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•A random experiment is an action or process 
whose outcome is uncertain.

Random experiments

Examples: Roll dice, draw cards from shuffled 
decks, picking a person at random for a 
survey, choosing a census tract at random 

•An (elementary) outcome is one of the possible 
outcomes of a random experiment.

Roll 2 dice: (2,6) is one 
possible outcome. 2 on 
first die, 6 on second

Roulette: 13 is a 
possible outcome.

Flip a coin five times: 
H,T,T,H,T is a possible 
outcome

Census: draw census 
tract CT34021 
(Mercer County, NJ)
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Some experiments may not be really random. 
For example, the height of the flood in Holland 
depends on the moon, currents, temperature,... and 
many other parameters. It may still be helpful 
consider it as a random experiment. This is called 
modeling (we use a simple model for the truth).
Other examples are

• measurement errors or rounding
• unobservable characteristics of individuals 
(drug testing)
• stock market
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•The probability of an outcome is the proportion of 
times the event would occur is we observed the 
random experiment for an infinite number of 
repetitions. 
•Justified by the law of large numbers

As the number of observations goes to infinity, the 
proportion of occurrences of a given outcome 
converges to the probability of this outcome.

Example: flipping a coin.

1 100 10000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of tosses

p
ro
p
o
rt
io
n
s

4Friday, January 11, 13



MATH 183 - 
Prof. Bradic 

Winter 2013Flipping a coin

coins=(runif(100000)<0.5)
proportions=cumsum(coins)/(1:100000)
plot(proportions, log="x", type="l", ylim=c(0,1), xlab="number of tosses")
lines(1:100000, (1:100000)*0+0.5, col=2, lty=2)

The proportion 
stabilizes around 1/2
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face_one=(runif(100000)<(1/6))
proportions=cumsum(face_one)/(1:100000)
plot(proportions, log="x", type="l", ylim=c(0,1), xlab="number of rolls")
lines(1:100000, (1:100000)*0+1/6, col=2, lty=2)

The proportion 
stabilizes around 1/6
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•We write P(outcome) the probability of an 
outcome.

•If all outcome are equally likely then 

•Consider a more complicated example: rolling 2 
dice. What is P(2,6)? It is the same as P(1,1) or 
P(3,4). All outcomes are equally likely. We need to 
count the outcomes or have rules to compute 
probabilities.

Probability

Rolling a die:  P(2)=1/6
Flipping a coin: P(H)=1/2

P(outcome) =
1

number of outcomes
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An event is a collection of outcomes. It can be 
described either with words or using formal notation 
from set theory. Passing from the first one  to the 
second is a necessary skill.

Events

Flipping two coins. We know that the outcomes are
(H,H), (H,T), (T, H), (T,T). Consider the events

{twice the same}={(H,H), (T,T)}
{heads first}={(H,T), (H,H)}

{no heads}={(T,T)}

We want to find rules to compute the probability of 
events from the probability of outcomes.
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A

B
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Union of two events A and B:     

Operations on events

A �B = {outcomes that are either in A or in B or in both}

Intersection of two events A and B:     

= {outcomes that in A and in B}A �B

Complement of the event A:     

= {outcomes that are not in A}Ac
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Union

Operations on events

A �B

Intersection A �B

Complement   Ac

A “or” B

A “and” B

“not” A Ac
A

A

B

A [B

A

B

A \B
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Flipping two coins.
A={twice the same}={(H,H), (T,T)}

B={heads first}={(H,T), (H,H)}
C={no heads}={(T,T)}

={(H,H), (T,T), (H,T)}
={twice the same or heads first}

A �B

={(H,H)}
={twice the same and heads first}
={twice heads}

A �B

={                  }
={at least one heads}

Cc
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disjoint events

Two events are disjoint if they have no outcome in 
common. For example:
{(H,H), (T,T)} and {(H,T), (H,T)} are disjoint
{(H,H), (T,T)} and {(H,T), (H,H)} are not disjoint

Equivalently, two events are disjoint if their 
intersection is empty (no outcome)

For disjoint events A and B we have the addition 
rule

P (A �B) = P (A) + P (B)
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More generally, if k events                     are disjoint 

Addition rule of 
disjoint events

A1, A2, . . . , Ak

P (A1 �A2 � . . . �Ak) = P (A1) + P (A2) + . . . + P (Ak)

A B A

B

C

D

P (A �B) = P (A) + P (B) P (A �B � C �D) = P (A) + P (B) + P (C) + P (D)

14Friday, January 11, 13



MATH 183 - 
Prof. Bradic 

Winter 2013

Example: Tossing five coins at random. What is the 
probability of at least four heads?

