = self.advance()
self.u.append (unew)

u
tnew = self.t[-1] + self.dt
self.t.append(tnew)
self .k += 1

return numpy.array(self.u), numpy.array(self.t)

def advance(self):
"""Advance the solution one time step."""
load attributes into local variables to
obtain a formula that is as close as possible
to the mathematical notation:
u, dt, f, k, t =\
self.u, self.dt, self.f, self.k, self.t[-1]

unew = ulk] + dt*f(ulk], t)
return unew

375

376

7 Introduction to Classes

We see that we initialize two lists for the u; and ¢; values at the time
we set the initial condition. The solve method implements the time
loop as in the ForwardEuler function. However, inside the time loop,
a new uy,1 value (unew) is computed by calling another class method,
self.advance, which here implements the numerical method (7.9).

Changing the numerical method is just a matter of changing the
advance function only. We could, of course, put the numerical updating
formula explicitly inside the solve method, but changing the numerical
method would then imply editing internals of a method rather than
replacing a complete method. The latter task is considered less error-
prone and therefore a better programming strategy.

7.4.3 Verifying the Implementation

We need a problem where the exact solution is known to check the cor-
rectness of class ForwardEuler. Preferably, we should have a problem
where the numerical solution is exact such that we avoid dealing with
approximation errors in the Forward Euler method. It turns out that
if the solution w(t) is linear in ¢, then the Forward Euler method will
reproduce this solution exactly. Therefore, we choose u(t) = at + uy,
with (e.g.) @ = 0.2 and ug = 3. The corresponding f is the derivative of
u, i.e., f(u,t) = a. This is obviously a very simple right-hand side with-
out any u or t. We can make f more complicated by adding something
that is zero, e.g., some expression with u — at — ug, say (u — at — ug)?,
so that f(u,t) = a+ (u— at — up)™.

We implement our special f and the exact solution in two functions
_f1 and _u_solution_f1:

def _fi(u, t):
return 0.2 + (u - _u_solution_f£f1(t))x**x4

def _u_solution_f1(t):
return 0.2*%t + 3

Testing the code is now a matter of performing the steps

uo0 = 3
dt = 0.4
T =3

method = ForwardEuler(_f1, dt)
method.set_initial_condition(u0, 0)
u, t = method.solve(T)

u_exact = _f1_solution(t)

print ’Numerical:\n’, u

print ’Exact:’, ’\n’, u_exact

The output becomes

Numerical:

[3. 3.08 3.16 3.24 3.32 3.4 3.48 3.56 3.64]
Exact:

[3. 3.08 3.16 3.24 3.32 3.4 3.48 3.56 3.64]

showing that the code works as it should in this example.

7.4 Example: Solution of Differential Equations

7.4.4 Example: Logistic Growth

A more exciting application is to solve the logistic equation (B.23),

u'(t) = au(t) <1 - ug)> :

with the f(u,t) function specified in (7.5).

First we may create a class for holding information about this prob-
lem: «, R, the initial condition, and the right-hand side. We may also
add a method for printing the equation and initial condition. This
problem class can then be expressed as

class Logistic:
"""Problem class for a logistic ODE."""
def __init__(self, alpha, R, u0):

self.alpha, self.R, self.u0 = alpha, float(R), u0

def __call__(self, u, t):
"""Return f(u,t) for the logistic ODE."""
return self.alpha*u*(1 - u/self.R)

def __str__(self):
"""Return ODE and initial condition."""
return "u’ (t) = Yg*ux(1 - u/%g) \nu(0)=Vkg" % \
(self.alpha, self.R, self.u0)

Running a case with @ = 0.2, R = 1, u(0) = 0.1, At = 0.1, and
simulating up to time 7' = 40, can be performed in the following func-
tion:

def logistic():
problem = Logistic(0.2, 1, 0.1)
T = 40
dt = 0.1
method = ForwardEuler(problem, dt)
method.set_initial_condition(problem.u0, 0)
u, t = method.solve(T)

from scitools.std import plot, hardcopy, xlabel, ylabel, title
plot(t, w)
xlabel(’t’); ylabel(’u’)
title(’Logistic growth: alpha=0.2, dt=lg, %d steps’ \
% (dt, len(u)-1))

The resulting plot is shown in Figure 7.3. Note one aspect of this
function: the “star import”, as in from scitools.std import *, is not
allowed inside a function (or class method for that sake), so we need to
explicitly list all the functions we need to import. (We could, as in the
previous example, just import plot and rely on keyword arguments to
set the labels, title, and output file.)

The ForwardEuler class is further developed in Chapter 9.4, where
it is shown how we can easily modify the class to implement other
numerical methods. In that chapter we extend the implementation to
systems of ODEs as well.

377

378

7 Introduction to Classes

Logistic growth: alpha=0.2, dt=0.1, 400 steps
1 T T T T T

0.9 - q

0.8 - B

0.7 q

0.6 - 4

05 - q

04 | B

03 - B

02 4

0.1 I I I I I I I
0 5 10 15 20 25 30 35 40

t

Fig. 7.3 Plot of the solution of the ODE problem «' = 0.2u(1 — u), »(0) = 0.1.

