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1 Introduction (Terminology)

In this first lesson, we look at names and terms in differential equations.

Some Terms
Here is a simple differential equation: ＝――

d

dx
y ((x)) ⋅k x

It contains two variables x and y and a constant k. We will regard y as a 
function of x - it is the dependent variable. The other variable x is the 
independent one.
The left side of the equation only contains a first derivative: this gives a 
first order equation. The derivative can be regarded as the quotient of two 
differentials dx and dy. A derivative is often written using prime notation 
y'(x) and in this subject also using the symbol p (parameter):

＝＝＝――
d

dx
y ((x)) ―

dy

dx
′y ((x)) p

We will use all these notations - choosing the simplest for a given problem.

The Solution
The solution to our equation is most easily obtained using differential 
notation:

＝dy ⋅⋅k x dx

We can integrate both sides to get:
y

＝y +⋅k ―
x

2

2
C

This solution is a function that does not 
contain any derivative. It does contain an 
integration constant C. This can have any 
value - the equation has an infinite num-
ber of solutions. The set is known as the 
general solution. If you give C some 
value, you have a particular solution.

C >

x

The plot here shows some particular solutions. In this simple example a 
single solution runs through each point of the x-y plane. 

The Order
The following equation contains a second derivative. It is a second order 
equation.

＝――
d

d

2

x
2

y ((x)) ⋅k x

You can obtain the solution by integrating twice:

＝――
d

dx
y ((x)) +⋅k ―

x2

2
C1 ＝y ((x)) ++⋅k ―

x3

6
⋅C1 x C2



y This equation has two integration con-
stants. Here there are two solutions 
running through each point in the x,y
plane.

The crossing black lines are for three 
values of the first constant; the three 
colours are for three values of the sec-
ond constant.

The Degree
Our third equation contains the square 
of a first derivative. It is a first order 
equation, but of degree two.

x

＝
⎛
⎜
⎜⎝
――

d

dx
y ((x))

⎞
⎟
⎟⎠

2

−x
2

1

You can regard this as the product of 
two differential equations:y

＝――
d

dx
y ((x)) −x 1 ＝――

d

dx
y ((x)) +x 1

Each solution is the product of the two 
solutions: 

x ＝−+−y1
((x)) ―

x
2

2
x C 0

＝−−−y2
((x)) ―

x
2

2
x C 0

For each value of the integration constant we get a 'double line' on which 
the product is zero.

Categories
The first two examples are linear equations - the third is non-linear. A 
non-linear equation contains some product of two expressions of the de-
pendent variable y(x). See whether you understand the difference:

((1)) ((2)) ((3))

＝――
d

dx
y ((x)) ⋅k x ＝――

d

d

2

x
2

y ((x)) ⋅k x ＝
⎛
⎜
⎜⎝
――

d

dx
y ((x))

⎞
⎟
⎟⎠

2

−x
2

1



Methods
There are two main groups of methods for solving differential equations:
(a) the symbolic methods, leading to equations
(b) the numerical methods, leading to numbers.

In the examples above, we have used symbolic methods. When these 
work, they are fine. They can give an overview that is difficult to obtain 
numerically. However, most differential equations to not have a symbolic 
solution. If a solution exists, finding it often requires puzzling and 
patience. 

Numerical methods are more flexible. However, they also have their 
problems. To become a good differential-equation-solver you will need to 
master both methods. We begin with the symbolic methods.





2 First Order, First Degree Equations

The simplest differential equations are those of the first order and first 
degree. Over the centuries many tricks have evolved to solve these.

Separable Equation
If each of the terms in a differential equation only contains a single 
variable, then the terms can be integrated directly. As an example we 
consider:

＝―
dy

dx
−―

y

x
or ＝+⋅x dx ⋅y dy 0

→⌠
⌡ dx x ―

x
2

2
→⌠

⌡ dy y ―
y

2

2

Including the integration constant: ＝+―
x

2

2
―
y

2

2
C
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You can regard any particular solution 
as the intersection of the 3D function:

＝f (( ,x y)) +x
2

y
2

with a plane of height C. This is one 
of the lines of constant height that 
you see in a contour plot. In this 
example these are circles around the 
origin.

Integration Constant
It is important to include the integration constant immediately on integra-
tion. This example shows why.

＝―
dy

dx
+1 y

2
＝―――

dy

+1 y2
dx ＝atan ((y)) +x C ≔y (( ,x C)) tan (( +x C))

We check that this is indeed a solution:

→――
d

dx
y (( ,x C)) +tan (( +C x))

2

1 ＝―
dy

dx
+1 y

2

If we include the constant after obtaining y, we get the incorrect:

≔Y (( ,x C)) +tan ((x)) C

Checking gives

→――
d

dx
Y (( ,x C)) +tan ((x))

2

1 ＝――
dY

dx
+1 (( −Y C))

2

This is not the original equation.



