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X=number of sick patients among n patients
X=number of ORFE majors among n students
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sl All those have the same distribution only the
parameter change from one to another.
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The normal distribution
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Is a drug effective on a randomly selected patient!?

Does a randomly selected tire satisfy quality requirements!?
Is a randomly selected student a senior?

Is a randomly selected census tract on the Charles river?
Is a randomly selected employee a woman!

Is the outcome of a coin toss “heads’?

These random experiment are very simple since they have

.We can code numerically them by 0 (for failure="no”)
and | (for success="yes”) to obtain a random variable X.
In this case we say that “X has Bernoulli distribution with
parameter p” and write X ~ Bernoulli(p) where p is the
probability of success:

P(X =1)=p O
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Bernoulli distribution

Since there are only two possible outcomes, we have:

P X=0)=1-p

Interesting quantities are

E(X)

p

var(X)

p(1 —p)
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What is the advantage of using the numerical codes 0 and | over
3 for success and 62 for failure for example!?

The average of observations is the proportion of success which
tends to p as the number of repetition goes to infinity:

o
-

1+1+1+1+0+1+4+0+1

0.9

average value of the observations
0.8

mn
* number of success = E X;

1=1

0.7

0.6

0 1000 2000 3000 4000 5000

number of rounds O
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T
number of success = E X;
i—1
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T
number of success =Z X; This is also a random variable
i=1
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Binomial distribution

T
number of success = E X;
i—1

Takes vales 0, 1, 2, ..., n and called
parameters n and p

X ~ Bin(n,p)

The probability distribution is given by

p(x) = (Z)p"”(l )"z =1,2,...
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The binomial distribution is often encountered in practice:

X=number of heads in 10 coin tosses

X=number of patients carrying HINI in a cohort of 100
randomly selected patients (prevalence is 6%)

X=numbers of computers infected by a virus with
prevalence 56% in a company with |57 workstations
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s it binomial? (read more in Section 3.4 of Openlintro)

|. The trials are independent

2. The number of trials 7 is fixed

3. Each trial outcome is either or

4. The probability of success pis the same for each trial
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* A random variable X that has Poisson distribution can
take any nonnegative integer value 0,1,2,....

* |t can be seen as a generalization of the binomial value
when the number of trials is very large (n — oo)

* At the same time the probability of success has to
become very small (p — 0) otherwise, the expected value
of X would be infinite.

* A random variable X has X ~ Poiss(\)
with parameter \ > 0 if X ~ Bin(n,p) with

n—oo, p—>0, np—>A>0

O
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From the results of the Binomial distribution we can find

the expected value and variance of X ~ Poiss(\)
Indeed,

np — A np(l —p) > A(1—0) =\
So if X ~ Poiss(\)then

E(X)= ) var(X) = A
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Why not use the binomial distribution directly?
If n=10°p=10""itis difficult to compute P(X=x).

Every day, use the poisson
distribution.

Consider a company that subscribes to an insurance policy
for its 1,000 employees. The insurance company’s
investigation reveal that the probability that a an employee
is injured in a given year is 0.02. If we assume that injuries
are independent of each other then the total number of
injuries X per year is X ~ Bin(1000,0.02)which can be
approximated by X ~ Poiss(20).In average: 20 injuries,
and we also know the V20 ~ 4.47
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The uniform distribution is the simplest continuous
distribution.
Given an interval [a, b] the distribution puts the same
weight on each region of the interval with a
probability density function:
4 1 .
— ta<x<b
p(r) =9 57° .
-0 otherwise
B(X) = a-+0b
o 2
Exercise: check that / p(z)dz =1 (b—a)?

oo var(X) = T O
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In this case, we say that the random variable “X has
uniform distribution on the interval [a,b]” and we write

X ~U(la,b])

O

Exercise: check that / p(z)dz = 1

— OO
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An example is the following:

A pigeon is released from a rooftop and it can take any
direction randomly. Let Xdenote the azimuth (in degrees)
of the direction take by the pigeon:

North
X

X

Then X ~ U(]0, 360])
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You probably know its bell-shaped curve
It is : , smooth, going to 0 fast in the tails

The curve is obtained by plotting the probability density
function (pdf) of a““normal random variable” (a

random variable that has normal distribution). O

15
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It is also commonly called the
after German mathematician
Carl Friedrich Gauss who demonstrated |
that the method of “least-squares” (see
chapter 7) was valid when the
observations were drawn from this
distribution.