Possible outcomes={HHHHH, THHHH, HTHHH, 
HHTHH, HHHTH, HHHHT, TTHHH,...,TTTTT}
There are 25 possible outcomes (2 for each round)

Addition rule of 
disjoint events

P(at least 4 heads) =P(4 heads or 5 heads)
=P(4 heads)+P(5 heads)
=1/32 + 5/32 = 6/32=3/16
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If two events are not disjoint, there is still a rule:

If A and B are disjoint, it is impossible to have an 
outcome in          and thus 

This rule can be illustrated with the following 
diagram:

General addition rule

P (A �B) = P (A) + P (B)�P (A ⇥B)

A �B P (A �B) = 0

A

B

Two layers 
on the 

intersection
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We already know that for equally likely outcomes:

Using the addition rule for disjoint events we find 
that for an event 

Equally likely outcomes

P(outcome) =
1

number of outcomes

E = {�1, . . . ,�k} = {�1} � · · · � {�k}

P (E) = P (�1) + · · · + P (�k)
= kP (�1)

=
number of outcomes in E

total number of outcomes
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We already know that for equally likely outcomes:

Using the addition rule for disjoint events we find 
that for an event 

Equally likely outcomes

P(outcome) =
1

number of outcomes

E = {�1, . . . ,�k} = {�1} � · · · � {�k}

P (E) = P (�1) + · · · + P (�k)
= kP (�1)

=
number of outcomes in E

total number of outcomes

Need to count outcomes (in E and total)
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Product rule.  If the experiment consists of 
several consecutive parts where the first part has   
outcomes, the second part has     outcomes,... then 
the total number of outcomes is given by the product

Counting rules

n1

n2

n1 · n2 · · ·

Example.  Rolling two dice. 
What is the probability of getting two numbers less 
than or equal to 2?
•Total number of outcomes: 6*6=36
•Number of outcomes in event: 2*2=4
Answer is 4/36=1/9
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The product rule can take you a long way but here is 
a very convenient shortcut suitable for many 
experiments. 

Counting rules

Example.  Drawing 5 cards from a 52-card deck. How many 
hands are there?
We could use the product rule: 52 ways of choosing the first 
card, 51 ways of choosing the second card,...  52*51*50*49*48
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We have counted the same hand several times. How many?

5 positions for      , 4 positions for      , 3 positions for      , ...
that’s 5*4*3*2*1.

Finally we obtain that the number of such hands is
52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1
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Combination rule. The number of outcomes 
(combinations) obtained when selecting k different 
objects from a set of n objects is given by

Counting rules

For the general case: define “factorial k” by
k! = k · (k � 1) · (k � 2) · · · 2 · 1

We have 52 · 51 · 50 · 49 · 48
5 · 4 · 3 · 2 · 1

=
52!
47!

5!
=

52!
(52� 5)!5!

�
n

k

⇥
:=

n!
(n� k)!k! “n choose k”
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Exercise. Three balls are selected at random from the jar 
below.

Total number of outcomes: 

Number of outcomes in the event {1 red, 2 greens}:
Choosing the red ball: 2 possibilities
Choosing the green balls: 2 among 3:       =3 

Number of outcomes in the event (product rule):

Counting rules

What is the probability of getting exactly one red ball and two 
green balls? �

8
3

⇥
=

8!
5!3!

= 56

�
3
2

⇥

2 · 3 = 6
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Probability of the event {1 red, 2 greens}:

Exercise. Three balls are selected at random from the jar 
below.

Counting rules

What is the probability of getting exactly one red ball and two 
green balls?

56
6 =

3
28
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P (Ac) = 1� P (A) A

Ac

Exercise. Three balls are selected at random from the jar below.