A set of solutions is shown below. 
y, correct Y, incorrect

Ratio Equation
You can often bring a first order equation into a separable form using a 
substitution. One group of equations where this works are the 'ratio' 
equations. These can be written in the form:

＝―
dy

dx
f

⎛
⎜
⎝
―
y

x

⎞
⎟
⎠

(The 'circles' example is a ratio equation, be it a very simple one.) If you 
replace x and y in an equation by kx and ky, and the k's cancel in the result, 
then you have a ratio equation. These are brought into a separable form 
using the substitution:

＝―
y

x
z or ＝y ⋅z x ＝dy +⋅x dz ⋅z dx

Take the ratio equation: ＝―
dy

dx
―――

+x
2

y
2

⋅x y

Using differential notation: ＝−−⋅⋅x y dy ⋅x
2

dx ⋅y
2

dx 0
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The substitution gives +⋅⎛⎝−x
2 ⎞⎠ dx ⋅⋅x

3
z dz ＝

⎛
⎜
⎝
―
dx

x

⎞
⎟
⎠

⋅z dz

＝ln ((x)) +―
z

2

2
C

The general solution becomes

＝ln ((x)) +―――
(( ÷y x))

2

2
C

It is not easy to simplify this, but 
the contour plot shows particular 
solutions. (To get the plot, I had to 
reduce the x-range.)



Linear Equation
The linear first order differential equation is: ＝++―

dy

dx
⋅P ((x)) y Q ((x)) 0

As an example we consider ＝+−―
dy

dx
⋅x y x2 0 or ＝dy ⋅⎛⎝ −⋅x y x2 ⎞⎠ dx

This can be solved using the substitution: ＝y ⋅u ((x)) v ((x)) ＝dy +⋅v du ⋅u dv

So ＝+⋅v du ⋅u dv ⋅⎛⎝ −⋅u v x
2 ⎞⎠ dx or ＝+⋅v (( −du ⋅u dx)) ⋅u dv ⋅−x

2
dx

We can choose one of the two functions u(x) and v(x). Here we choose u
such that the first term in the last equation becomes zero:

＝−du ⋅u dx 0 ＝――
du

u
dx ＝ln ((u)) x ＝u ex

(There is no need to include an integration constant here.) The remaining 
equation becomes 

＝⋅u dv ⋅−x
2

dx ＝dv ⋅⋅−x
2

e
−x

dx →−
⌠
⌡ d⋅x

2 −x
x ⋅

−x ⎛⎝ ++x
2

⋅2 x 2⎞⎠

So ＝v +⋅
−x ⎛⎝ ++x

2
⋅2 x 2⎞⎠ C

and the general solution is ＝⋅u v +++x2 ⋅2 x 2 C

We will see other methods for linear equations when we consider second 
order equations.

(( ,x y))
'Exact' Equation
This method is easiest to understand by starting with the solution to a dif-
ferential equation and working backwards. The solution that we choose is:

＝f (( ,,x y C)) 0 ≔f (( ,,x y C)) ++x cos (( ⋅x y)) C

The differential of this is: ＝df +⋅―
df

dx
dx ⋅―

df

dy
dy

(With partial differential quotients. Mathcad does not have symbols for 
these.)

With
→――

d

dx
f (( ,,x y C)) −1 ⋅y sin (( ⋅x y))

→――
d

dy
f (( ,,x y C)) −(( ⋅x sin (( ⋅x y))))

we obtain the differential equation

＝−⋅(( −1 ⋅y sin (( ⋅x y)))) dx ⋅(( ⋅x sin (( ⋅x y)))) dy 0



If we start with this equation, how do we obtain the solution? We first 
check that it is indeed a differential. This is so when:

y-derivative of first factor = x-derivative of second factor

→――
d

dy
(( −1 ⋅y sin (( ⋅x y)))) −−sin (( ⋅x y)) ⋅⋅x y cos (( ⋅x y))

→――
d

dx
−(( ⋅x sin (( ⋅x y)))) −−sin (( ⋅x y)) ⋅⋅x y cos (( ⋅x y))

The two are indeed equal, so the equation is a differential. We then know:

＝―
df

dx
−1 ⋅y sin (( ⋅x y)) ＝―

df

dy
−(( ⋅x sin (( ⋅x y))))

Integration of the first should give the terms containing x, that of the second 
should give the terms containing y:

→⌠
⌡ d−1 ⋅y sin (( ⋅x y)) x +x cos (( ⋅x y)) terms containing x

→⌠
⌡ d−(( ⋅x sin (( ⋅x y)))) y cos (( ⋅x y)) terms containing y

The cosine term occurs in both integrals because it contains both an x and 
a y. The general solution is the combination of the two results (not the 
sum!). 

＝f (( ,,x y C)) ++x cos (( ⋅x y)) C as expected

A warning: you may get terms not containing x from the first integral, and 
terms not  from the second. Do not use these.

-1

0

1

2

-3

-2

3

-1 0 1 2-3 -2 3

-1.6-0.8 0 0.8 1.6 2.4-3.2-2.4 3.2
f

It is interesting to see how complicated 
the solutions of this simple-looking 
equation are. 