Since then, it has been shown that
this distribution is much more than
a simple tool. It is everywhere!
Social sciences, chemistry, physics, oo
electronics, medicine, ... :
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The bell-shaped curve is the plot of the pdf of a random
variable. The pdf is the following function:

1 (x — p)?
T) = ex f
flz) V2rea? p< 207 )
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MATH 183 -
Prof. Bradic

Normal distribution model Winter 2013

The bell-shaped curve is the plot of the pdf of a random
variable. The pdf is the following function:

1) = s exp (210

B V22 202

Depends on two : [+ and

Calculus shows that if X has pdf given as above then
E(X)=pu var(X) = o

If X is a normal random variable with parameters /: and

we write X ~ N(,u,g2)

or we say that “the distribution of X is IV (1, 02) & Q
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We know that the expected value measures the average
location and the variance measures the average variability
around this Iocation. Normal pdf: u=0,0°=1 Normal pdf: u=10,6°=1

04
0.4

0.1
0.1

Normal pdf: M=0,02=4 Normal pdf: M=10-02=4

fi

0.00 0.05 0.10 0.15 0.20
fi

0.00 0.05 0.10 0.15 0.20

par(mfrow=c(2,2))
plot(function(x) dnorm(x, mean=0, sd=1), -5, 5, main = expression(paste("Normal pdf: ",symbol("m"),"=",0, ",",sigmaA2,"=",1)),ylab="f(x)")

plot(function(x) dnorm(x, mean=10, sd=1), -5, 5, main = expression(paste("Normal pdf: ",symbol("m"),"=",10, ",",sigmaA2,"=",1)),ylab="f(x)")
plot(function(x) dnorm(x, mean=0, sd=2), -5, 5, main = expression(paste('Normal pdf: ",symbol("m"),"=",0, ",",sigmaA2,"=",4)),ylab="f(x)") O

plot(function(x) dnorm(x, mean=10, sd=2), -5, 5, main = expression(paste("Normal pdf: ",symbol("m"),"=",10, ",",sigmaA2,"=",4)),ylab="f(x)")
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We know that the expected value measures the average
location and the variance measures the average variability
around this Iocation. Normal pdf: u=0,0°=1 Normal pdf: u=10,6°=1

04
0.4

0.3
|
0.3
|

f(x)
0.2
|

x)
0.2
|

Notice that the scale
of the changes

0.1
0.1

0.0
|
0.0
|

Normal pdf: M=0,02=4 Normal pdf: M=10-02=4

fi

0.00 0.05 0.10 0.15 0.20
fi

0.00 0.05 0.10 0.15 0.20

par(mfrow=c(2,2))
plot(function(x) dnorm(x, mean=0, sd=1), -5, 5, main = expression(paste("Normal pdf: ",symbol("m"),"=",0, ",",sigmaA2,"=",1)),ylab="f(x)")
plot(function(x) dnorm(x, mean=10, sd=1), -5, 5, main = expression(paste("Normal pdf: ",symbol("m"),"=",10, ",",sigmaA2,"=",1)),ylab="f(x)") :

plot(function(x) dnorm(x, mean=0, sd=2), -5, 5, main = expression(paste('Normal pdf: ",symbol("m"),"=",0, ",",sigmaA2,"=",4)),ylab="f(x)")
plot(function(x) dnorm(x, mean=10, sd=2), -5, 5, main = expression(paste("Normal pdf: ",symbol("m"),"=",10, ",",sigmaA2,"=",4)),ylab="f(x)")
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Effect of 1 and o°

f(x)

plot(function(x) dnorm(x,
par(new=TRUE)
plot(function(x) dnorm(x,
par (new=TRUE)
plot(function(x) dnorm(x,
par(new=TRUE)
plot(function(x) dnorm(x,