7.5 Example: Class for Vectors in the Plane

This section explains how to implement two-dimensional vectors in
Python such that these vectors act as objects we can add, subtract,
form inner products with, and do other mathematical operations on. To
understand the forthcoming material, it is necessary to have digested
Chapter 7.3, in particular Chapters 7.3.6 and 7.3.8.

7.5.1 Some Mathematical Operations on Vectors

Vectors in the plane are described by a pair of real numbers, (a,b).
In Chapter 4.1.2 we presented mathematical rules for adding and sub-
tracting vectors, multiplying two vectors (the inner or dot or scalar
product), the length of a vector, and multiplication by a scalar:

(a,b) + (¢,d) = (a+ ¢, b+ d),
(a,b) — (¢,d) = (a — ¢, b—d),
(a,b) - (¢c,d) = ac+ bd,
(@, b)[| = v/(a,b) - (a,b).

Moreover, two vectors (a,b) and (¢, d) are equal if @ = ¢ and b = d.

7.5.2 Implementation

We may create a class for plane vectors where the above mathematical
operations are implemented by special methods. The class must contain
two attributes, one for each component of the vector, called x and y
below. We include special methods for addition, subtraction, the scalar

7.5 Example: Class for Vectors in the Plane

product (multiplication), the absolute value (length), comparison of
two vectors (== and !=), as well as a method for printing out a vector.

class Vec2D:
def __init__(self, x, y):
self.x X
self.y = y

def add__(self, other):

return Vec2D(self.x + other.x, self.y + other.y)

def sub__(self, other):

return Vec2D(self.x - other.x, self.y - other.y)

def __mul__(self, other):

return self.x*other.x + self.y*other.y

def __abs__(self):
return math.sqrt(self.x**2 + self.y**2)

def __eq__(self, other):
return self.x == other.x and self.y == other.y

def __str__(self):
return ’ (%g, %g)’ % (self.x, self.y)

def __ne__(self, other):
return not self.__eq__(other) # reuse __eq__

The __add__, __sub__, __mul__, __abs__, and __eq__ methods should be
quite straightforward to understand from the previous mathematical
definitions of these operations. The last method deserves a comment:
Here we simply reuse the equality operator __eq__, but preceed it with

a not. We could also have implemented this method as

def __ne__(self, other):
return self.x != other.x or self.y != other.y

Nevertheless, this implementation requires us to write more, and it
has the danger of introducing an error in the logics of the boolean
expressions. A more reliable approach, when we know that the __eq__
method works, is to reuse this method and observe that “not ==" gives
us the effect of “1=".

A word of warning is in place regarding our implementation of the
equality operator (== via __eq__). We test for equality of each com-
ponent, which is correct from a mathematical point of view. However,
each vector component is a floating-point number that may be subject
to round-off errors both in the representation on the computer and
from previous (inexact) floating-point calculations. Two mathemati-
cally equal components may be different in their inexact representa-
tions on the computer. The remedy for this problem is to avoid testing
for equality, but instead check that the difference between the compo-
nents is sufficiently small. The function float_eq found in the module
scitools.numpytutils (if you do not already have float_eq from a from

379

380

7 Introduction to Classes

scitools.std import *), see also Exercise 2.51, is an easy-to-use tool
for comparing float objects. With this function we replace

if a ==

by

if float_eq(a, b):

A more reliable equality operator can now be implemented:

class Vec2D:

return float_eq(self.x, other.x) and \
float_eq(self.y, other.y)

def __eq__(self, other):

As a rule of thumb, you should never apply the == test to two float
objects.

The special method __len__ could be introduced as a synonym for
__abs__, i.e., for a Vec2D instance named v, len(v) is the same as abs (v),
because the absolute value of a vector is mathematically the same as
the length of the vector. However, if we implement

def __len__(self):
reuse implementation of __abs__
return abs(self) # equiv. to self.__abs__()

we will run into trouble when we compute len(v) and the answer is
(as usual) a float. Python will then complain and tell us that len(v)
must return an int. Therefore, __len__ cannot be used as a synonym

for the length of the vector in our application. On the other hand, we
could let len(v) mean the number of components in the vector:

def __len__(self):
return 2

This is not a very useful function, though, as we already know that all
our Vec2D vectors have just two components. For generalizations of the
class to vectors with n components, the __len__ method is of course
useful.

7.5.3 Usage

Let us play with some Vec2D objects:

>>> u = Vec2D(0,1)
>>> v = Vec2D(1,0)
>>> w = Vec2D(1,1)
>>> a=u+v

>>> print a

1, 1

7.5 Example: Class for Vectors in the Plane

>>> a =w
True
>>>a=u-v
>>> print a
(-1, 1

>>> a = uxv
>>> print a

0

>>> print abs(u)
1.0

>>> u == v
False

>>>u l=v
True

When you read through this interactive session, you should check that
the calculation is mathematically correct, that the resulting object type
of a calculation is correct, and how each calculation is performed in
the program. The latter topic is investigated by following the program
flow through the class methods. As an example, let us consider the
expression u !'= v. This is a boolean expression that is true since u and
v are different vectors. The resulting object type should be bool, with
values True or False. This is confirmed by the output in the interactive
session above. The Python calculation of u !'= v leads to a call to

u.__ne__(v)

which leads to a call to
u.__eq__(v)

The result of this last call is False, because the special method will
evaluate the boolean expression

which is obviously False. When going back to the __ne__ method,
we end up with a return of not False, which evaluates to True. You
need this type of thorough understanding to find and correct bugs (and
remember that the first versions of your programs will normally contain

bugs!).