What is the probability that at least one ball is black or red?
Define the event    ={at least one ball is black or red}
Then      ={The 3 balls are green}

We have 

So that 

A
Ac

P (Ac) =
1
56

P (A) = 1� P (Ac) =
55
56
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Two events A and B are called independent if 
knowing one does not affect the other. This happens 
when A and B pertain to two independent 
experiment
Examples: 
• Rolling 2 dice: A={Die one is ⚂} B={Die two is ⚄}
• Two consecutive hands in poker:
A={Full house in 1st hand}  B={two pairs in 2nd hand}
• Sampling randomly two students on campus:

A={1st student is ORFE}  B={2nd student is ORFE}

⚠ Sampling from small population ⇏ independence. 
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Product rule for 
independent events

If two events A and B are independent, then 

P (A �B) = P (A) · P (B)

Exercises. 
1.Rolling two dice. What is the probability of ⚅⚅?
P(⚅⚅)=P(⚅)P(⚅)=

2.Two students are selected at random: mike and jake. 
P(CS)=60%. What is the probability one is CS and the other one 
is not?

P(jake is CS and mike is not CS)=P(CS)P(not CS)
=.6(1-.6)=24%  (= P(mike is CS and jake is not CS) )
P(one is CS and one is not)=2*24%=48% (addition rule).

1
6

· 1
6

=
1
36
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What if the events A and B are not independent?
That is: the outcome of A affects the outcome of B and vice-
versa.
Example: Consider the contingency table for the Titanic.

No Yes Total

1st class

2nd class

3rd class

crew

Total

122 203 325

167 118 285

528 178 706

673 212 885

1,490 711 2,201

Survived

Class

What is the probability that a randomly selected name on the 
passenger manifest corresponds to someone in 1st class who 
survived?             P(1st class AND survived)?

Survival is not 
independent of 
social status!
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We can define the conditional probability of A 
given B by

P (A|B) =
P (A �B)

P (B)

We can also define the conditional probability of B 
given A by

Note that                           if P (B|A) �= P (A|B)

P (B|A) =
P (B �A)

P (A)

P (A) �= P (B)

In the Titanic example we still need to know either
P(1st Class |  survived) or P(Survived | first class).
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•If A and B are independent:

Indeed, knowing B does not affect the probability of A

P (A|B) =
P (A �B)

P (B)
=

P (A)P (B)
P (B)

= P (A)

•For any events A and B (not necessarily independent):

P (A �B) = P (A|B)P (B)

•For any A and B we can find            from            by:

P (B|A) =
P (A �B)

P (A)
= P (A|B)

P (B)
P (A)

P (B|A) P (A|B)
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•Addition rule for disjoint events:

•General addition rule:

•Rule of complement:

•Multiplication rule for independent events:

Properties

P( ⦁ | C) is also a probability. In other words, it 
satisfies all the rules of a usual probability.

P (A �B|C) = P (A|C) + P (B|C)

P (A ⇥B|C) = P (A|C) + P (B|C)� P (A ⇤B|C)

P (Ac|C) = 1� P (A|C)

P (A �B|C) = P (A|C)P (B|C)
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No Yes Total

1st class

2nd class

3rd class

crew

Total

122 203 325

167 118 285

528 178 706

673 212 885

1,490 711 2,201

Survived

Class

P(1st class AND survived)=

P(survived | 1st class)=
P(1st class)=

P(1st class AND survived)= P(survived | 1st class) P(survived | 1st class)=

203
325

325
2201

=
203
2201

203
2201

203
325325

2201
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Suppose you’re on a game show. You’re given a chance 
to choose from 3 different doors.
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behind the other two: 
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Suppose you’re on a game show. You’re given a chance 
to choose from 3 different doors.

Behind one of the doors is a 
behind the other two: 

Which door would you choose?
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You’ve chosen door number 1 for example.
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You’ve chosen door number 1 for example.

Next the game show host (who knows what’s behind 
each door) opens a door with a goat: say door #3.

Is it in your interest to switch to door #2?
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To solve the problem, define the events:

C1: {the car is behind door 1}
C2: {the car is behind door 2}
C3: {the car is behind door 3}

H3: {the host opens door 3}.

Compute: P(C1 | H3) and P(C2 | H3). Which is larger?