<

o

™

2

N _

o

g -

o

S A
I I I I I I I
-10 -5 0 5 10 15 20

X

mean=0, sd=1), -10, 20, ylim=c(0,.4), ylab="f(x)")
mean=0, sd=2), -10, 20, ylim=c(0,.4), ylab="f(x)", col='red')
mean=10, sd=1), -10, 20, ylim=c(0,.4), ylab="f(x)", col="'green')

mean=10, sd=2), -10, 20, ylim=c(0,.4), ylab="f(x)", col="blue')
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There is a canonical choice for the parameters // and

p=0
o’ =1

The distribution N (0, 1) is called

Starting from a random variable X ~ N(u,0?) we can
always transform it into a standard normal random
variable:

X — [

o

In this case, we have Z ~ N(0,1)

/
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Z score

Consider two courses: ORF245 and PSY IO
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The histogram of historical grades (before curving) in these

courses is respectively

ORF245 PSY101

'\ S _

/ [\

/\

/N I
i | /

0.03
|

ty
0.02
|
\

\

8 /11 =65 o2=100]  z- /
/
s / \ - /
/ \\ ) /
§_ 474/ X— §_=AVZ

\

Monday, February 4, 13



MATH 183 -
Prof. Bradic

Z score Winter 2013

PSY101
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Will, a freshman enrolled in both courses last semester got
75 in MTHI83 and 89 in PSYIO01.

In which course did he do best?

We compute the to put both courses on the
same scale.
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PSY101
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Will, a freshman enrolled in both courses last semester got
75 in MTHI83 and 89 in PSYIO01.

In which course did he do best?

We compute the to put both courses on the
same scale.

75— 65
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Will, a freshman enrolled in both courses last semester got
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In the previous example,Will was better than average in
both courses, resulting in Z scores in both courses.

If the sign does not matter, we can use the absolute value | 7]
to identify unusual observations.

The sales X (in $) of a hotdog stand on a random day of
the summer has distribution X ~ N (540, 8100)

Daily hotdog sales

Which amount is the most
\ unusual: 700% or 4609%!

YZ _ 54 460 — 54
¥ |700 5O|:1.78 '60 5o|20.89

2>
2

o

S

g

3 j i\ 90 90

o

o

g

e \ \ \ \ \ \ \ \

300 400 500 600 700 800 900

24
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Z score

700 — 540

90

— 178

MATH 183 -
Prof. Bradic
Winter 2013

| 460 — 540

— (.89
90 |

The standard deviation 90 is the same for both scores so
we do not need it to compare both numbers.
Assume now that the number of customersY has

(approximate) distribution: Y ~ IN(90, 100)

71

/

\

%

Daily hotdog customers

Sj
o
o
o
=)
T T
60 80

T 1
100 120

Which amount is the most
unusual: 700% or 80 customers

30 — 90

=1 < 1.78
10 =
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We can now answer the “relative” question:
which observation is the most unusual?
We want to answer the “absolute” question:
Is 700$ sales unusual?

For that we need to understand better the standard
normal distribution and its deviations to its mean (1 = 0)

One way to answer this question is:

If | draw 1000 times a standard normal random variable,

how often will it have absolute value greater than |.78.

In the next slides, we will see that the answer is 7.5% of the
time. It is only (slightly unusual: <10%,

unusual: <5%, very unusual <[%). O
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Normal probability table

Will scored 85 in PSYI0I. His

of students who earned a lower score.

PSY101
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is the percentage

f(x)
0.06 0.08 0.10
I I I

0.04
I

0.02
I

0.00
I

70 75 80 85 90 95

100 O
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Will scored 85 in PSYI01. His is the percentage

of students who earned a lower score.

