Chapter 11 Transient Processes

The following are Dr. Reid Miller’s notes from Felder and Rosseau chapter 11.  I thought they might be useful.
The General Balance Equation

Accumulation = Net Input + Net Generation

Accumulation Rate = Net Input Rate + Net Generation Rate

Application to Total Mass
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Transient Analysis of Total Mass in a CSTR (Continuous Stirred-Tank Reactor)

V = volume of liquid in tank (CSTR vessel)

( = density of liquid (assume constant)
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 = volumetric flow rate of inlet stream
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 (one stream in and one stream out)

Mass balance:
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Initial condition:
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To solve, must also specify how stream flow rates vary with time.

Example 1.  
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Thus, the time to empty the tank can be calculated by setting 
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Example 2.  
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The integral for the LHS can be found in standard tables.
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To see how this function behaves, lets solve for V
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When 
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As 
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So, if 
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 is larger than 
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, then V increases with time.  If it is smaller, V decreases with time.

Finite Difference Calculations
An alternative to formal integration, which can be used with any differential equation, is to replace the derivative(s) with finite difference approximations and numerically integrate the equation.

Example 2 (Revisited).

Returning to Example 2 above, the resulting differential equation was
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The finite-difference representation of this equation is
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Thus, if one starts at time zero, when V = V0, the new volume at time (t can be found from the above equation, as V0 + (V.  This is then repeated to determine volume versus time.

The main requirement for accuracy is that the time increment is small enough so that the volume increments are small compared with the volumes being calculated.

In the Excel spreadsheet “Transient Example”, both the analytical solution (Analytic 1) and the finite difference solution (Finite Diff 1) are shown for a tank initially containing V0 = 10  m3 of liquid, with a constant inlet rate of 0.015 m3/s, and with a = 0.001 s-1.  The finite-difference solution shown is for (t = 100 s, which is pretty big.  Nevertheless, the solution does not differ from the analytical solution more than 0.1 m3, or, less than 1 % of the actual volume at any time.

The time to steady state is about one hour for this example.

Example 3.  Drainage from a tank.

Consider the same conditions as in the “Transient Example”, however, let the liquid drain by gravity out of a hole (orifice) near the bottom of the tank.

From the Bernoulli equation, neglecting frictional effects at the orifice,
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Cross-section 1 – just under the surface of the liquid in the tank

Cross-section 2 – stream just outside the orifice
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The exit volumetric flow rate is related to the volume in the tank by
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The differential equation describing the volume in the tank as a function of time then becomes
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The finite-difference representation is
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The solution for a time increment of 100 s is in Transient Example as Finite Diff 2.  Note that the time to steady state is much longer for this example than for the one above, even though the final tank volume is similar.

There is an analytical solution for this problem, but it can not be solved directly for V(t), so it is not easy to work with.  You have to use Solver for each point you want to plot.

Numerical Integration
Use of the finite-difference approach is equivalent to performing integration by numerical methods.

The general problem can be expressed in terms of the following differential equation
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Formal separation of variables and integration yields
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If we use finite differences with specified intervals for x, then the integral can be replaced by a sum
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The only questions that remain: 1) What value do we choose to use for f(x) for each interval?, and 2) How big are the intervals?

Forward differences:

use f(x) at the start of the interval

Trapezoidal rule:

use average f(x) for the interval

Simpson’s rule:

use three-point f(x) for each two intervals

If we assume equal intervals, these lead to the following numerical integration formulas:

Forward differences:
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Trapezoidal rule:
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Simpson’s rule:
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Example 2 (Revisited Again).

Lets apply the numerical integration relations to this example.  Remember, we have a stirred tank with a constant input rate 
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 and a variable output rate 
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.  The initial volume in the tank is 10.00 0 m3, the input rate is 0.0150 m3/s and the constant a has a value of 0.00100 s-1.

The analytic solution gave a volume for liquid in the tank of 14.32 m3 after 2000 s of operation.  Let’s estimate this volume using the three methods listed above.

The differential equation describing this situation is
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Rearranging, we can associate V with x, and t with y, in the general equations above.
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The integration of this equation gives



[image: image40.wmf]i

V

V

n

i

i

V

f

dV

V

f

t

D

@

=

ò

å

=

0

1

)

(


This was implemented on an Excel spreadsheet, using 
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= 0.01 m3, for each of the three methods listed above.  The volume was incremented until the calculated time passed 2000 s.  Then, the last two points were interpolated to obtain the resulting volume corresponding to 2000 s. The results are


Forward differences:

14.37 m3

Trapezoidal rule:

14.36


Simpson’s rule:

14.32


Analytical solution:

14.32

Simpson’s rule is the most accurate, but it is a bit more difficult to implement in Excel.  Usually, the first two methods are sufficiently accurate for engineering calculations.