All we know is 
P(H3 | C1)=      ,  P(H3 | C2)=      , P(H3 | C3)=

Simulation exercise: 
Recover these 
probabilities from 
simulation.
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A random variable X is a variable whose 
outcome is random. It is obtained my measuring 
the outcome of a random experiment.

Examples:
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A random variable X is a variable whose 
outcome is random. It is obtained my measuring 
the outcome of a random experiment.

Examples:
1. The number on the face of a die
2. The GPS of a randomly selected (r.s.) student
3. The fat content of a r.s. hoagie
4. {0,1} that indicates if a drug cures a r.s. patient
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A random variable X is a variable whose 
outcome is random. It is obtained my measuring 
the outcome of a random experiment.

Examples:
1. The number on the face of a die
2. The GPS of a randomly selected (r.s.) student
3. The fat content of a r.s. hoagie
4. {0,1} that indicates if a drug cures a r.s. patient
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A random variable X is a variable whose 
outcome is random. It is obtained my measuring 
the outcome of a random experiment.

Examples:
1. The number on the face of a die
2. The GPS of a randomly selected (r.s.) student
3. The fat content of a r.s. hoagie
4. {0,1} that indicates if a drug cures a r.s. patient
5. The median home value of a r.s US census tract
6. The gas milage of a r.s. car made in 2010
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In statistics, we think of our (numerical) data as the 
realization of random variables (after the random 
experiment has taken place).

For example, the list of numbers in medv are 
realizations of the random variable MEDV.

Note that we typically use uppercase for random 
variables and lowercase for the realizations.

Random variables can also be split into: 
anddiscrete continuous
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Takes values 0, 1, 2, ....
Completely described by 
P(X=1), P(X=2), ....

discrete

continuous Takes a continuum of values (e.g. interval [a, b])
Can be seen as the limit of a histogram when the 
bin size goes to 0.

1 2 3

0
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.1

0
.2

0
.3

0
.4

0
.5

x=c(1, 1, 1,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
barplot(prop.table(table(x)))
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Takes values 0, 1, 2, ....
Completely described by 
P(X=1), P(X=2), ....

discrete

continuous Takes a continuum of values (e.g. interval [a, b])
Can be seen as the limit of a histogram when the 
bin size goes to 0.
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barplot(prop.table(table(x)))

Four histograms of US adults heights with varying bin widths. 
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Figure 2.13: Four histograms of US adults heights with varying bin widths.

2.2 Continuous distributions

� Example 2.7 Figure 2.13 shows a few di�erent histograms of the variable
height for 3 million US adults from the mid-90’s19. How does changing the
number of bins allow you to make di�erent interpretations of the data?

While the histogram in the top-left panel has a few bins for a first rough approxima-
tion, more bins provide greater detail. This sample is extremely large, which is why
much smaller bins still work well. (Usually we do not use so many bins with smaller
sample sizes since small counts per bin mean the bin heights are very volatile.)

� Example 2.8 What proportion of the sample is between 180 cm and 185

cm tall (about 5’11” to 6’1”)?

The probability a randomly selected person is being between 180 cm and 185 cm
can be estimated by finding the proportion of people in the sample who are between
these two heights. In this case, this means adding up the heights of the bins in this
range and dividing by the sample size. For instance, this can be done with the bins
in the top right plot. The two bins in this region have counts of 195,307 and 156,239
people, resulting in the following estimate of the probability:

195307 + 156239

3,000,000
= 0.1172

This fraction is the same as the proportion of the histogram’s area that falls in the
range 180 to 185 cm, shaded in Figure 2.14.

19This sample can be considered a simple random sample from the US population.
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2.2 Continuous distributions

� Example 2.7 Figure 2.13 shows a few di�erent histograms of the variable
height for 3 million US adults from the mid-90’s19. How does changing the
number of bins allow you to make di�erent interpretations of the data?

While the histogram in the top-left panel has a few bins for a first rough approxima-
tion, more bins provide greater detail. This sample is extremely large, which is why
much smaller bins still work well. (Usually we do not use so many bins with smaller
sample sizes since small counts per bin mean the bin heights are very volatile.)

� Example 2.8 What proportion of the sample is between 180 cm and 185

cm tall (about 5’11” to 6’1”)?