Comment. For real computations with vectors in the plane, you would
probably just use a Numerical Python array of length 2. However, one
thing such objects cannot do is evaluating uxv as a scalar product. The
multiplication operator for Numerical Python arrays is not defined as a
scalar product (it is rather defined as (a,b) - (¢,d) = (ac, bd)). Another
difference between our Vec2D class and Numerical Python arrays is the
abs function, which computes the length of the vector in class Vec2D,
while it does something completely different with Numerical Python
arrays.

381

382 7 Introduction to Classes

7.6 Example: Class for Complex Numbers

Imagine that Python did not already have complex numbers. We could
then make a class for such numbers and support the standard math-
ematical operations. This exercise turns out to be a very good peda-
gogical example of programming with classes and special methods.

The class must contain two attributes: the real and imaginary part
of the complex number. In addition, we would like to add, subtract,
multiply, and divide complex numbers. We would also like to write out
a complex number in some suitable format. A session involving our
own complex numbers may take the form

>>> u = Complex(2,-1)

>>> v = Complex(1) # zero imaginary part
>>> w u+ v

>>> print w

3, -1)

>>> w =

True

>>> uxv

Complex(2, -1)

>>>u < v

illegal operation "<" for complex numbers
>>> print w + 4

(7, -1)

>>> print 4 - w

1, 1

We do not manage to use exactly the same syntax with j as imaginary
unit as in Python’s built-in complex numbers so to specify a complex
number we must create a Complex instance.

7.6.1 Implementation
Here is the complete implementation of our class for complex numbers:

class Complex:
def __init__(self, real, imag=0.0):

self.real = real
self.imag = imag

def __add__(self, other):
return Complex(self.real + other.real,
self.imag + other.imag)

def __sub__(self, other):
return Complex(self.real - other.real,
self.imag - other.imag)

def __mul__(self, other):

return Complex(self.real*other.real - self.imag*other.imag,
self.imag*other.real + self.real*other.imag)

def __div__(self, other):
sr, si, or, oi = self.real, self.imag, \
other.real, other.imag # short forms

r = float(or**2 + 0i**2)

7.6 Example: Class for Complex Numbers

return Complex((sr*or+sixoi)/r, (si*or-sr*oi)/r)

def __abs__(self):

return sqrt(self.real**2 + self.imagx*2)

def __neg__(self): # defines -c (c is Complex)

return Complex(-self.real, -self.imag)

return self.real == other.real and self.imag == other.imag

def __eq__(self, other):

def __ne__(self, other):
return not self.__eq__(other)

def __str__(self):
return °’ (%g, %g)’ % (self.real, self.imag)

def __repr__(self):
return ’Complex’ + str(self)

def __pow__(self, power):
raise NotImplementedError\
(’self**power is not yet impl. for Complex’)

The special methods for addition, subtraction, multiplication, division,
and the absolute value follow easily from the mathematical definitions
of these operations for complex numbers (see Chapter 1.6). What -c
means when c is of type Complex, is also easy to define and implement.
The __eq__ method needs a word of caution: The method is mathe-
matically correct, but as we stated on page 379, comparison of real
numbers on a computer should always employ a tolerance. The version
of __eq__ shown above is more about compact code and equivalence to
the mathematics than real-world numerical computations.

The final __pow__ method exemplifies a way to introduce a method
in a class, while we postpone its implementation. The simplest way
to do this is by inserting an empty function body using the pass (“do
nothing”) statement:

def __pow__(self, power):
postpone implementation of selfx**power
pass

However, the preferred method is to raise a NotImplementedError ex-
ception so that users writing power expressions are notified that this
operation is not available. The simple pass will just silently bypass this
serious fact!

7.6.2 lllegal Operations

Some mathematical operations, like the comparison operators >, >=,
etc., do not have a meaning for complex numbers. By default, Python
allows us to use these comparison operators for our Complex instances,
but the boolean result will be mathematical nonsense. Therefore, we

383

384

7 Introduction to Classes

should implement the corresponding special methods and give a sen-
sible error message that the operations are not available for complex
numbers. Since the messages are quite similar, we make a separate
method to gather common operations:

def _illegal(self, op):
print ’illegal operation "%s" for complex numbers’ 7 op

Note the underscore prefix: This is a Python convention telling that
the _illegal method is local to the class in the sense that it is not
supposed to be used outside the class, just by other class methods. In
computer science terms, we say that names starting with an underscore
are not part of the application programming interface, known as the
API. Other programming languages, such as Java, C++, and C#,
have special keywords, like private and protected that can be used to
technically hide both data and methods from users of the class. Python
will never restrict anybody who tries to access data or methods that
are considered private to the class, but the leading underscore in the
name reminds any user of the class that she now touches parts of the
class that are not meant to be used “from the outside”.

