
ENGR 105: Feedback Control Design
Winter 2013

Lecture 4 - The Transfer Function
Monday, January 14, 2013

Today’s Objectives

1. introduce the concept of the transfer function
2. give the Laplace transform of the impulse response
3. use the impulse response as a basis for understanding the role of the transfer function
4. interpret the impulse response using the poles of the transfer function

Reading: FPE Section 3.1

1 The transfer function

The equations resulting from system modeling in this class take the form:

dny
dtn ` a1

dn´1y
dtn´1 ` ¨ ¨ ¨ ` any “ b1

dmu
dtm ` b2

dm´1u
dtm´1 ` ¨ ¨ ¨ ` bm`1u

Laplace transforming gives:

rsn ` a1s
n´1 ` ¨ ¨ ¨ ` ansY psq “ rb1sm ` b2s

m´1 ` ¨ ¨ ¨ ` bm`1sUpsq

When initial conditions are set to zero, this can be arranged as a transfer function, or ratio of two
polynomials, Hpsq:

Y psq
Upsq “ Hpsq “ b1s

m`b2s
m´1`¨¨¨`bm`1

sn`a1sn´1`¨¨¨`an

The transfer function can tell us many useful things about the system and has several interpreta-
tions.

2 The impulse response

The first interpretation of the transfer function that we will examine relates to the impulse response.
An impulse is a signal that is nonzero only at one point in time.

Some figures in this document

c�2010 Pearson (from the textbook Feedback Control of Dynamic Systems, 6th Ed.)
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0 00 +- t

Unit impulse:

�ptq “ 0 except when t “ 0

≥8
´8 �ptqdt “ ≥0`

0´ �ptqdt ” 1

What is the Laplace transform of an impulse?

Lr�ptqs “ ≥8
0´ �ptqe´stdt “ ≥0`

0´ �ptqe0dt “ ≥0`
0´ �ptqdt “ 1

Remember the step function:

1ptq “
"

1 t ° 0
0 otherwise

d
dt1ptq “ �ptq

Lr1ptqs “ 1
s Lr d

dt1ptqs “ sLr1ptqs ´ 1p0q “ s ¨ 1
s ´ 0 “ 1

The impulse is the derivative of the step. Everything we know about di↵erentiation checks out.

3 Understanding the Laplace transform in terms of the impulse
response

Back to the transfer function:

If Y psq
Upsq “ Hpsq, and Upsq is an impulse, then the impulse response is Y psq “ Hpsq.

Thus, L´1rHpsqs “ hptq “ yptq for an impulse.

ñ So in general, the transfer function is the Laplace transform of the system response to an impulse.

Think of the impulse response as figuratively (and sometimes literally) hitting the system with a
hammer. If you look at the time response, you can see a lot of things about a system, including
its stability, frequency of any resonances, decay time, etc. We can similarly see all of these in the
transfer function if we know where to look.

Why do we the transfer function at all? That is, why focus on Gpsq and not gptq directly? It is
usually much easier to solve problems in the Laplace domain (also sometimes called the frequency

domain or s-domain), since multiplication in s is convolution in t.
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Laplace

yptq “ L´ 1rHpsqUpsqs

Time domain

yptq “ ≥t
0 hpt ´ ⌧qup⌧qd⌧

What this says is that we can think of the system response as a composition of impulse responses.

t t t
6T

impulse
magnitude
u(t)6T

Think of uptq as a train of impulses. What is the response to these impulses?

t

u(o)6T

o t

h(0)u(o)6T

o

h(t-o)u(o)6T

At any time t, the output y us a result of all past impulses, so:

yptq “ ∞rhptqup0q ` hpt ´ �T qup�T q ` hpt ´ 2�T qup2�T q ` . . . s

where hptq is the response to an impulse after t seconds.

In the limit: yptq “ ≥t
0 hpt ´ ⌧qup⌧qd⌧ “ uptq ˙ hptq

where ˙ is the symbol for convolution.
Clearly, we can do this convolution in time domain, but it is harder than multiplication and may
need to be repeated a number of times, for example, in a feedback control system:
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G(s) H(s)

C(s)

R(s) E(s) U(s) Y(s)+
-

Y psq “ GpsqHpsqEpsq

Epsq “ Rpsq ´ CpsqY psq

Epsq “ Rpsq ´ CpsqGpsqHpsqEpsq
Ô This would be quite a lot of convolution!