The probability a randomly selected person is being between 180 cm and 185 cm
can be estimated by finding the proportion of people in the sample who are between
these two heights. In this case, this means adding up the heights of the bins in this
range and dividing by the sample size. For instance, this can be done with the bins
in the top right plot. The two bins in this region have counts of 195,307 and 156,239
people, resulting in the following estimate of the probability:

195307 + 156239

3,000,000
= 0.1172

This fraction is the same as the proportion of the histogram’s area that falls in the
range 180 to 185 cm, shaded in Figure 2.14.

19This sample can be considered a simple random sample from the US population.
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in the top right plot. The two bins in this region have counts of 195,307 and 156,239
people, resulting in the following estimate of the probability:
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To fully describe discrete random variables, we 
need to give P(X=x), for each value x that the 
random variable X can take.

Examples: Possible values for X
1. Rolling one die: {1,2,...,6}
2. Sum of two dice: {1,2,...,12}
3. Number of cars in household: {0,1, 2, ....}
4. Indicator of sickness: {0, 1}
5. Number of courses this semester: {2, ...,7}
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The probability distribution of a discrete random 
variable X is a table (or a formula) that gives 
P(X=x) for each possible value x of X.

x 2 3 4 5 6 7

P(X=x) 0.04 0.13 0.25 0.39 0.17 0.02

Number of courses
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It is equivalent to add values x for X that are not 
possible and assign them probability 0

x 0 1 2 3 4 5 6 7

P(X=x) 0.00 0.00 0.04 0.13 0.25 0.39 0.17 0.02

Note that we have
7�

x=0

P (X = x) = 1
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This is true in general. From the addition rule for disjoint 
events, we have�

all possible x

P (X = x) = P(X takes one of its possible values)=1

The probability distribution is a function         defined by

and is sometimes called “probability mass function”.

p(x) = P (X = x)

p(x)
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This is true in general. From the addition rule for disjoint 
events, we have�

all possible x

P (X = x) = P(X takes one of its possible values)=1

The probability distribution is a function         defined by

and is sometimes called “probability mass function”.

p(x) = P (X = x)

p(x)

This function can also be described by a formula instead of 
enumerating all possible values x.
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This is true in general. From the addition rule for disjoint 
events, we have�

all possible x

P (X = x) = P(X takes one of its possible values)=1

The probability distribution is a function         defined by

and is sometimes called “probability mass function”.

p(x) = P (X = x)

p(x)

Example: Flip a coin 1000 times. X=number 
of heads. Possible values {0,...,1000}. 

This function can also be described by a formula instead of 
enumerating all possible values x.
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This is true in general. From the addition rule for disjoint 
events, we have�

all possible x

P (X = x) = P(X takes one of its possible values)=1

The probability distribution is a function         defined by

and is sometimes called “probability mass function”.

p(x) = P (X = x)

p(x)

p(x) =
1

21000

�
1000

x

⇥Example: Flip a coin 1000 times. X=number 
of heads. Possible values {0,...,1000}. 

This function can also be described by a formula instead of 
enumerating all possible values x.
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For Probability, we had:

We now have

As the number of observations goes to infinity, the 
proportion of occurrences of a given outcome converges 

to the probability of this outcome.

As the number of observations goes to infinity, the average 
of the observed values converges to the expected 

value of the random variable.

x̄ =
1
n

n�

i=1

xi � E(X)
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But we can rearrange the sum to get

1

n

nX

i=1

x

i

=

1

n

X

x possible

x · (number of x

i

equal to x)

=

X

x possible

x · (proportion of x

i

equal to x)
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But we can rearrange the sum to get

�

x possible

xP (X = x)�
from the 

definition of the 
probability
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But x̄ =
1
n

n�

i=1

xi

�

x possible

xP (X = x)� E(X) =
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The expected value of the discrete random variable X is 
defined by �

x possible

xP (X = x)E(X) =
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The expected value of the discrete random variable X is 
defined by

In the same way, we can define the expected value of the 
function h(X) of a discrete random variable X by