0.10

70 75 80 85 90 95 100

plot(function(x) dnorm(x, mean=85, sd=4), 70, 100, ylab="f(x)", col=2, main="PSY101")
xx=seq (70, 89, by=0.01; yy=dnorm(xx, mean=85, sd=4)

xx=Cc(xx, 89, 70); yy=c(yy, 0, 0)
polygon(xx,yy, col="grey60') O

28
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89 2
1 _
/ exp Clll) dx
oo V2102 202

Cannot be computed explicitly. We can use either a calculator
or a table that gives:

| e ( o )2> o

for many values of 7 (here we are interested in ¢ = §9).
Problem: the integral depends on 1 and 0% an we cannot
make one table for each (i, 0%) => Q
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f(x)
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The solution is to standardize:
X —&H 89—&H
P(X§89):P< 1 < 7 >:P(Z§1)

where Z ~ N(0,1) is a standard normal random variable

PSY101 Standard norma |

Same shaded
area

x o

= O
-
o
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Therefore, we only need a table for the standard normal
random variable, that is for the values of the integral

[ymee(-3)
exp | —— | dx
oo V2T P 2

2

Area= /_100 \/12_7Texp (%) dx

Standard norma | /

f(x)
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Therefore, we only need a table for the standard normal
random variable, that is for the values of the integral

/x 1 ( 372) p
exp | —— | dx
oo V2 P 2

These values are given by the

2

Area: /_loo \/12_7T exp (%) dx

Standard norma | /

at the end of the book.

f(x)
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Normal probability table

Figure 3.7: The area to the left of Z represents the percentile of the observation.

negative Z

positive Z

Second decimal place of Z

A 0.00 0.01 0.02 0.03 0.04 | 0.05 0.06 0.07 0.08 0.09
0.3 | 0.6179 0.6217  0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 | 0.6736 0.6772 0.6808 0.6844  0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291  0.7324 0.7357 0.7389 | 0.7422 0.7454 0.7486 0.7517  0.7549
0.7 | 0.7580 0.7611  0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 07881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 | 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 | 0.8749 0.8770 0.8790 0.8810 0.8830

P(Z <0.84) =
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Sarah is a randomly selected student in PSY 101. Her score is
the random variable X ~ N (85, 16)

| . What is the probability that she scores at least 90!
2.The “B-range” is between 80 and 90.What is the
probability that earns a B!

3. Eventually, she’s at the 85th percentile.VWhat is her score?
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Sarah is a randomly selected student in PSY 101. Her score is
the random variable X ~ N (85, 16)

| . What is the probability that she scores at least 90!
2.The “B-range” is between 80 and 90.What is the
probability that earns a B!

3. Eventually, she’s at the 85th percentile.VWhat is her score?

Formally, the questions are:

|.What is P(X > 90)
2.What is P(80 < X < 90)
3.Whatis = such that P(X < ) = .85

Monday, February 4, 13 33



Normal probability examples

curve of X /\_/
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P(X >90) =1— P(X < 90)
1 (
—1— P(Z < 1.25)
| P(X <90)  P(X >90)

aeax A\ — A\ = /N

90
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—1— P(Z < 1.25)

P(X <90)  P(X > 90)

curve of X /\ /\\ /\

90

P(Z <1.25) P(Z >1.25)

curve of Z /\ /\ /\ o

.25
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—1— P(Z < 1.25)

P(X <90)  P(X > 90)

curve of X /\ /\\ /\

90

P(Z <1.25) P(Z >1.25)

curve of Z /\ /\ /\ o

.25
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P(Z <1.25) =
Second decimal place of Z
Z | 0.00 0.01 0.02 003 0.04] 005 0.06 0.07 0.08 0.09
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 | 0.5199 0.5239 0.5279 0.5319  0.5359
0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 | 0.5596 0.5636 0.5675 0.5714  0.5753
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 | 0.5987 0.6026 0.6064 0.6103  0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 | 0.6736 0.6772 0.6808 0.6844  0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123 0.7157 0.7190  0.7224
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 | 0.7422 0.7454 0.7486 0.7517  0.7549
0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 | 0.8531 0.8554 0.8577 0.8599  0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 | 0.8749 0.8770 0.8790 0.8810  0.8830
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 | 0.8944 0.8962 0.8980 0.8997  0.9015
1.3 | 0.9032 0.9049 0.9066 0.9082 0.9099 | 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 | 09192 09207 0.9222 0.9236 0.9251 | 0.9265 0.9279 0.9292 0.9306 0.9319
O U
P(X > 90) = 0.1056
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2.The “B-range” is between 80 and 90.What is the
probability that earns a B?
P(80 < X <90)

