Chapter 10 Computer-Aided Balance Calculations

Degree-of-Freedom Analysis

For a process to be “properly specified” means that all variables throughout the process can be calculated using the information provided.

Variables include all material stream properties (e.g., total flow rate, composition, temperature and pressure), all energy stream duties, and all special unit characteristics (e.g., adiabatic efficiencies of compressors, extents of reaction for chemical reactors, tray efficiencies and heat losses for distillation towers, etc.).

The variables that are given values up front are called design variables, whereas, those calculated from the process relations are called state variables.  It is generally assumed that you can assign any value you want to a design variable, independent of the values assigned to the other design variables.

The number of degrees of freedom (ndf) is equal to the number of unknown variables minus the number of independent equations that can be used to solve for them.  

If ndf = 0 the process is properly specified (caution – see note below).  

If ndf ( 0 the process is under specified, and this number of state variables must be specified, thus turning them into design variables.

If ndf ( 0, the process is over specified, and this number of design variables must be allowed to become state variables.

Note:  You cannot violate any of the equations by the values you assign to the design variables!  Thus, some sets of variables do not make a good set of design variables, as the equations prevent you from assigning values to each independently (cf., Example 10.1-1, p. 505-7).

Equations can include material balances, energy balances, equations of state, phase equilibrium relations (e.g., thermal equilibrium, mechanical equilibrium, Raoult’s law), reversible-adiabatic compression equations, chemical equilibrium equations, component split relationships, component recovery equations, component conversion equations, sum of mole or mass fractions equal unity, etc.

Independent equations are a set of equations for which none can be derived by algebraic combinations of the others.  For example, if N components are involved for a unit, then N independent material balances can be written (one for each component), but a material balance for total mass can not be added to this set, since it can be derived by adding all the component balances.

Example Problem

Perform a degree of freedom analysis for a flash separation unit with two components.  There are three streams, with N+2 variables per stream (T, P, n, x), and the duty for the flash unit, for a total of 13 variables.  There are 7 equations that can be written (2MB, 1EB, 4PhaseEqlm).  Thus, there are 6 design variables that must be given, or there must be a total of 6 design variables and other independent equations given.  The number of state variables will be 7.  A typical set of design variables might be the 4 properties of the feed stream plus the T and P for the flash unit.

Balance Calculations on a Spreadsheet (Excel) – Note this is obsolete, as of office 2007 the drawing toolbar doesn’t work this way.
Make sure the Drawing Toolbar is selected (under the menu Tools/Customize/Toolbars).  You will see this toolbar at the bottom of the Excel worksheet.

Spreadsheet Construction Procedure:

1. Draw boxes on the spreadsheet for the process units.  

2. Draw arrows for the streams (material and energy).

3. Name all streams and process units.

4. List total flow, temperature, pressure, and components for all material streams, leaving cells for values (component flows or fractional compositions) and units.

5. Put all known information on the flowchart, making sure each bit is clearly identified.

6. Perform a degree-of-freedom analysis to make sure the process is properly specified.

7. Write out all equations involving the unknown variables and decide on a procedure for solution.  Construction of a procedural flowchart is recommended for complex processes.

8. Program blank cells on the spreadsheet to calculate the unknown variables.

Example Problem:  Discuss Problem 9.16 or 9.17 as an Excel spreadsheet problem.  This is done as a hands-on demo in the computer lab.

Procedural Flowcharts  see also Palm ch 4.1
Calculation procedures are often represented on a block diagram, such as found on p. 507.   These diagrams are procedural flowcharts, often just called “flowcharts”.  We will use the full name to avoid confusion with our process flowcharts.

How is a block diagram like this prepared in Word or Excel?

1. Draw boxes and arrows (there are Flowchart shapes under AutoShapes on the Drawing Toolbar).

2. Fill in the boxes with text.

Example Problem:  See Example 10.1-1 on p. 505 in the text.

Example:  A procedural flowchart is given below for Problem 9.16 in the text.









The calculations as indicated in the above example are sequential.  This is not always the case, and decision blocks must be used for iterative procedures.

Decision blocks are generally drawn as indicated below.  A question is placed in the box.  The path followed from this box will depend on whether the answer is Yes or No.




Notice how this is used in the diagram on p. 507.  In Problem 10.7b, produce a block diagram for the required subroutine, rather than an actual program.

Solving Algebraic Equations

Solutions to single algebraic equations can be accomplished by using Goal Seek or Solver in Excel, or by a variety of other methods.

Solutions to set of equations are best accomplished using special equation-solving software, such as E-Z Solve, which is on the disk that came with the 201 text, or by sophisticated software packages like MathCad, MatLab, etc.

Solution of Linear Algebraic Equations – see Palm ch 8
A general set of linear algebraic equation can be written using summations, or in matrix notation, as indicated here.
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Common Problems

Singular – a set of equations that is degenerate

Row degeneracy – one (or more) of the equations is a linear combination of the others

Column degeneracy – all equations contain the variables in the same linear combinations

Other problems – no solution or an incorrect solution

Near singular – round-off errors render them linearly dependent at some stage of the solution process – the solution fails

Big round-off errors – accumulated round-off errors swamp the true solution – can occur if the number of equations is large – happens most frequently when near singular – solution does not fail but gives incorrect result

Tasks

Solve the matrix equation A(x = b for the N-dimensional vector of unknowns x, where A is a square matrix of coefficients (NxN) and b is an N-dimensional known vector.

Find the inverse matrix A-1, so that x = A-1b.

Methods

Gauss-Jordan elimination – stable, traditional method

Set up the A matrix of coefficients, augmented by the b vector, and reduce so as to produce an augmented identity matrix, which yields the solution by inspection.

The same manipulations on the identity matrix will yield the inverse A-1.

There are other matrix-inversion methods that are used for special types of problems.  They will not be discussed here.

Example:  
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for which the solution is 
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The  A matrix augmented by the b vector, written beside the identity matrix gives the following:
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The goal is to make the A matrix into an identity matrix, i.e., one with 1’s on the diagonal and 0’s elsewhere.

Divide the first row by 2 (to make a11 = 1):
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Multiply the first row by 5 and subtract from second row (to make a21 =0):
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Divide the second row by –21/2 (to make a22 = 1):
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Multiply second row by 3/2 and subtract from first row (to make a12 = 0).  This achieves the original goal:
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By inspection, the first (augmented) matrix yields the solution 
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The second matrix is the inverse matrix, which can be verified by multiplying it by the original A matrix to yield the identity matrix 

(A-1A=I).
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Specify the percent excess air, percent conversion of SO2, and choose as a basis the molar flow of SO3 exiting the reactor.





Calculate the SO2 fed using the SO3 produced and the SO2 fractional conversion specification.





Calculate the SO2 out by a material balance on this species.





Calculate the O2 feed rate using the SO2 fed, the stoichiometry of the reaction, and the percent excess air specification..





Calculate the N2 feed rate as (79/21) times the O2 feed rate.





Calculate the O2 and N2 exit rates by material balances on these two components.





No





Is some relationship satisfied?





Yes
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