Numerical Methods for Ordinary Differential Equations (ODEs)

What we are concerned with here is solving a differential equation numerically. That is, we are coming up with a series of points that would be on, or very nearly on, a line described by the equation that would be the ‘exact’ or ‘analytic’ solution. The analytic solution is what you would get using a symbolic method (i.e. separate the variables and integrate.)

Numerical methods fall into two broad categories, single and multi-step. The difference being the number of point needed to develop a prediction for the next point. We are only going to discuss single-step methods.

Ordinary differential equations cover total derivatives. Not partial derivatives.
Types of ODE problems
· Initial Value Problems (IVPs) – we know conditions at a starting point, and can work from there.
· Boundary Value Problems (BVPs) – we know conditions at some edges of the system and work from them.
BVPs tend to be much more difficult and are outside the scope of this class.

Order of a differential equation: this is simply the same as the highest order derivative in the equation (for partial differential equations we can have a separate order for each variable. i.e. first order with respect to x and second order with respect to y.)

Palm chapter nine goes over three methods for solving differential equations before it starts delving into the matlab solvers. These are the Euler method, the Predictor-Corrector method (or modified Euler), and the second order Runge-Kutta method (which can include the predictor-corrector method.) Matlab has at least seven different built-in differential equation solvers, so it is important to know what the differences are before choosing one. For this reason we will start with how to set up the solution algorithms discussed in Palm in both Excel and Matlab. That way we can get a feel for how these work and should be able to make an informed choice about which solver to pick.

As you can probably see, the errors in these methods will accumulate.

Euler’s Method

Say we have a typical first order differential equation. Generically it might look like:
 with some initial condition y(0)=y0
Where f(x,y) could be any function of x and y. If we think back to the basics of calculus we can rewrite this equation based on the definition of a derivative:

If we assume that Δx is small and that f(x,y) is basically constant over Δx, we can get rid of the limit and approximate this as:

This can be rewritten as:

If we think of this as a series of points starting at y0 (y at x=0) and moving by Δx, then we get a method that predicts our next point (y(x+ Δx) or yk+1), based on our current point (y(x) or yk). The subscript k here just denotes the current point, h is our ‘step size,’ or basically just Δx.

Its really not hard to imagine a case where the f(x,y) being essentially constant over Δx wont hold true. We need to come up with a better approximation.

Predictor/Corrector Method aka Modified Euler Method

In general these methods take the form next value = current value + step size * ‘slope’. This method tries to get a better ‘slope’ by taking the average value of our function f(x,y) evaluated at x and at x+ Δx:

For simplicity we can rewrite f(x,y) and f(x+ Δx ,y(x+ Δx)) as fk and fk+1. We have a bit of a problem here in that fk+1 is a function of yk+1, which is the very thing we are trying to find. We can get around this by ‘predicting a value for yk+1 using the Euler method, and then correcting it by using the equation:

I have posted an excel file for this, and the homework 18 solution contains a matlab script for this method.

Runge-Kutta Methods

This is a family of methods, they are usually denoted by how many predicted points are used to evaluate the next point. Note that the predictor/corrector method is a specific second order Runge-Kutta method. Yes, we are reusing the term ‘order’ in yet another new way here, it has no relationship to either the order of a polynomial, or the order of a differential equation. Runge-Kutta (RK) methods have a specific general format. A second order RK method will look like:
1)				
2)				
3)				
where C1, C2, a2, and b21 are all constants, the choice of which defines the exact second order method you are using. For example, with the predictor/corrector method C1=C2=1/2, a2=b21=1.

A fourth order RK looks like:

We will go through the derivation of the relationships governing the constants for a second order RK method.

To begin wit, we will combine equations 1 – 3, and replace f(x,y) with fk:
4)			
This is one expression for yk+1. For a second expression we can expand yk+1 in a Taylor series about xk. This gives us:
5)			
If we truncate equation 5 at the second order term, note that xk+1-xk = h, and remember our basic differential equation (y’=f(x,y)) we get:
6)			
We can use the chain rule to note that . This gives us:
7)			
Looking back at equation 4, we can take Taylor series expansion, about fk, and again truncating to get:
8)			
Substituting equation 8 into equation 4 and cleaning up (matching terms by powers of h) a bit gives us:
9)		
We can compare equations 7 and 9 term by term to come up with the following three expressions:
 				
We have four constants and three equations, so there is a fair amount of flexibility in what a second order RK method could look like.

Fourth order RK can follow a similar derivation and ends up with 11 equations and 13 parameters. We won’t attempt that derivation.

Higher order ODEs

Our methods don’t really extend well to higher order ODEs, but they do extend well to systems of first order ODEs. Fortunately it is fairly simple to convert a higher order ODE to a system of first order ODEs. We start be defining a new variable as the first derivative of our current variable. For example, if we are looking at an ODE:
[bookmark: _GoBack], with initial conditions y(0)=0, y’(0)=2. We can set a new variable Z =y’. This gives us: =1, y(0)=0, Z(0)=2. We now have two equations, when we include y’=z. If we were working with a third order system we would end up with three equations, and so on. Mathcad, Matlab and polymath all do a good job with these systems, but it is a bit easier to keep track of things if we use variable names like y1 and y2 .

Namericd Moot o Orfary il Eqatons (005)

T ———
i e ik e ot ey,
ey o e e o e ot e
i o Wt o Wl B SE l ehd L, Frd h
ot

Nl methds oo i sge o . o
et i o e po s g et e e
oo e ey ot o g e e

Oy el qapon ettt Nt
Tretont e

T 10 v ot st st
o el (611 s ot

PG ————
e e o] e T st
T L i e e e e

et e s e et o b it cqur e,
I o i . Ths 0 ol e
e oo ko snd e e e e K i
s i e e ot bty Mt et
e i e e
et o et ks b b o o R
S e

S —

By S ——
-

S R
S

T