80 90

P(80< X <90)=1— P(X <80)— P(X > 90)
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probability that earns a B?
P(80 < X <90)

80 90
P(80< X <90)=1— P(X <80)— P(X > 90)
But we have P(X > 90) =1 — P(X < 90)
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2.The “B-range” is between 80 and 90.What is the
probability that earns a B?
P(80 < X <90)

80 90
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y N AN

80 90 00 0
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P(80 < X <90) = P(Z < 90;85) P(Z < 80;85)

— P(Z <1.25) — P(Z < —1.25)
= 0.8944 — 0.1056

= (.7338 O
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3. Eventually, she’s at the 85th percentile.VWhat is her score?

What is = such that P(X < ) = .85
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Second decimal place of Z
Z | 0.00 0.01 0.02 003 0.04| 005 0.06 0.07 0.08 0.09
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 | 0.5199 0.5239  0.5279  0.5319  0.5359
0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 | 0.5596 0.5636 0.5675 0.5714  0.5753
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 | 0.5987 0.6026 0.6064 0.6103  0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 06554 0.6591 0.6628 0.6664 0.6700 | 0.6736 0.6772 0.6808 0.6844  0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 | 0.7422 0.7454 0.7486 0.7517  0.7549
0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 | 0.8531 0.8554 0.8577 0.8599  0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 | 0.8749 0.8770 0.8790 0.8810  0.8830
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 | 0.8944 0.8962 0.8980 0.8997  0.9015
1.3 | 0.9032 0.9049 0.9066 0.9082 0.9099 | 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 | 0.9265 0.9279 0.9292 0.9306 0.9319
) [ S SUND
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Second decimal place of Z
Z | 0.00 0.01 0.02 003 0.04| 005 0.06 0.07 0.08 0.09
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 | 0.5199 0.5239  0.5279  0.5319  0.5359
0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 | 0.5596 0.5636 0.5675 0.5714  0.5753
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 | 0.5987 0.6026 0.6064 0.6103  0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 06554 0.6591 0.6628 0.6664 0.6700 | 0.6736 0.6772 0.6808 0.6844  0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 | 0.7422 0.7454 0.7486 0.7517  0.7549
0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485( 0.8508 [)0.8531 0.8554 0.8577 0.8599  0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 | 0.8749 0.8770 0.8790 0.8810  0.8830
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 | 0.8944 0.8962 0.8980 0.8997  0.9015
1.3 | 0.9032 0.9049 0.9066 0.9082 0.9099 | 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 | 0.9265 0.9279 0.9292 0.9306 0.9319
) [ S SUND
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Second decimal place of Z
A 0.00 0.01 0.02 0.03 0.04] 005 0.06 0.07 0.08 0.09
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 | 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 | 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 | 05793 0.5832 0.5871 0.5910 0.5948 | 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 | 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 | 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485( 0.8508 [)0.8531 0.8554 0.8577 0.8599 0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 | 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 | 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 | 09032 0.9049 0.9066 0.9082 0.9099 | 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 | 0.9265 0.9279 0.9292 0.9306 0.9319
1.04 is such that P(Z < 1.04) ~ 0.85 so that
T80
4
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Second decimal place of Z
A 0.00 0.01 0.02 0.03 0.04] 005 0.06 0.07 0.08 0.09
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 | 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 | 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 | 05793 0.5832 0.5871 0.5910 0.5948 | 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 | 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 | 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485( 0.8508 [)0.8531 0.8554 0.8577 0.8599 0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 | 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 | 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 | 09032 0.9049 0.9066 0.9082 0.9099 | 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 | 0.9265 0.9279 0.9292 0.9306 0.9319
1.04 is such that P(Z < 1.04) ~ 0.85 so that
T80
4
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The normal curve is symmetric about is mean. It yields useful
shortcuts in the calculation of probabilities and percentiles.