Various special methods for comparison operators can now call up
_illegal to issue the error message:

def __gt__(self, other): self._illegal(’>’)
def __ge__(self, other): self._illegal(’>=’)
def __1t__(self, other): self._illegal(’<’)
def __le__(self, other): self._illegal(’<=’)

7.6.3 Mixing Complex and Real Numbers

The implementation of class Complex is far from perfect. Suppose we
add a complex number and a real number, which is a mathematically
perfectly valid operation:

w=u+4.5
This statement leads to an exception,

AttributeError: ’float’ object has no attribute ’real’

In this case, Python seesu + 4.5 and tries touseu.__add__(4.5), which
causes trouble because the other argument in the __add__ method is
4.5, i.e., a float object, and float objects do not contain an attribute
with the name real (other.real is used in our __add__ method, and
accessing other.real is what causes the error).

One idea for a remedy could be to set

7.6 Example: Class for Complex Numbers

other = Complex(other)

since this construction turns a real number other into a Complex object.
However, when we add two Complex instances, other is of type Complex,
and the constructor simply stores this Complex instance as self.real
(look at the method __init__). This is not what we want!

A better idea is to test for the type of other and perform the right
conversion to Complex:

def __add__(self, other):
if isinstance(other, (float,int)):
other = Complex(other)
return Complex(self.real + other.real,
self.imag + other.imag)

We could alternatively drop the conversion of other and instead im-
plement two addition rules, depending on the type of other:

def add__(self, other):

if isinstance(other, (float,int)):
return Complex(self.real + other, self.imag)
else:
return Complex(self.real + other.real,
self.imag + other.imag)

A third way is to look for what we require from the other object, and
check that this demand is fulfilled. Mathematically, we require other to
be a complex or real number, but from a programming point of view,
all we demand (in the original __add__ implementation) is that other
has real and imag attributes. To check if an object a has an attribute
with name stored in the string attr, one can use the function

hasattr(a, attr)
In our context, we need to perform the test
if hasattr(other, ’real’) and hasattr(other, ’imag’):

Our third implementation of the __add__ method therefore becomes

def __add__(self, other):
if isinstance(other, (float,int)):
other = Complex(other)
elif not (hasattr(other, ’real’) and \
hasattr(other, ’imag’)):
raise TypeError(’other must have real and imag attr.’)
return Complex(self.real + other.real,
self.imag + other.imag)

The advantage with this third alternative is that we may add instances
of class Complex and Python’s own complex class (complex), since all
we need is an object with real and imag attributes.

385

386

7 Introduction to Classes

Computer Science Discussion. The presentations of alternative im-
plementations of the __add__ actually touch some very important com-
puter science topics. In Python, function arguments can refer to objects
of any type, and the type of an argument can change during program
execution. This feature is known as dynamic typing and supported by
languages such as Python, Perl, Ruby, and Tcl. Many other languages,
C, C++, Java, and C# for instance, restrict a function argument to
be of one type, which must be known when we write the program.
Any attempt to call the function with an argument of another type is
flagged as an error. One says that the language employs static typing,
since the type cannot change as in languages having dynamic typing.
The code snippet

a
a

6 # a is integer
’b’ # a is string

is valid in a language with dynamic typing, but not in a language with
static typing.

Our next point is easiest illustrated through an example. Consider
the code

9

oo
nonn

6
a+b

The expression a + b adds an integer and a string, which is illegal in
Python. However, since b is the string ’9’, it is natural to interpret
a + bas 6 + 9. That is, if the string b is converted to an integer, we
may calculate a + b. Languages performing this conversion automati-

cally are said to employ weak typing, while languages that require the
programmer to explicit perform the conversion, as in

c = a + float(b)

are known to have strong typing. Python, Java, C, and C# are exam-
ples of languages with strong typing, while Perl and C++ allow weak
typing. However, in our third implementation of the __add__ method,
certain types — int and float — are automatically converted to the right
type Complex. The programmer has therefore imposed a kind of weak
typing in the behavior of the addition operation for complex numbers.

There is also something called duck typing where the language only
imposes a requirement of some data or methods in the object. The
explanation of the term duck typing is the principle: “if it walks like
a duck, and quacks like a duck, it’s a duck”. An operation a + b may
be valid if a and b have certain properties that make it possible to
add the objects, regardless of the type of a or b. To enable a + b it
is in our third implementation of the __add__ method sufficient that b

has real and imag attributes. That is, objects with real and imag look

7.6 Example: Class for Complex Numbers

like Complex objects. Whether they really are of type Complex is not
considered important in this context.

There is a continuously ongoing debate in computer science which
kind of typing that is preferable: dynamic versus static, and weak versus
strong. Static and strong typing, as found in Java and C#, support
coding safety and reliability at the expense of long and sometimes
repetitive code, while dynamic and weak typing support programming
flexibility and short code. Many will argue that short code is more
reliable than long code, so there is no simple conclusion.

