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It is sometimes expensive or simply impossible 
to collect large samples (n>50). Consider the 
following study...

A study on the effect of prozac (antidepressant) 
on 9 patients was made.

Prozac anyone?

Patients were asked to rate their “well being” before and after 
taking a prozac.

Before 3 0 6 7 4 3 2 1 4

After 5 1 5 7 10 9 7 11 8

It is expensive to collect more observations
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Disney opened its European park in Paris in 
1992. 

They want to compare its performance with 
the performance of Disneyland California in 
Anaheim

Ok what about Disneyland?

Absolute number of visitors (in million) are given in the 
following table.

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

CA

Paris

11.6 11.4 10.3 14.1 15 14.2 13.7 13.5 13.9 12.3 12.7 12.7 13.3 14.26 14.73 14.87 14.29

10 9.8 8.8 10.7 11.7 12.6 12.5 12.5 12.0 12.2 10.3 10.2 10.2 10.2 10.6 12.0 12.7
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The numbers are not comparable so only the 
increase in visitors is recorded.

Limited time frame

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

CA

Paris

NA -0.2 -1.1 3.8 0.9 -0.8 -0.5 -0.2 0.4 -1.6 0.4 0 0.6 0.96 0.47 0.14 -0.58

NA -0.2 -1 1.9 1 0.9 -0.1 0 -0.5 0.2 -1.9 -0.1 0 0 0.4 1.4 0.7

EuroDisney opened in 1992 so clearly there is no 
more data available!
It is impossible to have more than 16 observations
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If n>50 then

regardless of the distribution of X1, . . . ,Xn

Let us recall how we used the Central Limit 
Theorem:

Bye bye CLT

We still observe X1, . . . ,Xn, i.i.d E(Xi) = µ, var(Xi) = �2

In particular, the distribution of                   
could be Bernoulli, Poisson, Chi-square, ... 
anything really

X1, . . . ,Xn

X̄ =
X1 + . . .+Xn

n
⇠ N(µ, )
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If n>50 then

regardless of the distribution of X1, . . . ,Xn

The normal distribution allowed us to say that the Z-score

Z =
X̄ � µ

s/
p

n

X̄ =
X1 + . . .+Xn

n
⇠ N(µ, )
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regardless of the distribution of X1, . . . ,Xn

The normal distribution allowed us to say that the Z-score

Z =
X̄ � µ

s/
p

n
⇠ N(0, 1) approximately
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n
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If n>50 then

regardless of the distribution of X1, . . . ,Xn

The normal distribution allowed us to say that the Z-score

Z =
X̄ � µ

s/
p

n
⇠ N(0, 1) approximately

This enabled us to use the table for the standard normal 
distribution        confidence intervals, p-values

X̄ =
X1 + . . .+Xn

n
⇠ N(µ, )
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Winter 2013Bye bye CLT

If n>50 then

regardless of the distribution of X1, . . . ,Xn

The normal distribution allowed us to say that the Z-score

Z =
X̄ � µ

s/
p

n
⇠ N(0, 1) approximately

This enabled us to use the table for the standard normal 
distribution        confidence intervals, p-values

But now n is much smaller than 50

X̄ =
X1 + . . .+Xn

n
⇠ N(µ, )
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The purpose of this chapter is to find the distribution of 
the Z-score

 under some assumptions even when n is small

We need to make the assumption that

This assumption should be checked with a normal QQplot!

Z =
X̄ � µ

s/
p

n

X1, . . . ,Xn ⇠ N(µ, �2) i.i.d
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But don’t we already know the distribution of the Z-score 
under this assumption?

NO! what we know is that

What’s the difference?

Z =
X̄ � µ

s/
p

n

X1, . . . ,Xn ⇠ N(µ, �2) i.i.d

Z =
X̄ � µ

�/
p

n
⇠ N(0, 1)

8Wednesday, March 13, 13



MATH 183 - 
Prof. Bradic 

Winter 2013Unknown variance

But don’t we already know the distribution of the Z-score 
under this assumption?

NO! what we know is that

What’s the difference?