Transient Analysis of Reacting Component Mass in a CSTR 
Now, apply the general balance equation to moles of reacting component A



[image: image42.wmf]gen

A

out

A

in

A

A

r

n

n

dt

dn

-

-

-

+

-

=

&

&

&


Note that multiplying each term by the molecular weight of A would result in a balance equation for the mass of species A.

Assume that species A is a reactant, and disappears by a first-order chemical reaction,
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where cA is the molar concentration of species A (e.g., in units of mol/m3), and k is the first-order rate coefficient (units of reciprocal time).Again, the inlet volumetric flow rate to the CSTR is 
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Relating the molar terms to molar concentrations,


[image: image46.wmf]out

A

out

A

in

Ain

in

A

A

A

v

c

n

v

c

n

V

c

n

&

&

&

&

=

=

=

-

-


With these, the balance on moles of species A becomes
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Assuming constant liquid density, the overall mass balance results in the relation
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To proceed further, one has to apply initial conditions for both volume and concentration, and specify how the flow rates and inlet concentration behave.

Example 1.  Steady-state CSTR operation.

The volume of the tank will be constant
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The concentration of A will be independent of time
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Example 2.  Start-up of a CSTR.

1. Assume that the initial concentration of A in the tank is 
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2. Assume that the initial volume of liquid in the tank is V0.

3. Assume that the flow rates are steady and equal to 
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4. Assume that the inlet concentration of A is 
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The solution to the differential equation for volume is the same as for Example 1:
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The balance for species A becomes
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Separating variables



[image: image57.wmf]dt

c

k

V

v

c

V

v

dc

A

Ain

A

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

&

&


Integration yields 
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Rearrangement gives
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Application to a specific example:

The volume is 10.0 L, the flow rates are 0.200 L/s, the inlet concentration of A is 10.0 mol/L, the initial concentration of A in the tank is 0.0 mol/L, and the rate constant is 0.00500 s-1.  

This is evaluated in “CSTR Example” as an Excel file.  The steady-state conversion is 20 %.  The time required for relaxation to near steady-state conditions is 2-3 min.  These results can be changed by varying the constants.

The maximum deviation between the analytical solution and the finite-difference solution (using 
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= 5 s), is about 0.2 mol/L.  This can be reduced by making 
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smaller, if needed.
Example 3.  A Gravity Drainage Variable Volume CSTR

Expanding the derivative on the LHS of the species A balance, and then substituting the differential equation for volume,
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Solving for the derivative of concentration with respect to time,
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(A)
which must be solved simultaneously with
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With constant input flow rate and gravity drainage for the output, the latter equation becomes
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(B)

Equations (A) and (B) can be solved simultaneously by numerical techniques, such as finite differences in Excel, Odesolve in Mathcad, or by EZ-Solve.  This will be the basis for a tutorial in the computer lab.
Transient Energy Balances on Single-Phase, Nonreacting Processes

The General Energy Balance Equation for Nonreacting Systems

Accumulation = Net Input = Input – Output
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Remember 1) that heat is positive if energy is being added to the system, and 2) shaft work is positive if it is done by the system on the surroundings.

Remember that you need an input term for each input stream and an output term for each exit stream.

The total energy of the system (E) is equal to kinetic plus potential plus internal energies
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Unless the system moves, the last two terms, which pertain to the center of mass of the system, will always be negligible.

The total energy carried by a stream includes all three types of energy, but it must include “flow work” as well.  Thus, the specific energy for a stream becomes
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We are going to neglect kinetic and potential energies.  Remember, these are important in real processes where there are high-velocity streams or large changes in elevation.

The general energy balance simplifies to



[image: image69.wmf]out

out

in

in

S

H

m

H

m

W

Q

dt

dU

ˆ

ˆ

&

&

&

&

-

+

-

=


Simplified Transient Problems

Assumptions:

1. Negligible kinetic and potential energies.

2. Mass of the system is constant.

3. System is well mixed (no internal gradients).

4. No phase changes.

5. One stream in and one stream out.

6. Constant density and heat capacity.

With these assumptions, the energy balance reduces to
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For ideal gases, 
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, whereas, for liquids, the two heat capacities are very nearly equal.

Example – Startup of a CSTR Reactor

A CSTR is started up and allowed to come to thermal steady state before reactant is fed to the tank.  Assume the inlet and exit flow rates are both set at 0.200 L/s, and that the volume of liquid in the tank is 10.0 L.  The initial temperature of the liquid in the tank is 25.0 (C.  The temperature of the inlet stream is 50.0 (C.  The tank has a cooling jacket in which cooling water is circulated.  Heat losses from the tank can be taken to be 
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J/s, where 
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T

are the temperature in the tank and the cooling water temperature, both in (C.  The constant h is a heat transfer coefficient and A is the external area of the tank.  Assume the cooling water temperature is constant at 20.0 (C, the heat transfer coefficient has been determined to be 350 J/s-m2-(C, and the tank external area is 0.500 m2.  Determine the temperature in the tank as a function of time during this startup period.  Assume that the fluid is pure water.