7.6.4 Special Methods for “Right” Operands

What happens if we add a float and a Complex in that order?
w=4.5+u

This statement causes the exception

TypeError: unsupported operand type(s) for +: ’float’ and ’instance’

This time Python cannot find any definition of what the plus operation
means with a float on the left-hand side and a Complex object on the
right-hand side of the plus sign. The float class was created many
years ago without any knowledge of our Complex objects, and we are
not allowed to extend the __add__ method in the float class to handle
Complex instances. Nevertheless, Python has a special method __radd__
for the case where the class instance (self) is on the right-hand side
of the operator and the other object is on the left-hand side. That is,

we may implement a possible float or int plus a Complex by

def __radd__(self, other): # defines other + self
return self.__add__(other) # other + self = self + other

Similar special methods exist for subtraction, multiplication, and di-
vision. For the subtraction operator we need to be a little careful be-
cause other - self, which is the operation assumed to implemented in
__rsub__, is not the same as self.__sub__(other) (i.e., self - other).
A possible implementation is

def __sub__(self, other):
print ’in sub, self=Ys, other=)s’ ’ (self, other)
if isinstance(other, (float,int)):
other = Complex(other)
return Complex(self.real - other.real,
self.imag - other.imag)

def __rsub__(self, other):
print ’in rsub, self=Js, other=js’ % (self, other)
if isinstance(other, (float,int)):
other = Complex(other)
return other.__sub__(self)

387

388

7 Introduction to Classes

The print statements are inserted to better understand how these
methods are visited. A quick test demonstrates what happens:

>>>w=u- 4.5

in sub, self=(2, -1), other=4.5

>>> print w

(-2.5, -1)

>>> w=4.5 -1u

in rsub, self=(2, -1), other=4.5

in sub, self=(4.5, 0), other=(2, -1)
>>> print w

(2.5, 1)

Remark. As you probably realize, there is quite some code to be imple-
mented and lots of considerations to be resolved before we have a class
Complex for professional use in the real world. Fortunately, Python pro-
vides its complex class, which offers everything we need for computing
with complex numbers. This fact reminds us that it is important to
know what others already have implemented, so that we avoid “rein-
venting the wheel”. In a learning process, however, it is a probably a
very good idea to look into the details of a class Complex as we did
above.

7.6.5 Inspecting Instances

The purpose of this section is to explain how we can easily look at the
contents of a class instance, i.e., the data attributes and the methods.
As usual, we look at an example — this time involving a very simple
class:

class A:
"""A class for demo purposes."""
def init__(self, value):

self.v = value

def dump(self):
print self.__dict__

The self.__dict__ attribute is briefly mentioned in Chapter 7.1.5. Ev-
ery instance is automatically equipped with this attribute, which is a
dictionary that stores all the ordinary attributes of the instance (the
variable names are keys, and the object references are values). In class
A there is only one attribute, so the self.__dict__ dictionary contains
one key, ’v’:

>>> a = A([1,2])

>>> a.dump()
v2o [1, 21}

Another way of inspecting what an instance a contains is to call
dir(a). This Python function writes out the names of all methods and
variables (and more) of an object:

7.7 Static Methods and Attributes

>>> dir(a)

’__doc__’, ’__init__’, ’__module__’, ’dump’, ’v’]
The __doc__ variable is a docstring, similar to docstrings in functions
(Chapter 2.2.7), i.e., a description of the class appearing as a first string
right after the class headline:

>>> a.__doc__
’A class for demo purposes.’

The __module__ variable holds the name of the module in which the
class is defined. If the class is defined in the program itself and not in
an imported module, __module__ equals ’
The rest of the entries in the list returned from dir(a) correspond to
method and attribute names defined by the programmer of the class,
in this example the methods __init__ and dump, and the attribute v.

Now, let us try to add new variables to an existing instance®:

main__"’.

>>> a.myvar = 10

>>> a.dump ()

{’myvar’: 10, ’v’: [1, 2]}

>>> dir(a)

[’__doc__’, ’__init__’, ’__module__’, ’dump’, ’myvar’, ’v’]

The output of a.dump() and dir(a) show that we were successful in
adding a new variable to this instance on the fly. If we make a new
instance, it contains only the variables and methods that we find in
the definition of class A:

>>> b = A(-1)

>>> b.dump()

{’v’: -1}

>>> dir(b)

[’__doc__’, ’__init__’, ’__module__’, ’dump’, ’v’]

We may also add new methods to an instance, but this will not be
shown here. The primary message of this subsection is two-fold: (i) a
class instance is dynamic and allows attributes to be added or removed
while the program is running, and (ii) the contents of an instance can
be inspected by the dir function, and the data attributes are available
through the __dict__ dictionary.

7.7 Static Methods and Attributes

Up to now, each instance has its own copy of attributes. Sometimes it
can be natural to have attributes that are shared among all instances.
For example, we may have an attribute that counts how many instances

8 This may sound scary and highly illegal to C, C++, Java, and C# programmers,
but it is natural and legal in many other languages — and sometimes even useful.

389

390

7 Introduction to Classes

that have been made so far. We can exemplify how to do this in a little
class for points (x,y, z) in space:

>>> class SpacePoint:
counter = 0
def __init__(self, x, y, z):
self.p = (x, y, 2z)
SpacePoint.counter += 1

The counter attribute is initialized at the same indentation level as the
methods in the class, and the attribute is not prefixed by self. Such
attributes declared outside methods are shared among all instances and
called static attributes. To access the counter attribute, we must prefix
by the classname SpacePoint instead of self: SpacePoint.counter. In
the constructor we increase this common counter by 1, i.e., every time
a new instance is made the counter is updated to keep track of how
many objects we have created so far:

>>> pl = SpacePoint(0,0,0)
>>> SpacePoint.counter
1
>>> for i in range(400):
p = SpacePoint(i*0.5, i, i+1)

>>> SpacePoint.counter
401

The methods we have seen so far must be called through an in-
stance, which is fed in as the self variable in the method. We can also
make class methods that can be called without having an instance.
The method is then similar to a plain Python function, except that
it is contained inside a class and the method name must be prefixed
by the classname. Such methods are known as static methods. Let us
illustrate the syntax by making a very simple class with just one static
method write:

>>> class A:
@staticmethod
def write(message):
print message

>>> A.write(’Hello!’)
Hello!