Z =
X̄ � µ

s/
p

n

X1, . . . ,Xn ⇠ N(µ, �2) i.i.d

Z =
X̄ � µ

�/
p

n
⇠ N(0, 1)

The variance      is unknown and 
replaced by its estimator  

�2

s2
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If 

Then

X1, . . . ,Xn ⇠ N(µ, �2) i.i.d

Z =
X̄ � µ

s/
p

n
⇠ tn�1

RULE

This distribution is NOT the standard normal distribution.

It has one integer parameter (here n-1) called 
degrees of freedom (d.f.)

Mr T.
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Actually this distribution was used first by Sean William Gosset in 
1908 while he worked for the Guinness brewery in Dublin Ireland.
His employer forbid him to publish papers so he used the pseudo
“student”
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Standard normal

Mr T.

-4 -2 0 2 4
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0

0.
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0.
2

0.
3

0.
4

The standard normal pdf
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The t distribution: df=50

Mr T.

The t50 pdf
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Mr T.

The t40 pdf
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Mr T.

The t30 pdf
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Mr T.

The t20 pdf
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Mr T.

The t10 pdf
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Mr T.

The t5 pdf
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Mr T.

The t4 pdf
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Mr T.

The t3 pdf
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Mr T.

The t2 pdf
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Mr T.

The t1 pdf
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Normal t13

Random sample

pdf

quantiles

rnorm(100) rt(100,df=13)

dnorm(x) dt(x,df=13)

qnorm(x) qt(x,df=13)
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There are also tables for the t distribution: one table per 
d.f. (just like the chi-square). Here is an abbreviated version:

CHAPTER 6. SMALL SAMPLE INFERENCE 4

6.1.3 Working with the t distribution

We will find it very useful to become familiar with the t distribution because it plays
a very similar role to the normal distribution during inference. It will be useful to
have a t table that can be used in place of the normal probability table. This t
table is partially shown in Table 6.3. A larger table is presented in Appendix A.2
on page 28.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
...

...
...

...
...

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
...

...
...

...
...

400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
� 1.28 1.64 1.96 2.33 2.58

Table 6.3: An abbreviated look at the t table. Each row represents a di�erent t
distribution. The columns describe the tail areas at each standard deviation. The
row with df = 18 has been highlighted.

Each row in the t table represents a t distribution with di�erent degrees of
freedom. The columns represent values corresponding to tail probabilities. For
instance, if we know we are working with the t distribution with df = 18, we can
examine row 18, which is highlighted in Table 6.3. If we want the value in this row
that identifies the cuto� for an upper tail of 10%, we can look in the column where
one tail is 0.100. This cuto� is 1.33. If we had wanted the cuto� for the lower
10%, we would use -1.33; just like the normal distribution, all t distributions are
symmetric.

 Example 6.1 What proportion of the t distribution with 18 degrees of free-
dom falls below -2.10?

Just like a normal probability problem, we first draw the picture in Figure 6.4. We
seek the area below -2.10, which is shaded in the picture. To find this area, we first
identify the appropriate row: df = 18. Then we identify the column containing the
absolute value of -2.10: the third column. Because we are looking for just one tail,
we examine the top line of the table, which shows that a one tail area for a value in
the third row corresponds to 0.025. About 2.5% of the distribution falls below -2.10.
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CHAPTER 6. SMALL SAMPLE INFERENCE 4

6.1.3 Working with the t distribution

We will find it very useful to become familiar with the t distribution because it plays
a very similar role to the normal distribution during inference. It will be useful to
have a t table that can be used in place of the normal probability table. This t
table is partially shown in Table 6.3. A larger table is presented in Appendix A.2
on page 28.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
...

...
...

...
...

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
...

...
...

...
...

400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
� 1.28 1.64 1.96 2.33 2.58

Table 6.3: An abbreviated look at the t table. Each row represents a di�erent t
distribution. The columns describe the tail areas at each standard deviation. The
row with df = 18 has been highlighted.

Each row in the t table represents a t distribution with di�erent degrees of
freedom. The columns represent values corresponding to tail probabilities. For
instance, if we know we are working with the t distribution with df = 18, we can
examine row 18, which is highlighted in Table 6.3. If we want the value in this row
that identifies the cuto� for an upper tail of 10%, we can look in the column where
one tail is 0.100. This cuto� is 1.33. If we had wanted the cuto� for the lower
10%, we would use -1.33; just like the normal distribution, all t distributions are
symmetric.