The Integrating Factor
We take the differential equation from the previous paragraph, and divide 
it with some function (here simply x):

＝−⋅
⎛
⎜
⎝
―――――

−1 ⋅y sin (( ⋅x y))

x

⎞
⎟
⎠

dx ⋅
⎛
⎜
⎝
――――

⋅x sin (( ⋅x y))

x

⎞
⎟
⎠

dy 0 ((1))



We then take the 'cross' derivatives of the terms in the new equation:

→――
d

dy
―――――

−1 ⋅y sin (( ⋅x y))

x
−――――――――

+sin (( ⋅x y)) ⋅⋅x y cos (( ⋅x y))

x

→――
d

dx
−

⎛
⎜
⎝
――――

⋅x sin (( ⋅x y))

x

⎞
⎟
⎠

−(( ⋅y cos (( ⋅x y))))

These are not equal, so the new equation is no longer exact. However, if 
we multiply equation (1) with x, we get back the original, exact, equation. 
Here, x is an integrating factor: a factor which transforms the equation 
into one that can be solved. It can be proven that all first order, first de-
gree equations have integrating factors. The problem is to find one of 
them. There is no general method for that.





3 First Order, Higher Degree Equations

These are equations containing a first order derivative to a degree higher 
than one. For example:

＝++
⎛
⎜
⎝
―
dy

dx

⎞
⎟
⎠

2

x y 0

In the following dicussion, we will often use the substitution ＝p ―
dy

dx

There are two groups of equations that can often be solved:
(1) The equation is the product of two equations of a lower degree.
(2) One of the variables x or y can be made explicit, so we can obtain:

(a) ＝y f ((p)) or ＝x f ((p)) (b) ＝x f (( ,y p)) or ＝y f (( ,x p))

These include the equations with the names of Clairaut and Lagrange.

Product of Equations
Let us take a simple example:

＝−
⎛
⎜
⎝
―
dy

dx

⎞
⎟
⎠

2 ⎛
⎜
⎝
―
y

x

⎞
⎟
⎠

2

0 which can be factored as ＝⋅
⎛
⎜
⎝

+―
dy

dx
―
y

x

⎞
⎟
⎠

⎛
⎜
⎝

−―
dy

dx
―
y

x

⎞
⎟
⎠

0

There are two parts to this equation:

＝
⎛
⎜
⎝

+―
dy

dx
―
y

x

⎞
⎟
⎠

0 ＝y
2

+−x
2

C ＝−+y
2

x
2

C 0

＝
⎛
⎜
⎝

−―
dy

dx
―
y

x

⎞
⎟
⎠

0 ＝y
2

+x
2

C ＝−−y
2

x
2

C 0

(As the parts belong to the same solution, there is only one integration 
constant.) The general solution is:

＝⋅⎛⎝ −+y2 x2 C⎞⎠ ⎛⎝ −−y2 x2 C⎞⎠ 0

Try C = -1; 0; 1 and 2 to see the effect below. ≔C 1.4
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The solution is the line at zero height. 
As you see, the solution is a combi-
nation of a circle and a hyperbola. 
These are the solutions of the two 
parts of the equation. 

Below, I have made separate plots of 
the two solutions. The circles 
disappear for negative values of the 
integration constant; the hyperbola 
solutions switch from one branch to 
the other.
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Explicit y = f(p)
Here we look at the following example:

＝y f ((p)) ＝y p
2

＝＝＝dy ⋅p dx ⋅′f ((p)) dp ⋅⋅2 p dp

This yields x: ＝dx ⋅2 dp ＝x +⋅2 p C ＝p ――
−x C

2

This parametric plot shows that 
the solutions are parabolas that 
shift along the x-axis with in-
creasing C.

There is one more solution: ＝y 0

You can easily check this in the 
original equation. You cannot 
find it by giving C some value. 
This is a singular solution (which 
is not the same as a particular 
solution). The x-axis is tangent to 
all particular solutions

Explicit x = f(p)
These equations have the same solutions as those of the previous group, 
but with x- and y-axes exchanged. We will look at a different example:

＝x
⎛
⎜
⎝
―
dy

dx

⎞
⎟
⎠

2

or ＝x p
2

This gives ＝dx ⋅⋅2 p dp

Also ＝dx ―
dy

p
＝＝dy ⋅p dx ⋅⋅2 p

2
dp

So →
⌠
⌡ d⋅2 p

2
p ――

⋅2 p
3

3
＝y +⋅―

2

3
p

3
C

2



The plot uses p as parameter: ＝x ((p)) p
2

＝y ((p)) +⋅―
2

3
p

3
C

The solution is a cusp. Increasing C
shifts the cusp upwards. y C >

As you can see, all points of the y-
axis obey the differential equation. 
You cannot see this in the general 
solution, so this is again a singular 
solution.

x

The contour plot of this example is 
not interesting.

Clairaut Equation (( ,x y))
The equation of Clairaut reads: ＝y +⋅p x f ((p))

I will consider the example: ＝y +⋅p x p
2 ((1))

We first differentiate ＝dy ++⋅p dx ⋅x dp ⋅⋅2 p dp

Using ＝dy ⋅p dx gives ＝0 +⋅x dp ⋅⋅2 p dp

＝⋅(( +x ⋅2 p)) dp 0

There are two solutions: ＝dp 0 ((2)) ＝+x ⋅2 p 0 ((3))

(2) gives ＝p C ((4))

(1) then gives the general solution: ＝y +⋅C x C2

This is a set of straight lines with varying origin and slope.

Eliminating p from (1) and (3) gives an envelope of the solutions:

((3)) ＝p −
⎛
⎜
⎝
―
x

2

⎞
⎟
⎠

＝y +⋅p x p
2

＝y −―
x

2

4

I have plotted several solutions below, together with the envelope:

≔y (( ,x C)) +⋅C x C
2

≔Y ((x)) −
⎛
⎜
⎝
―
x

2

4

⎞
⎟
⎠



y The particular solutions are tan-
gent lines of the envelope. The 
envelope is a singular solution.