As demonstrated, we can call write without having any instance of
class A, we just prefix with the class name. Also note that write does
not take a self argument. Since this argument is missing inside the
method, we can never access non-static attributes since these always
must be prefixed by an instance (i.e., self). However, we can access
static attributes, prefixed by the classname.

If desired, we can make an instance and call write through that
instance too:

7.8 Summary 391

>>> a = AQ)
>>> a.write(’Hello again’)
Hello again

Static methods are used when you want a global function, but find it
natural to let the function belong to a class and be prefixed with the
classname.

7.8 Summary

7.8.1 Chapter Topics

Classes. A class contains attributes (variables) and methods. A first
rough overview of a class can be to just list the attributes and methods
in a UML diagram as we have done in Figure 7.4 on page 393 for some
of the key classes in the present chapter.

Below is a sample class with three attributes (m, M, and G) and three
methods (a constructor, force, and visualize). The class represents
the gravity force between two masses. This force is computed by the
force method, while the visualize method plots the force as a function
of the distance between the masses.

class Gravity:
"""Gravity force between two physical objects."""

def init__(self, m, M):

self.m = m # mass of object 1
self.M = M # mass of object 2
self.G = 6.67428E-11 # gravity constant, m**3/kg/sx*2

def force(self, r):
G, m, M = self.G, self.m, self.M
return Gxm*M/r**2

def visualize(self, r_start, r_stop, n=100):
from scitools.std import plot, linspace
r = linspace(r_start, r_stop, n)
g = self.force(r)
title=’Gravity force: m=lg, M=lg’ % (self.m, self.M)
plot(r, g, title=title)

Note that to access attributes inside the force method, and to call
the force method inside the visualize method, we must prefix with
self. Also recall that all methods must take self, “this” instance, as
first argument, but the argument is left out in calls. The assignment of
attributes to a local variable (e.g., G = self.G) inside methods is not
necessary, but here it makes the mathematical formula easier to read
and compare with standard mathematical notation.

This class (found in file Gravity.py) can be used to find the gravity
force between the moon and the earth:

392

7 Introduction to Classes

mass_moon = 7.35E+22; mass_earth = 5.97E+24
gravity = Gravity(mass_moon, mass_earth)

r = 3.85E+8 # earth-moon distance in meters
Fg = gravity.force(r)

print ’force:’, Fg

Special Methods. A collection of special methods, with two leading
and trailing underscores in the method names, offers special syntax in
Python programs. Table 7.1 on page 392 provides an overview of the
most important special methods.

Table 7.1 Summary of some important special methods in classes. a and b are in-
stances of the class whose name we set to A.

a.__init__(self, args) constructor: a = A(args)
a.__call__(self, args) call as function: a(args)
a.__str__(self) pretty print: print a, str(a)
a.__repr__(self) representation: a = eval(repr(a))
a.__add__(self, b) a+b

a.__sub__(self, b) a-b

a.__mul__(self, b) a*b

a.__div__(self, b) a/b

a.__radd__(self, b) b+ a

a.__rsub__(self, b) b - a

a.__rmul__(self, b) b*xa

a.__rdiv__(self, b) b/a

a.__pow__(self, p) ax*p

a.__lt__(self, b) a<b

a.__gt__(self, b) a>hb

a.__le__(self, b) a<=b

a.__ge__(self, b) a=>b

a.__eq__(self, b) a==>b

a.__ne__(self, b) al=hbD

a.__bool__(self) boolean expression, as in if a:
a.__len__(self) length of a (int): len(a)
a.__abs__(self) abs(a)

7.8.2 Summarizing Example: Interval Arithmetics

Input data to mathematical formulas are often subject to uncertainty,
usually because physical measurements of many quantities involve mea-
surement errors, or because it is difficult to measure a parameter and
one is forced to make a qualified guess of the value instead. In such cases
it could be more natural to specify an input parameter by an interval
[a, b], which is guaranteed to contain the true value of the parameter.
The size of the interval expresses the uncertainty in this parameter.
Suppose all input parameters are specified as intervals, what will be
the interval, i.e., the uncertainty, of the output data from the formula?
This section develops a tool for computing this output uncertainty in

7.8 Summary

Complex
_init__
_add__
_rsub__
__mul__
_ div__
abs__
neg
Vec2D eq__
Polynomial __init__ 7rs1terA
Y - _add__ — pow_
VelocityProfile —nit__ _sub__ | | Tillegal
_init__ _call__ _mu_ || gt
value _init__ __add__ _eq ge__ —
formula value differentiate _str__ it Derivative
_call derivative _abs__ || e init
~str R _str__ ne__ ~sub_ " call_
beta simplestr E—
o mu0 X imag f
v0 n coeff y real h

Fig. 7.4 UML diagrams of some classes described in this chapter.

the cases where the overall computation consists of the standard arith-
metic operations.