�

x possible

xP (X = x)E(X) = xX
�

x possible

P (X = x)E( )
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The expected value of the discrete random variable X is 
defined by �

x possible

xP (X = x)E(X) =

In the same way, we can define the expected value of the 
function h(X) of a discrete random variable X by

�

x possible

P (X = x)xE( )X h(h( ) )=

47Friday, January 11, 13



MATH 183 - 
Prof. Bradic 

Winter 2013Variance

An interesting choice of the function h(X) is 

where

With this choice, we obtain the variance of X

It is the limit of      as the number of observations goes to 
infinity.
The following shortcut formula is useful:

Standard Deviation 

h(X) = (X � µ)2

µ = E(X)

s2

var(X) = E(X2)� µ2

var(X) =
�

x possible

(x� µ)2P (X = x)

�
var(X)
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Going back to the number of courses example:

x 2 3 4 5 6 7

P(X=x) 0.04 0.13 0.25 0.39 0.17 0.02

E(X) = 2 · 0.04 + 3 · 0.13 + 4 · 0.25 + 5 · 0.39 + 6 · 0.17 + 7 · 0.02 = 4.58

var(X) = 22 · 0.04 + 32 · 0.13 + 42 · 0.25 + 52 · 0.39 + 62 · 0.17 + 72 · 0.02� (4.58)2 = 1.20
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Consider the histogram of heights of 3 million US adults:2.2. CONTINUOUS DISTRIBUTIONS 67

height (cm)

140 160 180 200

Figure 2.14: A histogram with bin sizes of 2.5 cm. The shaded region represents
individuals with heights between 180 and 185 cm.

2.2.1 From histograms to continuous distributions

Examine the transition from a boxy histogram in the top-left of Figure 2.13 to the
smooth histogram in the lower-right. In this last plot, the bins are so slim that
the tops of the bins nearly create a smooth curve. This suggests the population
height as a continuous numerical variable might best be explained by a curve that
represents the top of extremely slim bins.

This smooth curve represents a probability density function (also called a
density or distribution), and such a curve is shown in Figure 2.15 overlaid on a
histogram of the sample. A density has a special property: the total area under
the density’s curve is 1.

height (cm)

140 160 180 200

Figure 2.15: The continuous probability distribution of heights for US adults.

What is the probability that a randomly selected US adult 
has height between 180 and 185 cm?
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It is given by the area in orange 
(sum of 2 rectangles)
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It is given by the area in orange 
(sum of 2 rectangles)

What if we let the bin width go to 0?

51Friday, January 11, 13



MATH 183 - 
Prof. Bradic 

Winter 2013Continuous random variables

It is given by the area in orange 
(sum of 2 rectangles)

What if we let the bin width go to 0?

68 CHAPTER 2. PROBABILITY

2.2.2 Probabilities from continuous distributions

We computed the proportion of individuals with heights 180 to 185 cm in Exam-
ple 2.8 as a proportion:

number of people between 180 and 185

total sample size

We found the number of people with heights between 180 and 185 cm by deter-
mining the shaded boxes in this range, which represented the fraction of the box
area in this region.

Similarly, we use the area in the shaded region under the curve to find a
probability (with the help of a computer):

P (height between 180 and 185) = area between 180 and 185 = 0.1157

The probability a randomly selected person is between 180 and 185 cm is 0.1157.
This is very close to the estimate from Example 2.8: 0.1172.

height (cm)

140 160 180 200

Figure 2.16: The total area under the curve representing all individuals is 1. The
area between 180 and 185 cm is the fraction of the US adult population between
180 and 185 cm. Compare this plot with Figure 2.14.

�
Exercise 2.20 Three US adults are randomly selected. The probability a single
adult is between 180 and 185 cm is 0.1157. Short answers in the footnote20.

(a) What is the probability that all three are between 180 and 185 cm tall?

(b) What is the probability that none are between 180 and 185 cm?

�
Exercise 2.21 What is the probability a randomly selected person is exactly 180

cm? Assume you can measure perfectly. Answer in the footnote21.

20(a) 0.1157 ⇥ 0.1157 ⇥ 0.1157 = 0.0015. (b) (1� 0.1157)3 = 0.692
21This probability is zero. While the person might be close to 180 cm, the probability that a

randomly selected person is exactly 180 cm is zero. This also makes sense with the definition of
probability as area; there is no area between 180 cm to 180 cm.
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180 and 185 cm. Compare this plot with Figure 2.14.