Note that there are no solutions 
inside the envelope.

C >
x

Lagrange Equation

The equation of Lagrange has the form: ＝y +⋅x f ((p)) g ((p))

I will consider as example ＝y −⋅x p
2

p
2 ((1))

Differentiating gives ＝dy −+⋅⋅⋅2 x p dp ⋅p
2

dx ⋅⋅2 p dp

＝⋅p dx −+⋅⋅⋅2 x p dp ⋅p
2

dx ⋅⋅2 p dp

A first solution is ＝p 0

The second is ＝dx −+⋅⋅2 x dp ⋅p dx ⋅2 dp

This equation is linear in x. We solve it using the substitution:

＝x ⋅u v ＝dx +⋅u dv ⋅v du

＝+⋅u dv ⋅v du −+⋅p (( +⋅u dv ⋅v du)) ⋅⋅⋅2 u v dp ⋅2 dp

＝⋅(( −1 p)) (( +⋅u dv ⋅v du)) −⋅⋅⋅2 u v dp ⋅2 dp

＝−+⋅(( −⋅dv (( −1 p)) ⋅⋅2 v dp)) u ⋅2 dp ⋅⋅v du (( −p 1)) 0

We choose v such that ＝−⋅dv (( −1 p)) ⋅⋅2 v dp 0

＝―
dv

v
⋅2 ――

dp

−1 p

＝ln ((v)) ⋅−2 ln (( −p 1))

＝v ―――
1

(( −p 1))
2

The remaining equation becomes

＝−⋅2 dp ⋅⋅v du (( −p 1)) 0



＝du ⋅⋅2 (( −p 1)) dp

→⌠
⌡ d⋅2 (( −p 1)) p ――――

(( −⋅2 p 2))
2

4
＝u +(( −p 1))

2

C

So the solution becomes

＝＝x ⋅u v +1
⎛
⎜
⎝
―――

C

(( −p 1))

⎞
⎟
⎠

2

＝y ⋅(( −x 1)) p
2

We can eliminate p. Each solution turns out to have two branches:

＝p +―――
C

‾‾‾‾−x 1

1 ＝p −1 ―――
C

‾‾‾‾−x 1

＝y1
⎛
⎝ +‾‾‾‾−x 1 C

⎞
⎠

2

＝y2
⎛
⎝ −‾‾‾‾−x 1 C

⎞
⎠

2

The solution for C = 0 is a straight 
line. The others look like sheared 
parabolas. 

y

C >
The vertical line x = 1 is a singular 
solution.

x





4 Second Order, Linear Equations

Most equations with an order higher than one do not have a symbolic so-
lution. Important exceptions are some of the linear equations. Here we 
look at second order linear equations with constant coefficients:

＝++⋅A ――
d

d

2

x
2

y ((x)) ⋅B ――
d

dx
y ((x)) ⋅C y ((x)) f ((x)) ((1))

Linear equations have an important property: the sum of two solutions is 
also a solution. This is because

＝――
d

d

2

x
2

(( +f g)) +――
d

d

2

x
2

f ――
d

d

2

x
2

g and ＝――
d

dx
(( +f g)) +――

d

dx
f ――

d

dx
g

We first solve the 'homogeneous' equation:

＝++⋅A ――
d

d

2

x
2

y ((x)) ⋅B ――
d

dx
y ((x)) ⋅C y ((x)) 0 ((2))

We then add a particular solution to include the effect of the right hand 
term. Even our simple equation cannot always be solved, but there are 
useful special cases where a solution can be obtained.

Homogeneoous Equation
The following function is a solution to the homogeneous equation: 

＝y ((x)) e
⋅k x

＝――
d

dx
y ((x)) ⋅k

⋅k x
＝――

d

d

2

x
2

y ((x)) ⋅k
2 ⋅k x

Inserting these in the homogeneous differential equation yields:

＝⋅e
⋅k x ⎛⎝ ++⋅A k

2
⋅B k C⎞⎠ 0

The quadratic equation between brackets is called the characteristic 
equation. It has two roots:

＝k1 ―――――――
+−B ‾‾‾‾‾‾‾‾‾‾−B

2
⋅⋅4 A C

⋅2 A
＝k2 ―――――――

−−B ‾‾‾‾‾‾‾‾‾‾−B
2

⋅⋅4 A C

⋅2 A
((3))

There are three cases:
(a) the roots are real and unequal,
(b) the roots are real, but equal, and
(c) the roots are complex.

Roots Real and Unequal
This is when >−B

2
⋅⋅4 A C 0 The general solution of the homogeneous 

equation is:
＝y +⋅C1 exp ⎛⎝ ⋅k1 x⎞⎠ ⋅C2 exp ⎛⎝ ⋅k2 x⎞⎠ ((4))

The solution has two integration constants, as might have been expected.