To be specific, consider measuring the acceleration of gravity by
dropping a ball and recording the time it takes to reach the ground.
Let the ground correspond to y = 0 and let the ball be dropped from
y = yo. The position of the ball, y(t), is then?

1
y(t) = o — 59t°-
If T is the time it takes to reach the ground, we have that y(7") = 0,
which gives the equation % gT? = yo, with solution

g=2yoT>.

In such experiments we always introduce some measurement error in
the start position yo and in the time taking (7). Suppose yp is known to
lie in [0.99, 1.01] m and 7" in [0.43,0.47] s, reflecting a 2% measurement
error in position and a 10% error from using a stop watch. What is
the error in g7 With the tool to be developed below, we can find that
there is a 22% error in g.

Problem. Assume that two numbers p and ¢ are guaranteed to lie inside
intervals,

p:[a,b], q:[c,d].
The sum p + ¢ is then guaranteed to lie inside an interval [s,t] where
s =a+candt=0b+d. Below we list the rules of interval arithmetics,
i.e., the rules for addition, subtraction, multiplication, and division of
two intervals:

9 The formula arises from the solution of Exercise 1.14 when vg = 0.

393

394

7 Introduction to Classes

p+q=la+cb+d

p—q=la—d,b— |

pq = [min(ac, ad, be, bd), max(ac, ad, be, bd)]

p/q = [min(a/c,a/d,b/c,b/d), max(a/c,a/d,b/c,b/d)] provided that
[c,d] does not contain zero

Ll e

For doing these calculations in a program, it would be natural to have
a new type for quantities specified by intervals. This new type should
support the operators +, -, *, and / according to the rules above. The
task is hence to implement a class for interval arithmetics with special
methods for the listed operators. Using the class, we should be able to
estimate the uncertainty of two formulas:

1. The acceleration of gravity, g = 2yoT 2, given a 2% uncertainty in
yo: Yo = [0.99,1.01], and a 10% uncertainty in T: T' = [T}, 0.95, T}y, -
1.05], with T,, = 0.45.

2. The volume of a sphere, V = %WRE’, given a 20% uncertainty in R:
R =[R,, 009, R,, - 1.1], with R, = 6.

Solution. The new type is naturally realized as a class IntervalMath
whose data consist of the lower and upper bound of the interval. Special
methods are used to implement arithmetic operations and printing of
the object. Having understood class Vec2D from Chapter 7.5, it should
be straightforward to understand the class below:

class IntervalMath:
def __init__(self, lower, upper):
self.lo = float(lower)
self.up = float (upper)

def __add__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(a + ¢, b + d)

def __sub__(self, other):

a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(a - d, b - ¢)

def __mul__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(min(a*c, a*d, b*c, bxd),
max(a*xc, axd, bxc, bxd))

def __div__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
[c,d] cannot contain zero:
if cxd <= 0:
raise ValueError\
(’Interval %s cannot be denominator because ’\
’it contains zero’)
return IntervalMath(min(a/c, a/d, b/c, b/d),
max(a/c, a/d, b/c, b/d))

def __str__(self):

return °’ [%g, %gl’ % (self.lo, self.up)

7.8 Summary 395

The code of this class is found in the file IntervalMath.py. A quick
demo of the class can go as

I = IntervalMath
a=1(-3,-2)
b = I(4,5)
expr = ’atb’, ’a-b’, ’a*b’, ’a/b’
for e in expr:
print ’Ys =’ % e, eval(e)

The output becomes

a+b = [1, 3]

a-b = [-8, -6]

axb = [-15, -8]

a/b = [-0.75, -0.4]

This gives the impression that with very short code we can provide
a new type that enables computations with interval arithmetics and
thereby with uncertain quantities. However, the class above has severe
limitations as shown next.

Consider computing the uncertainty of aq if a is expressed as an
interval [4,5] and ¢ is a number (float):

a = I(4,5)
q=2
b = axq

This does not work so well:

File "IntervalMath.pK", line 15, in __mul__
a, b, ¢, d = self.lo, self.up, other.lo, other.up
AttributeError: ’float’ object has no attribute ’lo’

The problem is that a*q is a multiplication between an IntervalMath
object a and a float object q. The __mul__ method in class
IntervalMath is invoked, but the code there tries to extract the
1o attribute of g, which does not exist since q is a float.

We can extend the __mul__ method and the other methods for arith-

metic operations to allow for a number as operand — we just convert
the number to an interval with the same lower and upper bounds:

def __mul__(self, other):

if isinstance(other, (int, float)):
other = IntervalMath(other, other)
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(min(a*c, a*xd, b*c, bxd),
max(a*c, axd, b*c, bxd))

Looking at the formula g = 2yo7 2, we run into a related problem:
now we want to multiply 2 (int) with yo, and if yo is an interval, this
multiplication is not defined among int objects. To handle this case,
we need to implement an __rmul__(self, other) method for doing
otherxself, as explained in Chapter 7.6.4:

396 7 Introduction to Classes

if isinstance(other, (int, float)):
other = IntervalMath(other, other)
return otherx*self

def __rmul__(self, other):

Similar methods for addition, subtraction, and division must also be
included in the class.