ñ Epsq
Rpsq “ 1

1`CpsqGpsqHpsq

The transfer function from Rpsq to Epsq is much easier to compute with multiplication than convo-
lution. And the key to the block diagram being mathematically correct, where signals are multiplied
by the blocks through which they pass, is that the Laplace transformation takes convolution in the
time domain and converts it to multiplication in the s-domain.

Since the transfer function is the Laplace transform of the impulse response, it should have the
same information contained in it. How do we extract that information?

4 Poles and the impulse response

One way to understand the impulse response is to do a partial fraction expansion of the transfer
function.

The transfer function can be written as:

Hpsq “ K
m±ps´ziq

n±ps´piq

zi are the zeros and pi are the poles. m § n for a physical system.
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It can also be written as

Hpsq “ C1
s´p1

` C2
s´p2

` ¨ ¨ ¨ ` Cn
s´pn

(This form requires that all the poles be distinct – we will look at repeated poles shortly.)

The impulse response is therefore given by:

yptq “ L´1rHpsqs “ L´1
”

C1
s´p1

` C2
s´p2

` ¨ ¨ ¨ ` Cn
s´pn

ı

yptq “ C1e
p1t ` C2e

p2t ` ¨ ¨ ¨ ` Cne
pnt

Just a sum of our exponential building blocks! We can tell a lot about the response just by knowing
the poles of the system.

Real and complex poles

If a pole is real, it must be negative for the system to be stable. The exponential can only grow or
decay.

t
C

Ce
p>0

pt

t

C
Ce
p<0

pt

What about a pole p “ ´� ` j!?

Cep´�`j!qt “ Ce´�tej!t “ Ce´�trcos!t ` j sin!ts
Õ Ò Ô

decays or grows oscillates how do we handle j?

If there is a pole p1 “ ´� ` j!, its complex conjugate p2 “ ´� ´ j! must also be a pole. Then:

ps ´ p1qps ´ p2q “ s2 ´ p´� ` j!qs ` p´� ´ j!qs ` �2 ` !2

“ s2 ` 2�s ` �2 ` !2

The j terms cancel out, and we are left with only real coe�cients. (whew!)
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This is also true of the coe�cients in the partial fraction expansion: if C1 “ ↵´j� then C1 “ ↵`j�
must also be a coe�cient so that the numerator polynomial has real coe�cients.

This means that a complex pair of poles appears in the impulse response as:

Hpsq “ ↵´j�
s`�´j! ` ↵`j�

s`�`j! ` . . .

So yptq “ p↵ ´ j�qe´�trcos!t ` j sin!ts ` p↵ ` j�qe´�trcos!t ´ j sin!ts ` . . .

“ e´�tr2↵ cos!t ` 2� sin!ts ` . . .

_

`

|C  |1

q

“ 2|C1|e´�t cosp!t ´ �q ` . . .

where |C1| “
a
↵2 ` �2 and tan� “ �

↵

Why?
↵ “ |C1| cos� and � “ |C1| sin�
so ↵ cos!t ` � sin!t “ |C1| cos� cos!t ` |C1| sin� sin!t “ |C1| cosp!t ´ �q

Each value has some meaning:
� represents the rate of exponential decay
! represents the frequency of oscillation
↵ represents how much the cosine term exists
� represents how much the sine term exists

t

2|C |e-mt
1

-2|C |e-mt
1

_ = 0

` = 0

t = 0:0.1:5; 
sigma = 1; 
omega = pi; 
  
% case where beta = 0 
alpha = 1; 
beta = 0; 
C1 = sqrt(alpha^2 + beta^2); 
phi = atan2(beta, alpha); 
y1 = 2*C1*exp(-sigma.*t).*cos(omega.*t - phi); 
env_pos = 2*C1*exp(-sigma.*t); 
env_neg = -2*C1*exp(-sigma.*t); 
plot(t, env_pos, '--b', t, env_neg, '--k', t, y1, '-m') 
  
% case where alpha = 0 
alpha = 0; 
beta = 1; 
C1 = sqrt(alpha^2 + beta^2); 
phi = atan2(beta, alpha); 
y2 = 2*C1*exp(-sigma.*t).*cos(omega.*t - phi); 
hold on 
plot(t, y2, '-g') 
  
ylabel('y')  
xlabel('time') 
legend('positive envelope', 'negative envelope', ... 
'y(t) for \beta = 0', 'y(t) for \alpha = 0') 
!

Real poles give a stable response when they are negative.
Complex poles give a stable response when they have negative real parts.

If � “ 0, s “ ˘j!, then yptq “ 2|C1| cosp!t ´ �q ñ a non-decaying sinusoid.
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