Roots Real and Equal
This is when ＝−B

2
⋅⋅4 A C 0 The two roots have the same value: ＝k ――

B

⋅2 AThe reduced equation now has the general solution:

＝y ⋅⎛⎝ +C1 ⋅C2 x⎞⎠ exp (( ⋅k x)) ((5))

Roots Complex
Here the expression in the square root is negative: <−B

2
⋅⋅4 A C 0

The solutions are now complex: ＝k1 +a ⋅b 1i ＝k2 −a ⋅b 1i

with ＝a ――
−B

⋅2 A
＝b ――――――

‾‾‾‾‾‾‾‾‾‾‾‾−⎛⎝ −B
2

⋅⋅4 A C⎞⎠

⋅2 A

The reduced equation has the general solution:

＝y +⋅C1 exp (( ⋅(( +a ⋅b 1i)) x)) ⋅C2 exp (( ⋅(( −a ⋅b 1i)) x))

The constants are often complex conjugates:

＝C1 +a' ⋅b' 1i ＝C2 −a' ⋅b' 1i

The exponentials can then be replaced using the Euler equation:

＝e
⋅i z

+cos ((z)) ⋅i sin ((z))

This yields periodic solutions:

＝y ⋅e
⋅a x ⎛⎝ +⋅C'1 cos (( ⋅b x)) ⋅C'2 sin (( ⋅b x))⎞⎠ ((6))

Homogeneous Examples
The second order linear differential equation shows a wide range of beha-
viours. These are best studied using the equations (4), (5) and (6). (So not 
by varying the constants A, B and C.) Below, we look at a few examples.

In the plots, I have left out indications along the axes. The constant consi-
dered is shown. The colours of the traces indicate how the values change: 
black < brown < red < orange.  

Growing and Shrinking
The solutions of equation (4) describe exponential growth and shrinkage. 
With four constants the equation is quite flexible. 

＝y +⋅C1 exp ⎛⎝ ⋅k1 x⎞⎠ ⋅C2 exp ⎛⎝ ⋅k2 x⎞⎠ ((4))

If one of the C's is zero we have a single exponential as shown in the first 
figure. For k < 0 we get a falling curve; for k > 0 a rising one.



÷C2 C1

k > 0 <k1 0 ＝k2 0

k = 0

k < 0

If the two exponentials have different k's, a part of the solution will change 
rapidly, a part will not. This is most pronounced if one k is zero. If the 
other is negative, we can get 'levelling off'. The height of the 'plateau' 
depends on the ratio of the two integration constants.

If the first k has a negative value and the second a small positive value, 
we can get a rapid shrinkage, followed by slow growth: 

<k1 0 ＝k2 0.05

Oscillating
Equation (6) gives oscillating solutions. We first consider the case that the 
constant a in the exponential is zero and there is no 'damping': 

＝y ⎛⎝ +⋅C'1 cos (( ⋅b x)) ⋅C'2 sin (( ⋅b x))⎞⎠ ((6 a))

The frequency is determined by b: ＝b
‾‾‾‾‾
−

⎛
⎜
⎝
―
C

A

⎞
⎟
⎠

b

I have only plotted one 
high and one low value.



The constants before the cosine and sine determine the amplitude and 
phase, as you see in the following figures.

C'1 ÷C'2 C'1

Damping is governed by the parameter a; the more negative this is, the 
larger the damping. 

＝y ⋅⋅e
⋅a x

C'1 cos (( ⋅b x)) ＝a ――
−B

⋅2 A
((6 b))

a

The Transition
We finish with a look at the transition between the exponential and oscil-
lating regimes. This is not as abrupt as you might think. At the transition, 
the frequency b is zero; just inside the oscillating regime the oscillations 
will be slow. If there is any damping, you may not notice the oscillation.

C

The black line is that of the transition (equation 5). The others are for in-
creasing values of the constant C in the differential equation (so for less 
and less damping).



The Particular Solution
We now consider the effect of the right side of our equation (the forcing 
function):

＝++⋅A ――
d

d

2

x2
y ((x)) ⋅B ――

d

dx
y ((x)) ⋅C y ((x)) f ((x))

We 'only' need to add a particular solution of the whole equation. The par-
ticular solution does not contain integration constants. It can only be deter-
mined for certain kinds of functions and their combinations, such as:

function f(x) particular solution

x ＝yP
((x)) +⋅b x c

x
2

＝yP
((x)) ++⋅a x

2
⋅b x c

e
⋅k x

＝yP
((x)) ⋅a e

⋅k x

sin (( ⋅k x)) ＝yP
((x)) +⋅a sin (( ⋅k x)) ⋅b cos (( ⋅k x))

The constants are determined by inserting the particular solution into the 
differential equation. As an example we consider

＝+−――
d

d

2

x
2

y ((x)) ⋅5 ――
d

dx
y ((x)) ⋅6 y ((x)) x

The characteristic equation has the solutions:

―――→+−k
2

⋅5 k 6
,solve k 2

3

⎡
⎢⎣

⎤
⎥⎦

So the solution of the homogeneous equation is

＝yH +⋅C1 exp (( ⋅2 x)) ⋅C2 exp (( ⋅3 x))

We try the particular solution:

＝yP
((x)) +⋅b x c ＝――

d

dx
(( +⋅b x c)) b ＝――

d

d

2

x
2

(( +⋅b x c)) 0

Inserting this in the differential equation yields

＝+−0 ⋅5 b ⋅6 (( +⋅b x c)) x ＝+⋅(( −⋅6 b 1)) x (( −⋅6 c ⋅5 b)) 0

This has to be true for all x, so ＝b ÷1 6 ＝c ÷5 36

The general solution of the equation is then

＝＝y +yH yP +++⋅C1 exp (( ⋅2 x)) ⋅C2 exp (( ⋅3 x)) ―
x

6
―
5

36

This procedure can require a lot of work.