Returning to g = 2yo7~2, we also have a problem with 72 when T
is an interval. The expression T**(-2) invokes the power operator (at
least if we do not rewrite the expression as 1/(T*T)), which requires a
__pow__ method in class IntervalMath. We limit the possibility to have
integer powers, since this is easy to compute by repeated multiplica-
tions:

def __pow__(self, exponent):
if isinstance(exponent, int):

p=1

if exponent > O:
for i in range(exponent):

p = p*self

elif exponent < O:

for i in range(-exponent):

p = p*self
p=1/p
else: # exponent ==
p = IntervalMath(1l, 1)
return p

else:
raise TypeError(’exponent must int’)

Another natural extension of the class is the possibility to convert an
interval to a number by choosing the midpoint of the interval:

>>> a = IntervalMath(5,7)
>>> float(a)
6

float(a) calls a.__float__(), which we implement as

def __float__(self):
return 0.5%(self.lo + self.up)

_ method returning the right syntax for recreating the
present instance is also natural to include in any class:

A __repr

def __repr__(self):

return ’%s(%g, %8’ % \

(self.__class name__, self.lo, self.up)

We are now in a position to test out the extended -class

IntervalMath.

>>> g = 9.81

>>> y_0 = I(0.99, 1.01) # 2J, uncertainty
>>> Tm = 0.45 # mean T

>>> T = I(Tm*0.95, Tm*1.05) # 107 uncertainty
>>> print T

7.9 Exercises

[0.4275, 0.4725]

>>> g = 2%y_0xTx*(-2)

>>> g

IntervalMath(8.86873, 11.053)

>>> # computing with mean values:

>>> T = float(T)
>>>y =1
>>> g = 2%y_0*T**(-2)

>>> print °%.2f°) g
9.88

Another formula, the volume V = %ﬂ'RS of a sphere, shows great
sensitivity to uncertainties in R:

>>> Rm = 6

>>> R = I(Rm*0.9, Rm*1.1) # 20 J, error
>>> V = (4./3)*pi*R**3

>>> V

IntervalMath(659.584, 1204.26)
>>> print V

[659.584, 1204.26]

>>> print float (V)
931.922044761

>>> # compute with mean values:
>>> R = float(R)

>>> V = (4./3)*pi*R**3

>>> print V

904.778684234

Here, a 20% uncertainty in R gives almost 60% uncertainty in V', and
the mean of the V interval is significantly different from computing the
volume with the mean of R.

The complete code of «class IntervalMath is found in
IntervalMath.py. Compared to the implementations shown above,
the real implementation in the file employs some ingenious construc-
tions and help methods to save typing and repeating code in the
special methods for arithmetic operations.

7.9 Exercises

Exercise 7.1. Make a function class.
Make a class F that implements the function

f(z;a,w) = e *sin(wx) .

A value(x) method computes values of f, while ¢ and w are class
attributes. Test the class with the following main program:

from math import *
f = F(a=1.0, w=0.1)
print f.value(x=pi)
f.a =2

print f.value(pi)

Name of program file: F.py. o

397

398

7 Introduction to Classes

Exercise 7.2. Make a very simple class.

Make a class Simple with one attribute i, one method double, which
replaces the value of i by i+i, and a constructor that initializes the
attribute. Try out the following code for testing the class:

sl = Simple(4)
for i in range(4):

s1.double()
print sl.i

s2 = Simple(’Hello’)
s2.double(); s2.double()
print s2.i

s2.i = 100

print s2.i

Before you run this code, convince yourself what the output of the
print statements will be. Name of program file: Simple.py. o

Exercise 7.3. FExtend the class from Ch. 7.2.1.

Add an attribute transactions to the Account class from Chap-
ter 7.2.1. The new attribute counts the number of transactions done in
the deposit and withdraw methods. The total number of transactions
should be printed in the dump method. Write a simple test program to
demonstrate that transaction gets the right value after some calls to
deposit and withdraw. Name of program file: Account2.py. o

Exercise 7.4. Make classes for a rectangle and a triangle.

The purpose of this exercise is to create classes like class Circle from
Chapter 7.2.3 for representing other geometric figures: a rectangle with
width W, height H, and lower left corner (z,1p); and a general trian-
gle specified by its three vertices (zo,v0), (z1,91), and (z2,y2) as ex-
plained in Exercise 2.17. Provide three methods: __init__ (to initialize
the geometric data), area, and circumference. Name of program file:
geometric_shapes.py. <o

Exercise 7.5. Make a class for straight lines.

Make a class Line whose constructor takes two points p1 and p2 (2-
tuples or 2-lists) as input. The line goes through these two points (see
function line in Chapter 2.2.7 for the relevant formula of the line). A
value(x) method computes a value on the line at the point x. Here is
a demo in an interactive session:

>>> from Line import Line

>>> line = Line((0,-1), (2,4))

>>> print line.value(0.5), line.value(0), line.value(1)
0.25 -1.0 1.5

Name of program file: Line.py. o

Exercise 7.6. Improve the constructor in Exer. 7.5.
The constructor in class Line in Exercise 7.5 takes two points as
arguments. Now we want to have more flexibility in the way we specify