 Example 6.1 What proportion of the t distribution with 18 degrees of free-
dom falls below -2.10?

Just like a normal probability problem, we first draw the picture in Figure 6.4. We
seek the area below -2.10, which is shaded in the picture. To find this area, we first
identify the appropriate row: df = 18. Then we identify the column containing the
absolute value of -2.10: the third column. Because we are looking for just one tail,
we examine the top line of the table, which shows that a one tail area for a value in
the third row corresponds to 0.025. About 2.5% of the distribution falls below -2.10.

> x=seq(-5, 5, by=0.05)
> plot(x, dt(x), lwd=2, col='orange', xlab="", ylab="",  axes=FALSE, type="l")
> z=qt(0.95, df=18)
polygon(c(x[x>z],z),c(dt(x[x>z], df=18),0), col='#00000022', border='#000000AA')

-4 -2 0 2 4 -4 -2 0 2 4
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6.1.3 Working with the t distribution

We will find it very useful to become familiar with the t distribution because it plays
a very similar role to the normal distribution during inference. It will be useful to
have a t table that can be used in place of the normal probability table. This t
table is partially shown in Table 6.3. A larger table is presented in Appendix A.2
on page 28.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
...

...
...

...
...

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
...

...
...

...
...

400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
� 1.28 1.64 1.96 2.33 2.58

Table 6.3: An abbreviated look at the t table. Each row represents a di�erent t
distribution. The columns describe the tail areas at each standard deviation. The
row with df = 18 has been highlighted.

Each row in the t table represents a t distribution with di�erent degrees of
freedom. The columns represent values corresponding to tail probabilities. For
instance, if we know we are working with the t distribution with df = 18, we can
examine row 18, which is highlighted in Table 6.3. If we want the value in this row
that identifies the cuto� for an upper tail of 10%, we can look in the column where
one tail is 0.100. This cuto� is 1.33. If we had wanted the cuto� for the lower
10%, we would use -1.33; just like the normal distribution, all t distributions are
symmetric.

 Example 6.1 What proportion of the t distribution with 18 degrees of free-
dom falls below -2.10?

Just like a normal probability problem, we first draw the picture in Figure 6.4. We
seek the area below -2.10, which is shaded in the picture. To find this area, we first
identify the appropriate row: df = 18. Then we identify the column containing the
absolute value of -2.10: the third column. Because we are looking for just one tail,
we examine the top line of the table, which shows that a one tail area for a value in
the third row corresponds to 0.025. About 2.5% of the distribution falls below -2.10.

> x=seq(-5, 5, by=0.05)
> plot(x, dt(x), lwd=2, col='orange', xlab="", ylab="",  axes=FALSE, type="l")
> z=qt(0.95, df=18)
polygon(c(x[x>z],z),c(dt(x[x>z], df=18),0), col='#00000022', border='#000000AA')

-4 -2 0 2 4 -4 -2 0 2 4

Area = 5%

1.73
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We will find it very useful to become familiar with the t distribution because it plays
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Just like a normal probability problem, we first draw the picture in Figure 6.4. We
seek the area below -2.10, which is shaded in the picture. To find this area, we first
identify the appropriate row: df = 18. Then we identify the column containing the
absolute value of -2.10: the third column. Because we are looking for just one tail,
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6.1.3 Working with the t distribution

We will find it very useful to become familiar with the t distribution because it plays
a very similar role to the normal distribution during inference. It will be useful to
have a t table that can be used in place of the normal probability table. This t
table is partially shown in Table 6.3. A larger table is presented in Appendix A.2
on page 28.

one tail 0.100 0.050 0.025 0.010 0.005
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Table 6.3: An abbreviated look at the t table. Each row represents a di�erent t
distribution. The columns describe the tail areas at each standard deviation. The
row with df = 18 has been highlighted.