5 Laplace Transforms

With the method of lesson 4 we can only obtain solutions to linear equa-
tions for some simple forcing functions. With Laplace transforms we can 
handle more interesting cases - and in a simpler manner.

These transforms are mostly used in dynamics - where the independent 
variable is time. So you will be seeing a t where we had an x in earlier 
lessons. Before we look at the transform, I will first introduce two fun-
ctions that are useful for describing abrupt changes.

Abrupt Changes
The step function (which is also known as the Heaviside function) gives a 
unit step at t = 0:
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t

Φ ((t))

You can use it to construct other functions: ≔f ((t)) ⋅Φ (( −t ⋅2 )) sin ((t))
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t

f ((t))

The impulse function (also known as the Dirac delta) gives an infinite 
'bang' at t = 0, but is zero elsewhere. You cannot plot it. However, you can 
check that its integral has a value of one:

→⌠
⌡ d

−

Δ ((t)) t 1

The two functions are related; the derivative of the step is an impulse:

→――
d

dt
Φ ((t)) Δ ((t))



Using Laplace
In our differential equations, the independent variable will be t. The 
Laplace transform changes all expressions into functions of a different 
variable s. We will see later how this is done, but must say that it is not a 
simple substitution. 

The important property of the Laplace transform is that it changes 
derivatives into algebraic expressions in s. We can then solve these 
equations. With an inverse transform we then get the solution as a 
function of t. I will show this with the following differential equation:

＝++′′y ((t)) ⋅4 ′y ((t)) ⋅20 y ((t)) Δ (( −t 1))

The forcing function is an impulse at t = 1. Also here, you need to specify 
initial conditions. It is simplest if you take these at t = 0:

＝y ((0)) 0 ＝′y ((0)) 0

The Laplace transform of the first term in the equation is:

――→′′y ((t))
laplace

−−⋅s
2

laplace (( ,,y ((t)) t s)) ′y ((0)) ⋅s y ((0))

Inserting the initial conditions gives ⋅s
2

laplace ((y ((t))))

Similarly, the second term ⋅4 ′y ((t)) gives ⋅⋅4 s laplace ((y ((t))))

The third term ⋅20 y ((t)) gives ⋅20 laplace ((y ((t))))

and finally the forcing term gives
――→Δ (( −t 1))
laplace

−s

With the initial conditions the transformed differential equation becomes:

＝⋅⎛⎝ ++s
2

⋅4 s 20⎞⎠ laplace ((y ((t)))) e
−s

＝laplace ((y ((t)))) ―――――
e

−s

⎛⎝ ++s
2

⋅4 s 20⎞⎠

Inverting the transformation gives the symbolic result:

―――→―――――
−s

⎛⎝ ++s
2

⋅4 s 20⎞⎠

invlaplace
―――――――――

⋅⋅
−2 ⋅2 t sin (( −⋅4 t 4)) Φ (( −t 1))

4

≔f ((t)) ―――――――――
⋅⋅

−2 ⋅2 t sin (( −⋅4 t 4)) Φ (( −t 1))

4

That is all there is to it! I have plotted the result below.
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The impulse gives the system an amplitude, which then dies out. Note that 
I have chosen to have the impulse not at t = 0. If you do that, you will not 
be able to specify the initial condition.

(( ,y t))
As a second example, I choose a first order linear equation, but with a dis-
continuous sine as forcing function:

＝+′y ((t)) y ((t)) f ((t)) ＝y ((0)) 0 ≔f ((t)) ⋅Φ (( −t ⋅2 )) sin ((t))

The Laplace transforms of the three terms are:

′y ((t)) ⋅s laplace ((y ((t))))

y ((t)) laplace ((y ((t))))

f ((t)) ―――
⋅⋅−2 s

+s
2

1

So the transformed equation becomes

＝⋅(( +s 1)) laplace ((y ((t)))) ―――
⋅⋅−2 s

+s
2

1
＝laplace ((y ((t)))) ―――――

⋅⋅−2 s

⋅(( +1 s)) ⎛⎝ +s
2

1⎞⎠

The solution is:

―――→―――――
⋅⋅−2 s

⋅(( +1 s)) ⎛⎝ +s
2

1⎞⎠

invlaplace
⋅Φ (( −t ⋅2 ))

⎛
⎜
⎝

+−―――
−⋅2 t

2
―――
cos ((t))

2
―――
sin ((t))

2

⎞
⎟
⎠

≔y ((t)) ⋅Φ (( −t ⋅2 ))
⎛
⎜
⎝

+−―――
−⋅2 t

2
―――
cos ((t))

2
―――
sin ((t))

2

⎞
⎟
⎠

I have plotted this below, together with the forcing function.
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After the start, the system follows the forcing function with a phase lag.

