
Math 183 Homework 7 Solutions Due: Feb. 25

Problem 1

The likelihood function is:

L(θ) =
n∏
i=1

[ θ

2
√
yi
e−θ
√
yi
]

=
θn

2n
e−θ

∑n
i=1
√
yi

n∏
i=1

( 1
√
yi

)
And

l(θ) = lnL(θ)

= n ln θ − n ln 2− 1

2

n∑
i=1

ln yi − θ
n∑
i=1

√
yi

Make dl(θ)/dθ = 0, then we have:

n

θ
−

n∑
i=1

√
yi = 0

Thus, we can get MLE θ̂:

θ̂ =
n∑n

i=1

√
yi

And by the sample given:

θ̂ =
4√

6.2 +
√

7.0 +
√

2.5 +
√

4.2
= 0.4563

Now we are computing P (2 ≤ θ̂ ≤ 3), since this is a continuous random
variable:

P (2 ≤ θ̂ ≤ 3) = P (θ̂ ≤ 3)− P (θ̂ ≤ 2)

Let’s just consider P (θ̂ ≤ 3) first, we have:

P (θ̂ ≤ 3) = P
( n∑n

i=1

√
yi
≤ 3
)

= P
(∑n

i=1

√
yi

n
≥ 1

3

)
By Central Limit Theorem, as n→∞, we have:

P
(∑n

i=1
√
yi

n
− µ

σ
≤ x

)
→ Φ(x)

Where Φ(·) is the distribution function of stand normal random variable, and

µ is the mean of
∑
i
√
yi

n
, σ2 is the variance of

∑
i
√
yi

n
. First, we need to find
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what’s the distribution of
√
yi, as yi’s are i.i.d., we only need to find

√
y1’s.

First, we can easily to get y1’s CDF:

FY (y) = 1− eθ
√
y

And

F√Y (y) = P (
√
Y ≤ y)

= P (Y ≤ y2)

= FY (y2)

= 1− eθy

Thus
√
y1 actually follows exponential distribution, which has mean 1

θ
and

variance 1
θ2

, moreover:

µ = E
(∑

i

√
yi

n

)
=

1

θ

and variance σ2:

σ2 = V ar
(∑

i

√
yi

n

)
=

1

n2

n∑
i=1

V ar(
√
yi) ==

1

nθ2

Therefore, we have:

P
(∑n

i=1

√
yi

n
≥ 1

3

)
= 1− P

(∑n
i=1

√
yi

n
≤ 1

3

)
= 1− P

(∑n
i=1
√
yi

n
− 1

θ
1√
nθ

≤
1
3
− 1

θ
1√
nθ

)
≈ 1− Φ

(√
n(
θ

3
− 1)

)
In the same way, we have:

P (θ̂ ≤ 2) ≈ 1− Φ
(√

n(
θ

2
− 1)

)
Finally,

P (2 ≤ θ̂ ≤ 3) = Φ
(√

n(
θ

2
− 1)

)
− Φ

(√
n(
θ

3
− 1)

)
)

Problem 2
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(a) In this problem, we can’t find a θ to make dL(θ)
dθ

= 0, so we are going to
find the one make L(θ) largest.

L(θ) =
1

θn
, 0 ≤ y1, . . . , yn ≤ θ

Thus, the smaller θ, the larger L(θ). Notice θ need to be bigger than every
yi, then the smallest θ we can get is actually maxi yi.

θ̂ = max
i=1,...,n

{y1, y2, . . . , yn} = 14.2

Review section 3.10, θ̂ is actually the order statistic Y ′n, its distribution
function is:

Fθ̂(y) = [FY (y)]n =


0, y < 0
yn

θn
, 0 ≤ y ≤ θ

1, y > 1

(b) Same as part(a), the derivative can’t be 0, we just need to find the θ̂1 and
θ̂2, to make L(θ1, θ2) largest, then they are MLE.

L(θ1, θ2) =
1

(θ2 − θ1)n
, θ1 ≤ y1, . . . , yn ≤ θ2

Thus, the problem become to find largest θ1 and smallest θ2. Similar as
above, we have:

θ̂1 = Y ′1 = min
i=1,...,n

{y1, y2, . . . , yn} = 1.8

θ̂2 = Y ′n = max
i=1,...,n

{y1, y2, . . . , yn} = 14.2

Problem 3

The maximum likelihood function is:

L(θ) =
2n
∏n

i=1 yi
θ2n

Thus, as the same discussion in 5.2.10, θ̂ = Y ′n = maxi=1,...,n{y1, . . . , yn}. By

theorem in section 3.10, we have PDF of θ̂:

fθ̂(y) = n[FY (y)]n−1fY (y)

=
2n

θ2n
y2n−1
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Then the expectation is:

E(θ̂) =

∫ θ

0

y · 2n

θ2n
y2n−1dy =

2n

2n+ 1
θ

Problem 4

(a) (The additional question cancelled, but if some one do that, he can get
extra credits)
The likelihood function is:

l(α) = lnL(α)

= n lnα + n ln β − α
n∑
i=1

yβi + (β − 1)
n∑
i=1

ln yi

To make the derivative of l(θ) be 0, we can have:

α̂ =
n∑n
i=1 y

β
i

To compute E(α̂), first, we claim Y β
i follows exponential distribution

exp(α) (Proof skipped, it can be showed by CDF). Then the
∑n

i=1 y
β
i

follows Erlang Distribution, which has PDF:

f∑n
i=1 y

β
i
(y) =

αnyn−1e−αy

(n− 1)!
, y ≥ 0

Thus the expectation is:

E(α̂) = E∑n
i=1 y

β
i

( n∑n
i=1 y

β
i

)
=

∫ ∞
0

n

y
· α

nyn−1e−αy

(n− 1)!
dy

=
n

n− 1
α

∫ ∞
0

αn−1yn−2e−αy

(n− 2)!
dy

=
n

n− 1
α

(b) We have already gotten the likelihood function in part (a)

l(α, β) = n lnα + n ln β − α
n∑
i=1

yβi + (β − 1)
n∑
i=1

ln yi
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Make ∂l(α, β)/∂β = 0 and ∂l(α, β)/∂α = 0, we get:{
n
β

+
∑n

i=1 ln yi − αβ
∑n

i=1 y
β
i ln yi = 0

n
α
−
∑n

i=1 y
β
i = 0

Problem 5

Let X1 = k1, · · · , Xn = kn. Then given parameters p and n, the probability
that Xi = pi is

(
n
ki

)
pki(1− p)n−ki . So we have

L(p) =

(
n

k1

)
pk1(1− p)n−k1 · · ·

(
n

kn

)
pkn(1− p)n−kn .

We take natural log to make things easier to work with:

ln(L(p)) = ln

((
n

k1

)
· · ·
(
n

k2

))
+k1 ln p+· · ·+kn ln p+(n−k1) ln(1−p)+· · · (n−kn) ln(1−p)

To maximize we set the derivative to 0.

d lnL(p)

dp
=
k1
p

+ · · ·+ kn
p

+
n− k1
1− p

+ · · · n− kn
1− p

= 0

Simplifying (common denominator) we have

(k1 + · · ·+ kn)(1− p)− n2p+ (k1 + · · ·+ kn)p =
n∑
i=1

ki − n2p = 0.

So we have that
∑
ki = n2p, giving that the maximizer is p = k1+···+kn

n2 . So
the maximum likelihood estimator is X1+···+Xn

n2 .

Problem 6

First, given Y1, · · · , Y16 as data points, we know from Example 5.2.4 that the
maximum likelihood estimator for µ will be µ̂ = 1

16

∑
Yi = Y . We also know,

by Theorem 4.3.3, that
Y − µ
σ/
√
n

=
Y − 20

10/
√

16

has a standard normal distribution. Thus the probability that Y = µ̂ will be
between 19 and 21 is P (19−20

2.5
≤ Z ≤ 21−20

2.5
) ≈ .31.

If n is increased, then σ/
√
n decreases. This means that the probability

that the estimator is in the given range is the same as the probability that Z
is in a larger range than before, and thus the probability increases.
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Problem 7

Look at Theorem 3.10.1 for the pdf of the smallest order statistic. We’ll find
E(Ymin) and then transform so that the result will have expected value θ.

E(Ymin) =
∫ θ
0
yn(1− y

θ
)n−1 1

θ
dy = n

θ

∫ 1

0
θx(1− x)n−1θdx =

nθ
∫ 1

0
x(1−x)n−1dx by u-substitution. That integral is easily done by integra-

tion by parts (let your u be x, and your dv be the (1 − x)n−1). The result is
that E(Ymin) = 1

n+1
θ. Hence, (n+ 1)Ymin is an unbiased estimator for θ.

Problem 8

Again, recalling Theorem 3.10.1, we calculate E(nYmin) = n2
∫∞
0
ye−

(n−1)y
θ

1
θ
e−

y
θ dy

= n2 1
θ

∫∞
0
ye−

ny
θ dy = θ

∫∞
0
xe−xdx after u-substitution with x = ny

θ
. The inte-

gral we’re now left with is 1 (use integration by parts with u = x), so we just
end up with θ, making our estimator unbiased.
What about 1

n

∑n
0 Yi? Well, E( 1

n

∑n
0 Yi) = 1

n

∑n
0 E(Y ) = E(Y ), so we just

need to show the mean of Y is θ. E(Y) = 1
θ

∫∞
0
ye−

y
θ dy = θ

∫∞
0
xe−xdx by

u-substitution, and as before, this equals θ. Hence our estimator is unbiased.

Problem 9

We have var(θ̂1) = 36
25

var(Ymax) and var(θ̂2) = 36var(Ymin). As the problem
hints at, var(Ymax) and var(Ymin) are equal. To reason why is that there’s a
symmetry between the two of the form x → θ − x. In other words, the min
and the max behave the same, just on opposite sides of the interval [0, θ].
So, given that, it’s clear that 36v is worse than 36

25
v (ie, lower variance is better),

meaning θ̂1 is the estimator we should prefer.
Does this make intuitive sense? At first, perhaps not, since I just said that
there’s a symmetry between the min and the max. However, that symmetry
is broken when we convert them into an estimate for θ. The reason is that on
average, the min is 1

n+1
of the way to θ, and the max is n

n+1
of the way there.

So we guess that θ is n+1 times the min and n+1
n

times the max. But that
makes the variations in the min get magnified more than they do for the max.

Problem 10

The relative efficiency of λ̂1 to λ̂2 is the ratio var(λ̂2)

var(λ̂1)
. var(λ̂1) is simply the

variance of a Poisson distribution, call it v. var(λ̂2) is 1
n2

∑n
1 var(Xi) =

1
n
var(X) = 1

n
v. So the relative efficiency is simply 1

n
.
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