Each row in the t table represents a t distribution with di�erent degrees of
freedom. The columns represent values corresponding to tail probabilities. For
instance, if we know we are working with the t distribution with df = 18, we can
examine row 18, which is highlighted in Table 6.3. If we want the value in this row
that identifies the cuto� for an upper tail of 10%, we can look in the column where
one tail is 0.100. This cuto� is 1.33. If we had wanted the cuto� for the lower
10%, we would use -1.33; just like the normal distribution, all t distributions are
symmetric.

 Example 6.1 What proportion of the t distribution with 18 degrees of free-
dom falls below -2.10?

Just like a normal probability problem, we first draw the picture in Figure 6.4. We
seek the area below -2.10, which is shaded in the picture. To find this area, we first
identify the appropriate row: df = 18. Then we identify the column containing the
absolute value of -2.10: the third column. Because we are looking for just one tail,
we examine the top line of the table, which shows that a one tail area for a value in
the third row corresponds to 0.025. About 2.5% of the distribution falls below -2.10.

> x=seq(-5, 5, by=0.05)
> plot(x, dt(x), lwd=2, col='orange', xlab="", ylab="",  axes=FALSE, type="l")
> z=qt(0.95, df=18)
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-4 -2 0 2 4 -4 -2 0 2 4

Area = 2.5+2.5=5%

-2.1 2.1
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We can do the same things as in the large sample case:
1. Confidence interval for the mean 
2. Test for the mean
3. Confidence interval for the difference between means
4. Test for the difference between means

µ
µ

µ1 � µ2

µ1 � µ2

When can we do it?
When the observations are 

approximately normal and independent

-1 0 1
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from the experiment
(there is no test for that)
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We are interested in finding out if prozac actually has an effect 
on the mood

This is paired data so we can form the difference and make a 
test on 

Before 3 0 6 7 4 3 2 1 4

After 5 1 5 7 10 9 7 11 8

H0 : µ
after

 µ
before

H
A

: µ
after

> µ
before

µ
d

= µ
after

� µ
before

Test for a mean
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We are interested in finding out if prozac actually has an effect 
on the mood

This is paired data so we can form the difference and make a 
test on 

It is the same thing as testing a performing a test for the mean 
(point 2.)

Before 3 0 6 7 4 3 2 1 4

After 5 1 5 7 10 9 7 11 8

Diff 2 1 -1 0 6 6 5 10 4

H0 : µ
after

 µ
before

H
A

: µ
after

> µ
before

µ
d

= µ
after

� µ
before

Test for a mean
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The test becomes

There are only 9 observations so we cannot use the CLT.
We need to use the t distribution: t test
Can it be used? We need to check normality...

Diff 2 1 -1 0 6 6 5 10 4

H0 : µd  0
HA : µd > 0

YES! (normal distribution)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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10

Normal Q-Q Plot

Theoretical Quantiles
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Test for a mean
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Therefore the Z-score has t distribution with 9-1=8 
observations

If we compute the observed z-score under H0, we find

Therefore the p-value is given by (one sided test): 

Z =
X̄ � µ

s/
p

n
⇠ t8 Z =

X̄ � 0
s/
p

n
⇠ t8 under H0

p-value = P (Z > z
obs

) = P (t8 > 3.14)

z

obs

=
x̄� 0
s/

p
n

=
3.67� 0
3.5/

p
9

= 3.14

Test for a mean
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We look at the table and find that the p-value is between 0.5% 
and 1%. So the conclusion is that we reject the null 
hypothesis
Prozac works!

250 APPENDIX A. DISTRIBUTION TABLES

A.2 t Distribution Table

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75

p-value = P (Z > z
obs

) = P (t8 > 3.14)
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We already know how to use the test with student distribution 
(we’ve been using it all along):

Test for a mean with R

> diff=c(2,1,-1,0,6,6,5,10,4)
> t.test(diff, alternative="greater")

	

 One Sample t-test

data:  diff 
t = 3.1429, df = 8, p-value = 0.006873
alternative hypothesis: true mean is greater than 0 
95 percent confidence interval:
 1.497194      Inf 
sample estimates:
mean of x 
 3.666667 
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We saw that R can give one sided confidence interval for the 
mean
We can also make two-sided confidence intervals