The Transform
The Laplace transform is an integral transform. It is defined as:

＝laplace ((y ((t))))
⌠
⌡ d
0

⋅y ((t)) e
⋅−s t

t

We have already seen the transforms of a few functions. Here are two others. 
I have included the integral calculations to show that they really work. (You 
do often have to restrict the range of integration to get the same result as that 
of the keyword. The keyword is simpler and much faster than the integral.)

――→Φ ((t))
laplace

―
1

s
―――→

⌠
⌡ d
0

⋅Φ ((t))
⋅−s t

t

assume

>s 0
―
1

s
―――→―

1

s

invlaplace
1

――→cos ((t))
laplace

――
s

+s
2

1
―――→

⌠
⌡ d
0

⋅cos ((t))
⋅−s t

t

assume

>s 0
――

s

+s
2

1

―――→――
s

+s
2

1

invlaplace
cos ((t))

The inverse transformation is not a simple function. However, you do not 
deed to worry about that as Mathcad handles it for you.

On the next page I have constructed a table of transforms such as you 
might find in a course book in 'Operational Mathematics'. In Mathcad you 
can construct this in perhaps an hour.



Table of Laplace Transforms

f ((t))

1

e
⋅a t

t
3

⋅t
3

e
⋅a t

sin (( ⋅k t))

cos (( ⋅k t))

sinh (( ⋅k t))

⋅e
⋅−a t

sin (( ⋅k t))

⋅e
⋅−a t

cos (( ⋅k t))

‾t

――
1

‾t

Φ (( −t k))

−e
⋅a t

e
⋅b t

−⋅―
1

a
sin (( ⋅a t)) ⋅―

1

b
sin (( ⋅b t))

−cos (( ⋅a t)) cos (( ⋅b t))

F ((s))

―
1

s

――
1

−s a

―
6

s
4

―――
6

(( −a s))
4

―――
k

+k
2

s
2

―――
s

+k
2

s
2

−―――
k

−k
2

s
2

―――――――
k

+++a
2

⋅⋅2 a s k
2

s
2

―――――――
+a s

+++a
2

⋅⋅2 a s k
2

s
2

――
‾‾

⋅2 s
―
3

2

――
‾‾

‾s

――
⋅−2 s

s

―――――
−a b

⋅(( −a s)) (( −b s))

−――――――
−a

2
b

2

⋅⎛⎝ +a
2

s
2 ⎞⎠ ⎛⎝ +b

2
s

2 ⎞⎠

−――――――
⋅s ⎛⎝ −a

2
b

2 ⎞⎠

⋅⎛⎝ +a
2

s
2 ⎞⎠ ⎛⎝ +b

2
s

2 ⎞⎠





6 Numerical Methods

These are often used to solve practical problems. Mathcad has powerful 
numerical methods. These can do things that symbolic techniques cannot, 
but you will have to learn to use them.

Introduction
As an introduction, we look at the Euler method. This is simple - not accu-
rate, but easy to understand. The equation that we are going to solve is:

＝′y ((x)) ⋅−k y ≔k 1

We approximate the equation as: ＝――
Δy

Δx
⋅−k y or ＝Δy ⋅⋅−k y Δx

This will be solved over the interval <<xS x xE

The starting and end values are ≔xS 0 ≔xE 3

With this first order equation, we need a single initial condition:

＝y ⎛⎝xS
⎞⎠ 2 that I shall write as ≔x

0
0 ≔y

0
2

We solve the equation in a number of steps:

steps ≔n 10 increment ≔Δx ―――
−xE xS

n
=Δx 0.3

The x-positions become ≔i ‥1 n ≔x
i

+x
−i 1

Δx

and the estimates of y ≔y
i

−y
−i 1

⋅⋅k y
−i 1

Δx

I have plotted the calculated values below as red points. Also shown is the 
exact solution of the equation. You can see the trend, but this numerical 
solution is not accurate.

0.8

1.2

1.6

0

0.4

2

1 1.5 2 2.50 0.5 3

y

x

Mathcad contains quite a collection of numerical routines for differential 
equations, as you can see under 'Functions'. You will not find the Euler  
method there: it is not good enough. 



The one you will see in a moment is odesolve. It makes use of five of the 
other routines that you see in the list: Adams, BDF, rkfixed, Rkadapt and 
Radau. It chooses the best combination, depending on the behaviour of 
your equation. All these start with a grid and work from point to point (as 
does Euler). However, they are faster and much more accurate. 

Using Odesolve (( ,x y))
As an example I will use the linear second order differential equation in 
the solve block below. It is the same one as in the previous lesson. Ahead 
of the solve block are the four parameters in the differential equation. 
Also given are the values of the independent variable (here x) at the start 
and end of the range to be used. There are three regions in the solve block:

(1) Guess Values
(2) Constraints
(3) Solver.

For differential equations, guess values are not used. For our second order 
equation we need two initial conditions in the constraints region: one 
initial value of the dependent variable y, and one for its derivative. The 
differential equation is given using prime notation and should be clear. 
The solver is odesolve( ); between the brackets it contains the dependent 
variable and the end value of the dependent variable. 

equation parameters ≔A 1 ≔B 1 ≔C 3 ≔D 0

start and end ≔xS 0 ≔xE 10

G
ue

ss
 V

al
ue

s
Co

ns
tr

ai
nt

s
So

lv
er

＝y ⎛⎝xS
⎞⎠ 1 ＝′y ⎛⎝xS

⎞⎠ 0

＝+++⋅A ′′y ((x)) ⋅B ′y ((x)) ⋅C y ((x)) D 0

≔y ⎛⎝ ,y ((x)) xE
⎞⎠

region for guess values (not used)

The output is a damped oscillation. It is the particular solution for the 
given initial values.
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Capabilities
You can do many things with numerical techniques that are difficult or 
impossible with others: 
(a) solve boundary value problems
(b) use arbitrary forcing functions
(c) have coefficients that are functions of x
(d) include terms that are non-linear in y(x).

