Addendum for Chapter 11

Plug-Flow Reactors and Shell Balances

More of Dr. Miller’s notes

Steady State Plug-Flow Reactor as a Moving Batch Reactor
A fluid flows at constant flow rate through a cylindrical packed bed.  As a first approximation, it is assumed that there is negligible mixing of the fluid in the direction of flow, and that properties are uniform across the bed perpendicular to the flow.  These are the assumptions for the “plug-flow reactor”.  Let a species A be converted by a first-order chemical reaction in such a reactor (A
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B).
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The plug can be viewed as a moving batch reactor, as the fluid contained in this system does not mix with fluid ahead of it or behind it.   

If the reaction starts when the plug enters the packed bed, then reaction time (
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) can be related to the distance traveled down the bed:
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In this equation, 
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 is the volumetric flow rate of the fluid (assumed constant throughout the bed), and A(  is the cross-sectional area available for flow through the bed.  It is the total cross-sectional area times the porosity (fractional void volume) of the bed.

Let the system be the moving plug.  A balance on moles of species A for this system is
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If the bed is isothermal, then the solution is
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If  the temperature changes along the bed, then the energy balance must be written and solved simultaneously with the component balance equation.

Shell Balance for an Isothermal Plug-Flow Reactor

Now, consider a stationary plug (which is sometimes called a “shell”) as shown in the bed above, with its front edge at a distance x from the start of the bed.  The thickness of the shell is x.  As above, all concentrations and properties are assumed to be uniform on any given cross-section of the bed.

The balance on moles of species A for this fixed shell becomes
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In this equation, 
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 is the average concentration of species A in the shell.

Now, if we take the limit as (x goes to zero, this equation becomes
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Note that the average concentrations have become concentrations at a distance x from the start of the bed, and they do not need to be indicated as averages any longer.

At steady state, nothing can change with time, so the LHS goes to zero, leaving the relation
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Note that the “initial” condition is now at x = 0 (the start of the bed), rather than at zero time.  If the flow rate is constant, and the bed is isothermal, then the solution is
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This is the same solution as obtained in the first section.

As cA becomes smaller, the conversion of species A becomes larger, so we can increase conversion in a plug-flow reactor by increasing temperature (makes k larger), increasing the bed volume (area A and/or length x), or be making the flow rate smaller.

This analysis is for a very idealized reactor, and the conversion in a real packed-bed reactor will likely deviate from predictions based on this simple model.

Adiabatic Plug-Flow Reactor
The same steady-state component balance results:
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The steady-state energy balance for the shell becomes
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Here, it has been assumed that temperature is constant over any cross-section, or that temperature depends only on x.  Also, constant density and heat capacity have been assumed, so that 
[image: image15.wmf]v

&

 does not change with distance down the reactor.
These two ordinary differential equations are nonlinear and highly coupled.  They can be solved simultaneously by finite differences, or by some other numerical scheme.

If the reactor is not adiabatic, then a heat rate term must be included in the energy balance.  Energy in the form of heat would enter or leave the system through the edge of the circular disk, i.e., through the walls of the tube.

Test Yourself
1. For an isothermal, plug-flow reactor, if the first-order rate coefficient is    1 s-1 and the residence time is 1 s, what is the percent conversion of species A?
2. How can the residence time be increased for this reactor?

3. If the reactor described in (1) is adiabatic rather than isothermal, will the conversion increase or decrease?  What do you need to know to answer this question?

4. In the shell balances done for the plug-flow reactor (think packed bed in a circular tube), concentration and temperature were assumed to vary with only one dimension x, the distance from the entrance.  Why would this be a poor model for a highly exothermic reaction in a short bed of large diameter?  How many dimensions should be included in an analysis of such a reactor?
x   x+x





Area = A
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