Confidence interval for the mean

> diff=c(2,1,-1,0,6,6,5,10,4)
> t.test(diff)

	

 One Sample t-test

data:  diff 
t = 3.1429, df = 8, p-value = 0.01375
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval:
 0.9763285 6.3570048 
sample estimates:
mean of x 
 3.666667 

µd
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We start from the distribution of the Z-score

From the table, we see that 

Confidence interval for the mean

Z =
X̄ � µ

s/
p

n
⇠ t8

250 APPENDIX A. DISTRIBUTION TABLES

A.2 t Distribution Table

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85

21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75

P (|Z| > 2.31) = 0.05
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Plugging the definition of Z in the probability yields

Confidence interval for the mean

Z =
X̄ � µ

s/
p

n
⇠ t8 P (|Z| > 2.31) = 0.05

It gives the confidence interval

[x̄� 2.31
sp
n

, x̄ + 2.31
sp
n

] = [0.97 , 6.36]

P (|X̄ � µ

s/
⇤

n
| > 2.31) = 0.05

P (X̄ � 2.31
s⇤
n
⇥ µ ⇥ X̄ + 2.31

s⇤
n

) = 0.05
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Mean Std-dev size

156.85 22.64 20

118.76 22.55 17

What if the data is not paired?

Difference between two means

A laboratory analysis of calories of major hot dog 
brands. Researchers for Consumer Reports 
analyzed two types of hot dog: beef and poultry. 
The results are summarized below:

x̄ s n
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We want to know if there is a difference between 
beef and poultry

H0 : µB = µP

HA : µB 6= µP

Beef Poultry
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Boxplots indicate that there may be 
a significant difference. Can we 
perform a test and get a p-value?

Beef Poultry

10
0

12
0

14
0

16
0

18
0

• Sample size is too small for CLT
• We need to use the student distribution
• But the data is not paired (a hotdog is either beef or poultry)
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The qqplots indicate that the data is approximately normal.

If we assume that the two samples are independent, then 
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X̄B � X̄P ⇠ N( , ) under H0 : µB = µP
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We form the Z-score...
Recall that we don’t know the variances       and       so we 
replace them by       and      respectively!
The Z-score is

X̄B � X̄P ⇠ N( , ) under H0 : µB = µP0 �2
B

nB
+

�2
P

nP

Indeed, if the sample are independent: 

var(X̄B � X̄P ) = var(X̄B) + var(X̄P )

=
�2
B

nB
+

�2
P

nP

�2
B �2

P
s2Ps2B

under H0Z =
X̄B � X̄P � (µB � µP )q

s2B
nB

+
s2P
nP

Z =
X̄B � X̄P � 0q

s2B
nB

+
s2P
nP
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We need to find the distribution of the above Z-score

Z =
X̄B � X̄P � 0q

s2B
nB

+
s2P
nP
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We need to find the distribution of the above Z-score

Z =
X̄B � X̄P � 0q

s2B
nB

+
s2P
nP

It is a t distribution
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We need to find the distribution of the above Z-score

Z =
X̄B � X̄P � 0q

s2B
nB

+
s2P
nP

It is a t distribution

So we only need the d.f. to find which table to read from.
The book says:

This is an easy rule but let’s see what R does...

df = min(nB � 1, nP � 1) = min(20� 1, 17� 1) = 16
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We already know how to use the test with student distribution 
(we’ve been using it all along):

Difference between two means

with R

> t.test(Beef, Poultry)

	

 Welch Two Sample t-test

data:  Beef and Poultry 
t = 5.11, df = 34.09, p-value = 1.229e-05
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 22.94024 53.23035 
sample estimates:
mean of x mean of y 
 156.8500  118.7647 
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We already know how to use the test with student distribution 
(we’ve been using it all along):

Difference between two means

with R

> t.test(Beef, Poultry)

	

 Welch Two Sample t-test

data:  Beef and Poultry 
t = 5.11, df = 34.09, p-value = 1.229e-05
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 22.94024 53.23035 
sample estimates:
mean of x mean of y 
 156.8500  118.7647 

we reject!
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We already know how to use the test with student distribution 
(we’ve been using it all along):

Difference between two means

with R

> t.test(Beef, Poultry)

	

 Welch Two Sample t-test

data:  Beef and Poultry 
t = 5.11, df = 34.09, p-value = 1.229e-05
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 22.94024 53.23035 
sample estimates:
mean of x mean of y 
 156.8500  118.7647 

not 16!!

we reject!
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How did R find 34.09? Complicated formula:

How can we use it with a table? We round it down (truncate)! 
Here we use the table for df=34 (more conservative).