VAN ﬂ\

P(X < —x) > )
Therefore, if = is the 92nd percentile, then is the
percentile.
- > 1) P(|X| > x)

] ] O
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/\ VAN

— P(|X| > x)

We will often be looking for 1 such that P(|X| > 7) = «
for some given small « o
If we take to be the 100§th percentile, then

— 2P(X < —1) :2(%) _

N[ 2

o
2
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normality

We have seen already one strong property of normal
random variables, that is:if X ~ N (u, o) then

X _
i H is still a random variable
o
More generally, the transformation ¥ = aX + bis a
normal random variable with E/(Y") = and var(Y) =
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Operations that preserve Wit o013
normality
We have seen already one strong property of normal
random variables, that is:if X ~ N (u, o) then

X _
/[ = & is still a random variable
o
More generally, the transformation Y = aX + bis a
normal random variable with E/(Y") = and var(Y) =
If X1, Xo,...,.X,, are normal random

variables with the same distribution X; ~ N (u, 0?) (i.i.d for
independent and identically distributed), then

> Xim (o) and 37X~ N D)
i=1 i=1 O
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These two properties are valid only for normal random
variables. It is therefore important to check whether it is
plausible that a given set of observation has been drawn

from a normal distribution.

A popular and useful tool is (or
quantile-quantile plots, or simply Q-Q plots).

Normal Q-Q Plot Normal Q-Q Plot

x=rnorm(200)
ggnorm(x)
gqline(x)

x=runif(200)
ggnorm(x)
gqline(x)

Sample Quantiles

Theoretical Quantiles Theoretical Quantiles

normal not normal O
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In the axes of the plots, we see A quantile, is a
percentile but not expressed in percentage:

When two distributions are the same, they should have the
same quantiles: in the plots, they should be on a line.

The theoretical quantiles can be read (backwards)
in a normal probability table. The empirical quantiles = =
are defined just like the median and the quartiles:

o
2 I /) Of ObS. x=rnorm(50)
quantile(x, c(0.21, 0.73))
O @ 000 ADO@O @ DN OeOO0 @ @ 00O ®
I I I I |
-2 -1 0 1 2

x e
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QQ-plots and histograms

QQ-plots when the observations are
simulated from normal distribution

n=20

© _ _

o

#
2 o =
(7)) wn
o B o
) N o

o

o _

© T1T 17T 717 T T 1

3 -2 -1 0 1 2 3

Sample Quantiles
1.0
Sample Quantiles

-1.0 0.0

Theoretical Quantiles

02 04 06

0.0

n=40

Theoretical Quantiles

Density

Sample Quantiles

0.4

0.2

0.0
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x=rnorm(20)

y=rnorm(40)

z=rnorm(80)

par(mfrow=c(2,3))

hist(x, freg=F, main="n=20", xlim=c(-3,3))
hist(y, freg=F, main="n=40", xlim=c(-3,3))
hist(z, freg=F, main="n=80", xlim=c(-3,3))
ggnorm(x, main=""); qqline(x)

qgnorm(y, main=""); qqline(y)

ggnorm(z, main=""); qqline(z)

n=80

AT

I
-3

P r T
2 -1 0 1 2 3

2 -1 0 1 2
Theoretical Quantiles O
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QQ-plots and histograms

QQ-plots when the observations are
not simulated from normal distribution

n=20
o
24 =
P
-(7) —
s o _|
A « _}_
o 1L ]
© | | | |
0.0 04 0.8
X
(o0]
g -
T o _
g o
9 < |
e %
§ o7
o °9

Theoretical Quantiles

Density

Sample Quantiles

n=40

o _

o [ ] >

< 7] (%)
[

— ()