I will show these using variations of our first example. I have hidden the 
solve blocks, as they are almost the same as that of the example. After 
each calculation you will see a plot with the original result in black and the 
modified one in red. 

Boundary Value Problems
So far, we have only considered initial value problems. Here, the value of 
the function and derivatives are specified at the start of the calculation. 
For equations with an order higher than one, you can also specify an end 
condition. Below is such a boundary value problem.

＝y ⎛⎝xS
⎞⎠ 1 ＝y ⎛⎝xE

⎞⎠ 0 ＝+++⋅A ′′y ((x)) ⋅B ′y ((x)) ⋅C y ((x)) D 0

In the example here, the result is sensitive to the choice of the final condi-
tion. I have chosen it such that the two results do not differ greatly.

The Forcing Function
In the numerical technique, you can use arbitrary forcing functions. 
(However, do not try functions with infinite gradients such as the step and 
impulse functions.) In the example, I have used a simple cosine.

＝+++⋅A ′′y ((x)) ⋅B ′y ((x)) ⋅C y ((x)) D cos (( ⋅3 x))



Variable Coefficients
The numerical solution can handle variable coefficients. In the equation 
below, I have inserted an x squared:

＝+++⋅A ′′y ((x)) ⋅B ′y ((x)) ⋅⋅C x
2

y ((x)) D 0

Non-linear Equations
You can also include non-linear coefficients and arbitrary forcing func-
tions. (However, non-linear equations often do not give a solution.)

＝+++⋅A ′′y ((x)) ⋅B ′y ((x)) ⋅C ―――
y ((x))

+y ((x)) 2
D 0

Rules are Rules
The Mathcad routine for solving differential equations numerically is one 
of the few parts of the interface that is not friendly. You have to follow 
certain not-so-obvious rules exactly. So reckon on needing patience when 
you begin. (It does help to copy a file that works, then to modify it.) In 
this discussion of the rules, x is the independent variable, y the dependent 
one. (You can use any set of variables.)

Parameters
Parameters are given as numerical values before the solve block. You 
cannot use assignments inside the solve block. You can use numbers in 
the initial conditions or in the equation. 



Start and End
The start and end values of the independent variable x are specified at two 
different points. The start value (often 0) is given in all initial conditions. 
The end value is specified in the solver, but can also be used in a boundary 
condition. The end value can be either larger or smaller than the start 
value. In plots you only see results in the range specified.

Dependent Variable
Throughout the solve block, the dependent variable y is written as a 
function y(x) of the independent variable x. There is one exception: the 
result of the solver is assigned to y, not to y(x). However, if you want to 
use the result in a plot, you must again use y(x). The result is not a true 
function, but a set of two vectors of calculated points. However, you never 
see these. 

Derivatives
The derivatives in the equation can be written in two ways:

(1) with the derivative operator ――
d

dx
y ((x)) ――

d

d

2

x
2

y ((x))

(2) with the prime operator ′y ((x)) ′′y ((x))

The prime operator is typed using [Ctrl]['], not using the prime. For deri-
vatives in initial conditions, you can only use prime notation. 

Equalities
All equalities in the solve block are Boolean equalities =, typed using 
[Ctrl][=]. There is one exception: the assignment := in the solver, typed 
with [Ctrl][:].

Errors do give error messages. Unfortunately, these are often difficult to 
understand.

Does Not Work With...
There are many equations that do not have a symbolic solution, but which 
can be solved numerically. However, there are also equations where it is 
the other way around. I will illustrate that with one example from lesson 2 
- this illustrates some of the limitations of numerical methods.

The Circle
The example is the equation: ＝′y ((x)) ―

y

x
or ＝⋅y dy ⋅x dx

The solution to this is a series of circles around the origin. You would 
expect to get a circle with radius one by specifying the initial condition:

＝y ((0)) 1



If you try this numerically, you do not get an answer. To see why, let us 
plot the circle. 

The first thing to note is that the function 
has a limited domain:

≤≤−1 x 1 ≤≤−1 y 1

Your start and endpoints must lie in this 
domain. The second thing is that the 
function is double-valued. For each x, 
there are two y's. Our method does not 
give these automatically.

The third thing to note is the infinite slope of the function at the points (0,1) 
and (0,-1). Numerical methods cannot handle such points. I have managed 
to calculate the circle, but in a roundabout way. I have calculated the two 
branches of the circle separately. Also, I have avoided the two red points:

＝′y ((x)) ――
−x

y ((x))
＝′z ((x)) ――

−x

z ((x))

<<−0.99 x 0.99

＝y ((−0.99)) 10
−3

＝z ((−0.99)) −10
−3
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In this example it would have been more elegant to switch to polar co-
ordinates, but that does not always solve problems such as here either.
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