Computing and using the df

⇣
s2B
nB

+ s2P
nP

⌘2

s4B
n2
B(nB�1)

+
s4P

n2
P (nP�1)
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To find the p-value, we proceed as usual. 
The observed Z-score is

The p-value is now given by

we read this value from a table

P-value

z

obs

=
x̄

B

� x̄

P

� 0q
s

2
B

nB
+

s

2
P

nP

=
156.85� 118.76q

22.642

20 + 22.552

17

= 5.11

R found the 
same value

p-value = P (|Z| > z
obs

) = P (|t34| > 5.11)
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So the p-value is smaller than 1%

A.2. T DISTRIBUTION TABLE 251

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 31 1.31 1.70 2.04 2.45 2.74

32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70

41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 2.41 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 2.41 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68

55 1.30 1.67 2.00 2.40 2.67
60 1.30 1.67 2.00 2.39 2.66
65 1.29 1.67 2.00 2.39 2.65
70 1.29 1.67 1.99 2.38 2.65
75 1.29 1.67 1.99 2.38 2.64
80 1.29 1.66 1.99 2.37 2.64
85 1.29 1.66 1.99 2.37 2.63
90 1.29 1.66 1.99 2.37 2.63
95 1.29 1.66 1.99 2.37 2.63
100 1.29 1.66 1.98 2.36 2.63

120 1.29 1.66 1.98 2.36 2.62
140 1.29 1.66 1.98 2.35 2.61
160 1.29 1.65 1.97 2.35 2.61
180 1.29 1.65 1.97 2.35 2.60
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
� 1.28 1.64 1.96 2.33 2.58

p-value = P (|Z| > z
obs

) = P (|t34| > 5.11)

2.72 < 5.11
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So the p-value is smaller than 1%

A.2. T DISTRIBUTION TABLE 251

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 31 1.31 1.70 2.04 2.45 2.74

32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70

41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 2.41 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 2.41 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68

55 1.30 1.67 2.00 2.40 2.67
60 1.30 1.67 2.00 2.39 2.66
65 1.29 1.67 2.00 2.39 2.65
70 1.29 1.67 1.99 2.38 2.65
75 1.29 1.67 1.99 2.38 2.64
80 1.29 1.66 1.99 2.37 2.64
85 1.29 1.66 1.99 2.37 2.63
90 1.29 1.66 1.99 2.37 2.63
95 1.29 1.66 1.99 2.37 2.63
100 1.29 1.66 1.98 2.36 2.63

120 1.29 1.66 1.98 2.36 2.62
140 1.29 1.66 1.98 2.35 2.61
160 1.29 1.65 1.97 2.35 2.61
180 1.29 1.65 1.97 2.35 2.60
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
� 1.28 1.64 1.96 2.33 2.58

p-value = P (|Z| > z
obs

) = P (|t34| > 5.11)

2.72 < 5.11
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So the p-value is smaller than 1%

A.2. T DISTRIBUTION TABLE 251

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 31 1.31 1.70 2.04 2.45 2.74

32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70

41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 2.41 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 2.41 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68

55 1.30 1.67 2.00 2.40 2.67
60 1.30 1.67 2.00 2.39 2.66
65 1.29 1.67 2.00 2.39 2.65
70 1.29 1.67 1.99 2.38 2.65
75 1.29 1.67 1.99 2.38 2.64
80 1.29 1.66 1.99 2.37 2.64
85 1.29 1.66 1.99 2.37 2.63
90 1.29 1.66 1.99 2.37 2.63
95 1.29 1.66 1.99 2.37 2.63
100 1.29 1.66 1.98 2.36 2.63

120 1.29 1.66 1.98 2.36 2.62
140 1.29 1.66 1.98 2.35 2.61
160 1.29 1.65 1.97 2.35 2.61
180 1.29 1.65 1.97 2.35 2.60
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
� 1.28 1.64 1.96 2.33 2.58

p-value = P (|Z| > z
obs

) = P (|t34| > 5.11)

2.72 < 5.11
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The numbers are not comparable so only the 
increase in visitors is recorded.