O e

2 4

o _

© | | | | |

0.0 04 0.8
y

[7)]
2
1=
M)
>
g
[0}
o
€
®
N

Theoretical Quantiles

x=runif(20)

y=runif(40)

z=runif(80)

par(mfrow=c(2,3))

hist(x, freg=F, main="n=20",
hist(y, freg=F, main="n=40",
hist(z, freg=F, main="n=80",
ggnorm(x, main=""); qqline(x)
qgnorm(y, main=""); qqline(y)
ggnorm(z, main=""); qqline(z)

n=80

1.2
|
|

00 04 038

Theoretical Quantiles
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x1im=c(0,1))
x1im=c(0,1))
x1im=c(0,1))
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Real data: medyv

150
|

100
|

Frequency

50
|

Tibrary(mlbench)
data(BostonHousing2)
attach(BostonHousing2)
hist(medv)
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ggnorm(medv) ; qqline(medv)

Histogram of medv

truncated
observations

Normal Q-Q Plot

50
|

40

30
|

Sample Quantiles

20

10

10

20 30 40 50 -3 -2

medv

Theoretical Quantiles
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Tibrary(mlbench)
data(BostonHousing2)
attach(BostonHousing2)
hist(medv)

ggnorm(medv) ; qqline(medv)

Real data: medyv

normal regime

Histogram of medv Normal Q-Q Plot
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truncated
observations

50

150

100

Frequency
Sample Quantiles

50

10 20 30 40 50

Theoretical Quantiles

medv
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ggnorm(medv) ; qqline(medv)

Histogram of medv

truncated
observations

Normal Q-Q Plot

50
|

40

30
|

Sample Quantiles

20

10

10

20 30 40 50 -3 -2

medv

Theoretical Quantiles
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data(BostonHousing2) :
Real data: medv attach(BostonHousing2) Winter 2013
hist(medv)
ggnorm(medv) ; qqline(medv)
truncated
than normal
Histogram of medv Normal Q-Q Plot
1|o 2|o 3|o 4|o 5|o -3 -2 -1 0 1 2 3
medv Theoretical Quantiles
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Real data: medyv
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Tibrary(mlbench)
data(BostonHousing2)
attach(BostonHousing2)
hist(medv)
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ggnorm(medv) ; qqline(medv)

Histogram of medv

truncated
observations

Normal Q-Q Plot

50
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|

Sample Quantiles

20
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20 30 40 50 -3 -2

medv

Theoretical Quantiles
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Light or heavy tails?
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The thickness/weight of the tails can be read on a QQ-plot

1.0

0.8

0.6

0.4

0.2

0.0

thin/light tails

fat/heavy tails

e

B

O
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Light/thin or heavy/fat tails is always meant with respect to
normal tails.

heavy tail

Normal Q-Q Plot

1.0

0.8
®

0.6

0.4
Sample Quantiles

0.2
1

Theoretical Quantiles

light left tail
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Light or heavy tails?

Left heavy

Normal Q-Q Plot

right heavy

Sample Quantiles
0

Theoretical Quantiles

Normal Q-Q Plot

3
g o
S
. . P o
right light & "1,
S < 4
© <, 0

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

00 02 04 06 08 1.0
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Left light

Normal Q-Q Plot

Theoretical Quantiles

Normal Q-Q Plot

Theoretical Quantiles
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distributions

For the rest of the chapter, we are going to review commonly
used distributions that are not the normal distribution. As usual,

we split them into and ones.
Discrete: Continuous:

* Bernoulli e Uniform

* Binomial * Exponential (in lab)
* Geometric (in book, sec. 3.3.2) e Chi-square

* Poisson (in lab)
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The Chi-square distribution is obtained by a
transformation of normal random variables that are not
affine.

Let X1, Xo,..., X beki.id
then the random variable

7 =X{+X5+ - +X;

Has Chi-square distribution with k degrees of freedom and
we write

wai

O
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The probability density function for the chi-square
distribution is complicated and not very useful.

The important points about X ~ 7 are:
X >0

E(X)=k
var(X) = 2k

and the table for the quantiles of a chi-square distribution.
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