�
Exercise 2.20 Three US adults are randomly selected. The probability a single
adult is between 180 and 185 cm is 0.1157. Short answers in the footnote20.

(a) What is the probability that all three are between 180 and 185 cm tall?

(b) What is the probability that none are between 180 and 185 cm?

�
Exercise 2.21 What is the probability a randomly selected person is exactly 180

cm? Assume you can measure perfectly. Answer in the footnote21.

20(a) 0.1157 ⇥ 0.1157 ⇥ 0.1157 = 0.0015. (b) (1� 0.1157)3 = 0.692
21This probability is zero. While the person might be close to 180 cm, the probability that a

randomly selected person is exactly 180 cm is zero. This also makes sense with the definition of
probability as area; there is no area between 180 cm to 180 cm.

Continuous random variables

It is given by the area in orange 
(sum of 2 rectangles)

What if we let the bin width go to 0?

The contour of the 
histogram converges to a 
smooth curve           . The 
area becomes an integral

f(x)

� 185

180
dxf(x)
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The function        is called probability density 
function (pdf) of the continuous random variable X. 
In our example, X is the (random) height of a randomly 
selected US adult.

f(x)

We use it to compute the probability that X is in a given 
interval [a,b]:

In particular, the total area under the curve of         is 1.

P (a � X � b) =
� b

a
f(x)dx

f(x)

total area =
� ⇥

�⇥
f(x)dx = P (�⇤ ⇥ X ⇥ ⇤) = 1
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2.2.2 Probabilities from continuous distributions

We computed the proportion of individuals with heights 180 to 185 cm in Exam-
ple 2.8 as a proportion:

number of people between 180 and 185

total sample size

We found the number of people with heights between 180 and 185 cm by deter-
mining the shaded boxes in this range, which represented the fraction of the box
area in this region.

Similarly, we use the area in the shaded region under the curve to find a
probability (with the help of a computer):

P (height between 180 and 185) = area between 180 and 185 = 0.1157

The probability a randomly selected person is between 180 and 185 cm is 0.1157.
This is very close to the estimate from Example 2.8: 0.1172.

height (cm)

140 160 180 200

Figure 2.16: The total area under the curve representing all individuals is 1. The
area between 180 and 185 cm is the fraction of the US adult population between
180 and 185 cm. Compare this plot with Figure 2.14.

�
Exercise 2.20 Three US adults are randomly selected. The probability a single
adult is between 180 and 185 cm is 0.1157. Short answers in the footnote20.

(a) What is the probability that all three are between 180 and 185 cm tall?

(b) What is the probability that none are between 180 and 185 cm?

�
Exercise 2.21 What is the probability a randomly selected person is exactly 180

cm? Assume you can measure perfectly. Answer in the footnote21.

20(a) 0.1157 ⇥ 0.1157 ⇥ 0.1157 = 0.0015. (b) (1� 0.1157)3 = 0.692
21This probability is zero. While the person might be close to 180 cm, the probability that a

randomly selected person is exactly 180 cm is zero. This also makes sense with the definition of
probability as area; there is no area between 180 cm to 180 cm. 53Friday, January 11, 13
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The expected value of a continuous random 
variable is also the limit of     as the number of 
observations goes to infinity
In this case, we have

x̄

For a general function          we haveh(X)

E[h(X)] =
� ⇥

�⇥
h(x)f(x)dx

µ = E(X) =
� ⇥

�⇥
xf(x)dx
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The variance of a continuous random variable is 
obtained by taking h(X) = (X � µ)2

We still have the shortcut formula

var(X) =
� ⇥

�⇥
(x� µ)2f(x)dx

var(X) = E(X2)� µ2 =
⇤

x2f(x)dx�
�⇤

xf(x)dx

⇥2

Moreover, the variance is the limit of     as the 
number of observations goes to infinity.

s2
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If the function h(X) is of the form h(X)=aX+b for 
some numbers a and b, we have other shortcuts:

E(aX + b) = aE(X) + b

var(aX + b) = a2var(X)

These rules apply whether the random variable is 
discrete or continuous.
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