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

CA

Paris

NA -0.2 -1.1 3.8 0.9 -0.8 -0.5 -0.2 0.4 -1.6 0.4 0 0.6 0.96 0.47 0.14 -0.58

NA -0.2 -1 1.9 1 0.9 -0.1 0 -0.5 0.2 -1.9 -0.1 0 0 0.4 1.4 0.7

Disney wants to know if there is significant 
evidence that their new Paris park grows 
faster than their CA park.

H0 : µParis  µCal

HA : µParis > µCal
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> t.test(disney$cal, disney$paris, paired=T)

	

 Paired t-test

data:  disney$cal and disney$paris 
t = 0, df = 15, p-value = 1
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.6277834  0.6277834 
sample estimates:
mean of the differences 
          -1.561251e-17 

Disneyland

!!!

> mean(disney)

    cal   paris 
0.16875 0.16875 
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where               is the number of visitors during 
year t

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

CA

Paris

NA -1.7% -9.6% 36.9% 6.4% -5.3% -3.5% -1.5% 3.0% -11.5% 3.3% 0.0% 4.7% 7.2% 3.3% 1.0% -3.9%

NA -2.0% -10.2% 21.6% 9.3% 7.7% -0.8% 0.0% -4.0% 1.7% -15.6% -1.0% 0.0% 0.0% 3.9% 13.2% 5.8%

Look at what the sum of differences is! Of 
course we got this number. What we need 
to look at is the relative change in visitors:

visitorst+1 � visitorst

visitorst

visitorst
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with this new dataset:

with R

> t.test(disney$cal, disney$paris, paired=T)

	

 Paired t-test

data:  disney$cal and disney$paris 
t = -0.0302, df = 15, p-value = 0.9763
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.05069143  0.04927320 
sample estimates:
mean of the differences 
          -0.0007091129 

Disneyland
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Comparing the average total personal income in Cleveland, OH 
and Sacramento, CA based on a random sample of individuals 
from the 2000 Census. 
Is a t-test appropriate for testing whether or not there is a 
difference in the average incomes in these two metropolitan 
cities?

6.3. PROBLEM SET 217

(f) Would you expect a confidence interval for the population mean of at an
equivalent confidence level as the hypothesis test to include 8? Explain.

6.5 Exercise 4 gives some summary statistics on the number of hours of sleep 25
randomly sampled New Yorkers get per night.

(a) Calculate a 90% confidence interval for the number of hours of New
Yorkers sleep on average and interpret this interval in context.

(b) Does your confidence interval agree with the result of the hypothesis test
from Exercise 4?

6.3.2 Using the t distribution for inference on the di�erence of two
means

6.6 We are interested in comparing the average total personal income in Cleve-
land, OH and Sacramento, CA based on a random sample of individuals from
the 2000 Census. Below are a histogram representing the distributions of
total personal income of individuals living in Cleveland and Sacramento and
some summary statistics on the two samples.

Is a t-test appropriate for testing whether or not there is a di�erence in the
average incomes in these two metropolitan cities?
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Sacramento, CA

Cleveland, OH
Mean $ 26,436
SD $ 33,239
n 21

Sacramento, CA
Mean $ 32,182
SD $ 40,480
n 17

6.7 Two independent random samples are selected from normal populations with
unknown standard deviations. Both samples are small (n < 50). Find the
p-value for the given set of hypotheses and t values. Also determine if the
null hypothesis would be rejected at � = 0.05.

(a) HA : µ1 > µ2, n1 = 23, n2 = 25, T = 3.16

(b) HA : µ1 �= µ2, n1 = 38, n2 = 37, T = 2.72

(c) HA : µ1 < µ2, n1 = 45, n2 = 41, T = 1.83

(d) HA : µ1 �= µ2, n1 = 11, n2 = 15, T = 0.28
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