The energy balance as derived above applies to this problem, i.e., all listed assumptions are met.
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Neglecting the small friction effects of the stirring, there is no shaft work.

The total mass can be written as the total volume times the density.

The two heat capacities can be assumed to be the same for liquid water.
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Separating variables,
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Let a be the coefficient of T and b be the other constant in the denominator of the LHS of this equation.
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This is a familiar form and can be integrated analytically.  The initial condition is 
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The result of the integration between t = 0 and t is
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In terms of the original variables, this becomes
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This gives back the initial condition, and the steady state condition is given by the first term on the RHS.

This solution can be evaluated for the conditions given above on an Excel spreadsheet.

An alternative solution can be obtained by use of finite differences, as applied to the differential equation, or by numerical integration of the differential equation after separating variables.

Simultaneous Transient Processes

When a process involves more than one component, or when both mass and energy balances have to be included, then we end up with simultaneous differential equations to solve.  This is best done using a software package designed for this purpose, such as EZ-Solve, which came with the text.

There are many other software packages that will do this, such as Mathcad, Matlab and Mathematica (see p. 560 in text for a more complete list).

Also, process simulation packages, such as HYSYS, can be run in dynamic mode to simulate transient processes.  This is beyond the scope of this course.

Finally, finite difference solutions can be produced in Excel to closely approximate the analytical solutions.

Simple Example: Startup of a CSTR – No Reaction

A tank initially contains a volume V0 of liquid at temperature T0.  A constant flow rate inlet stream is introduced to the tank, at volumetric flow rate 
[image: image81.wmf]in
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 and temperature Tin.  The tank is adiabatic and well mixed, and the exit flow rate is proportional to the volume in the tank, 
[image: image82.wmf]aV
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.  Determine the liquid volume and temperature in the tank as a function of time.

Mass balance:
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Energy balance:
Let 
[image: image84.wmf]0
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 at reference temperature Tr.
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For a liquid at low pressure, the references for internal energy and enthalpy will be nearly identical (see Steam Tables, p. 642, for typical reference state for water), thus the enthalpies of the inlet and exit streams can be written as indicated on the RHS of the following equation.
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 EMBED Equation.3  [image: image88.wmf])
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Thus, the final form for the energy balance reduces to 
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Note that the reference temperature disappeared, which it always has to.  Also, there is no influence of the exit rate (
[image: image90.wmf]aV
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) in this equation, other than in helping determine how V changes with time.  This is because the exit stream is at the temperature of the system, thus, fluid leaving should not impact the temperature of the remaining liquid in the tank, as the resulting equation (above) indicates.

The initial conditions (at 
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) are:
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Specific example:  Let the initial volume be 40.0 m3 at a temperature of 

25 (C.  Let the inlet stream be 0.015 m3/s at 50 (C.  Let the constant a be 0.00100 s-1.  This was implemented on an Excel spreadsheet.

The results are:
Steady-state volume = 15 m3



Steady-state temperature = 50 (C




Time to steady state = 1 hr

Advanced Example: Startup of CSTR with Reaction

A stirred tank contains volume V of an aqueous solution at initial temperature T0 and initial concentration of reacting species cA0.  The inlet stream flows at volumetric flow rate 
[image: image93.wmf]in
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&

, at temperature Tin and concentration cAin.  The exit stream flows at the same volumetric flow rate as the inlet stream.  Species A disappears by first-order kinetics, with the rate coefficient given by the Arrhenius equation.  Assuming the tank is adiabatic and well mixed, estimate the transient and steady-state behavior of the tank temperature, T ,and concentration of A, cA.

Total mass:
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Moles of species A:
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Energy:
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These equations are too difficult to solve analytically.  Lets look at a specific example and solve them by finite differences.

Specific example:  Let V = 10.0 L, 
[image: image97.wmf]in
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 = 0.1 L/s, CAin = 0.1 mol/L, CA0 = 0, ( = 1.00 g/cm3, Cp = 4.18 J/g-(C, Tin = 50 (C,T0 = 20 (C, A =1.00x1012 s-1, Ea = 82,500 J/mol, 
[image: image98.wmf]r
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= -20,000 J/mol, and R = 8.314 J/mol-K.

The results:
Steady state temperature = 50.4 (C



Steady state concentration of A =  0.017 mol/L



Time to steady state = 5 min

Why is the temperature higher than the inlet temperature?

What is the percent conversion for this CSTR? (= 83 %)
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