Solving Linear Systems of Equations

There are two very broad methods of solving these, direct and indirect or iterative.
· Direct methods are the basic algebraic methods that we all learned in high school or middle school. These provide what is called either the exact or analytic solution to the system. It is not always possible to find this.
· Indirect methods are basically ‘guess and check’. Guess some values, check if they work and guess some new values. They are a bit more refined than that though and vary by how you use the current results to build your next guess.

Indirect Methods
With most of these methods it is easiest to write the equation system in matrix form. For example the system of equations below:

Could be written as:

It is a fairly common convention to denote matrices using bold letters, so a would refer to the first matrix in the system above. Following this convention our system is:					ax=b

If this where a single equation we would solve it quite simply by dividing by a, however with a matrix this is more complicated. This involves computing the inverse of a and multiplying it by b: x=a-1b
The inverse of a matrix is defined as a-1a=I where I is the identity matrix, that is a matrix with ones on the diagonal and zeros everywhere else. This can often be difficult to calculate, and in some cases is not possible to find. Pages 334 and 335 of Palm has a brief discussion of this.

Where a and x are multiplied using the ‘dot product’. This system of equations can be solved by standard methods, namely subtracting a multiple of one equation from another in order to get a solution for one of the variables, which can then be used to solve for another. Linear algebra explains how to do this using matrices. It is convenient in this case to combine the a and b matrices together. There are three basic operations we need to know: 1) we can multiply any row by a constant, 2) we can subtract any row from another row, 3) we can swap any two rows. If you think about it these are the same steps we can take when dealing with the equations.

General Methods
Gauss Elimination	
In this procedure, we are using our basic operations to go from our a to a modified version a’ which will be in an upper triangular form (meaning the lower half of the matrix is filled with zeros). This makes it easy to solve for one of our variables, and then easy to substitute that back in to the line above to solve for the next, and so on. We are going from:
 to
The first step is to subtract a multiple of the top row from the second row. We need to pick a multiplier so that we get a zero in the first position on our second row. You should be able to easily see that if we multiply the first row by a21/a11 we can do this. This multiplication gives:

Subtracting the modified first row from the second gives:

Note that we don’t keep the changed first row, we can go back to the original version. We can continue this pattern to eliminate the number in the first column of the third row, and could continue on to however many rows we need for whatever size system we have. We then move on and use the second row to eliminate numbers from the second column of the rows below that. As you might imagine, problems arise if we try to use a row with a zero in the column we are eliminating numbers in, to eliminate numbers. Namely we end up trying to divide by zero (if a11 where zero for example). If this is the case we just need to swap rows before we start eliminating numbers. There is another problem in that the way that the way that computers handle numbers can generate round-off errors in these calculations if the value we are dividing by (again a11 in the example we have been looking at) has an absolute value much smaller than the other. Because of this, it works best to swap rows so that the row with the largest absolute value element is used at each pivot point. Since the rows are modified at each step, this sorting can’t just be done at the beginning, it has to be done at each step.

Gauss-Jordan Elimination
This is very similar to the Gauss Elimination, except that a) we are eliminating from the rows above the diagonal as well, and b) we are dividing through by the pivot element so that we have an identity matrix at the end:
 to
We start by dividing the first row by the first element (a11) which gives:

We then use the Gauss Elimination procedure to remove the numbers below the 1, for example we multiply row one by a21 then subtract row 1 from row 2 giving:

This procedure continues eliminating numbers from the rows above and below. When this is all done, we can basically just read the solution straight out of the new b without needing any substitution. One handy feature of this procedure is that if we have a system with multiple possibilities for b, we can attach multiple b matrices and the procedure will solve them all at once. One downside is that the elimination procedures use more computing power than the substitution steps that finish the Gauss Elimination procedure.

LU Decomposition
While the GaussJordan elimination can let us solve multiple situations at once provided we know them when we start, it doesn’t really save us any time if we want to run the same system of equations with a different b sometime after we first solve it. This is where an LU decomposition comes in. We can find a set of matrices L and U such that a=L*U . L is a lower triangular matrix, and U is an upper triangular matrix. One of these two matrices has ones on the diagonal, which depends on the method used to calculate them. Once L and U are calculated the system looks like:
L*U*x=b
We define y =U*x, this gives L*y=b. Since L is lower triangular, we can solve for y pretty easily, just as we can solve for x at the end of the Gauss elimination procedure. Once y is known, we can solve U*x=y for x. Again since U is upper triangular it is a simple substitution procedure. Gilat, et al give us two methods for finding L and U. The first is the Gauss method (yes Gauss shows up a lot in this). In the Gauss method, U is the modified a matrix that results from the Gauss elimination procedure, while L is a lower triangular matrix with ones on the diagonal. The other non-zero elements are the multipliers used in the Gauss elimination (such as a21/a11, etc.) The other method covered in the book is the Krout method. In this method U is the matrix with ones on the diagonal.

Program Specific Methods
Mathcad
Mathcad can solve linear equations systems three fairly simple ways. These are outlined very nicely in the solving tutorial in the Mathcad help files.
Excel
Excel has some built-in functions that can calculate the inverse of a matrix, you can also build a spreadsheet that performs a Gauss elimination, Gauss Jordan elimination or LU decomposition procedure. The file Matrixesinexcel.pdf explains the use of the built-in functions, and the file linear_direct.xlsx give an example of a gaussjordan elimination in excel as well as demonstrating the built-in functions.
Matlab
Matlab has many built in functions that can be used to solve linear equation systems. For example a\b is equivalent to a-1b as is b/a. There is a built in function for a gaussjordan elimination (rref()) and one for LU decomposition (which I don’t remember off-hand, but should be easy enough to find in the help files.) Beyond that matlab can be programed to do one of these proceedures. As an example the file gaussjordan.m is a user defined matlab function that performs a gaussjordan elimination.
Polymath
I will add the information on Polymath as a separate handout with screenshots as appropriate.

Direct Methods
General
In a general sense these are ‘guess and check’ methods. Basically we guess at the answer, use that guess to calculate a new answer, and keep repeating until the answer doesn’t change much. The difference in methods is in how the guesses are generated.

Starting with a system of equations:

We rearrange so that each equation defines one of the variables as a function of the others:

Jacobi Iterative
Start with some initial guesses for your variables (zero works if we don’t know anything else about the system). Input your initial guesses into the equations above to calculate a new value for the variables. Repeat until the variables aren’t changing very much with each iteration. In this method you calculate all the variables using the previous value of the variables.

Gauss-Seidel Iterative
Similar to the Jacobi iterative, except that we start using new values partway through the iteration. So calculating x1 would use the previous values, x2 would use the previous value for x3, but the new value (that we just calculated) for x1.

Specific Examples
Matlab
The files jacobiiterate.rtf and gaussseidel.rtf contain sample matlab code for these procedures. Please note that this code is essentially in rough draft form and has a few quirks I need to work out. I will post updated files when I am done.
Excel
[bookmark: _GoBack]The file linear iterative.xlsx contains two tabs, one that does a Jacobi iterative method, and one that does a gauss-seidel iterative method. Excel is probably the easiest way to see the differences, so I encourage you all to look through this.

Somg ey o s

e st
i e e e o

- L
e e P
SR R

oot e ks s ot h st e o,
R e e e o,
e =
itk
s s
e
e sll]-[b)
a2
iy o et s drt s g s s el

e e . g o e

i e s o e e e sty by gy .
Rommer S s ors oo, T e g
e A7 1

et s o e -1 he ety .
e e S

o et i
e T e R
P
o T e
T T T e
3ot thse e the e steps weca ke when delngwiththe quatns.

