
ENGR 105: Feedback Control Design

Winter 2013

Lecture 5 - System Response
Wendesday, January 16, 2013

Today’s Objectives

1. use partial fraction expansion to solve for the impulse response

2. solve for the response to general inputs

3. derive the Final Value Theorem

Reading: FPE Section 3.1

1 Solving for the Impulse Response

Writing a transfer function as a partial fraction expansion results in an equation of the following

form, assuming that the input Upsq is an impulse:

Y psq “ Hpsq “ C1

s´p1
` C2

s´p2
` ¨ ¨ ¨ ` Cn

s´pn

The impulse response is given by:

yptq “ C1e
p1t ` C2e

p2t ` ¨ ¨ ¨ ` Cne
pnt

The Ci are known as residues and can be solved for using:

Ci “ Y psqps ´ piq|s“pi

To see this, consider that

0 0

Ö Ö
Y psqps ´ p1q|s“pi “ C1 ` C2ps´p1q

s´p2
` ¨ ¨ ¨ ` Cnps´p1q

s´pn

... if there are no repeated roots. (More on that shortly.)

Some figures in this document may be

c�2010 Pearson (from the textbook Feedback Control of Dynamic Systems,

6th Ed.)
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Example

1(t)

t

y

�e�2t

Y psq “ Hpsq “ 2
sps`2q “ C1

s ` C2
s`2

C1 “ Y psqs|s“0 “ 2
s`2 |s“0 “ 1

C2 “ Y psqps ` 2q|s“´2 “ 2
s |s“´2 “ ´1

ñ Y psq “ 1
s ´ 1

s`2

yptq “ 1ptq ´ e´2t

This is the impulse response of the system Hpsq “ 2
sps`2q .

Repeated poles

What if poles are repeated?

Y psq “ C1
s´p1

` C2
ps´p1q2 ` ¨ ¨ ¨ ` Cn

s´pn

C2 “ Y psqps ´ p1q2|s“p1

C1 “ d
ds

“
Y psqps ´ p1q2

‰
|s“p1

yptq “ C1e
p1t ` C2te

p1t ` ¨ ¨ ¨ ` Cne
pnt

Õ Is this okay?

In general, for a repeated pole of multiplicity m,

L´1
”

1
ps`aqm

ı
“ 1

pm´1q! t
m´1e´at

Since lim

tÑ8
tm´1

eat
“ 0 @m, the response dies out.

Thus, repeated stable poles are okay. It may grow quite large before it decays, however, suggesting

that stability is not our only system requirement.

So if we have the transfer function, we can do a partial fraction expansion, look at the poles, and

tell both stability and the building blocks of the response:
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marginally stablestable unstable

Re

Im

The response gets faster the farther you move from the origin on the real axis. The response gets

more oscillatory the farther you move from the origin on the imaginary axis.

2 Response to general inputs

So far we looked at the impulse response, such that Y psq “ Hpsq. The same techniques can be

used to solve for the system response to any input Upsq.

Y psq “ HpsqUpsq “ K
m±ps´ziq

n±ps´piq
Ku

mu±ps´ziq
nu±ps´piq

“ a1
s´p1

` a2
s´p2

` ¨ ¨ ¨ ` an
s´pn

` an`1

s´pn`1
` ¨ ¨ ¨ ` an`mu

s´pn`mu

poles from system poles from input

We can solve for the system response in the same manner as described in the previous lecture, by

taking the inverse Laplace transform. Keep in mind that the residues for a given input will be

di↵erent from those calculated for the impulse response, so we have to solve for them again.
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Example

H(s)
voltage motor position

⇥(s)V (s)

Hpsq “ 1
sps`2q

This might be the response

of a motor position to voltage,

if the inductance is small.

⇥psq “ HpsqV psq

What is the response to a step change in voltage? Let’s use a step of 4 volts.

V psq “ 4
s ñ ⇥psq “ 4

s2ps`2q

⇥psq “ C1
s ` C2

s2 ` C3
s`2

We already have an idea of the qualitative response:

t

+

t t

+ C3e
�2t

C2t
C1

The response keeps growing in time (as we would expect). Mathematically, this happens because

the input results in a double pole at s “ 0. Multiple stable poles result in a stable system, but the

same is not true for the marginally stable pole at the origin.

To get the response quantitatively, we need to solve for the residues:

C1 “ d
ds

“
⇥psqs2

‰
|s“0 “ d

ds

´
4

s`2

¯
|s“0 “ ´4

ps`2q2 |s“0 “ ´1

C2 “ s2⇥psq|s“0 “ 4
s`2 |s“0 “ 2

C3 “ ps ` 2q⇥psq|s“´2 “ 4
s2 |s“´2 “ 1

ñ ✓ptq “ ´1 ` 2t ` e´2t
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Poles at s “ 0 act as integrators in the system. This should make sense: multiplication by s
represents di↵erentiation, and division by s represents integration.

L
”≥t

0 fp⌧qd⌧
ı

“ 1
sF psq

The integrator in this transfer function turns the step into a ramp, so the position of the motor

keeps increasing. What about the motor velocity ! “ 9✓?

t

!

2

Lr!ptqs “ ⌦psq

⌦psq “ s⇥psq “ 4
sps`2q “ 2

s ` ´2
s`2

ñ !ptq “ 2p1 ´ e´2tq

3 Final Value Theorem

If the system is stable, it is very easy to find the steady-state value that an input will produce.

From the derivative relationship in the Laplace transform:

L
”
dy
dt

ı
“ sY psq ´ yp0q “ ≥8

0 e´st dy
dt dt

Taking the limit as s Ñ 0

lim

sÑ0
rsY psq ´ yp0qs “ lim

sÑ0

ª 8

0
e´stdy

dt
dt

lim

sÑ0
rsY psqs ´ yp0q “

ª 8

0

dy

dt
dt “ yp8q ´ yp0q

ñ lim

tÑ8
yptq “ lim

sÑ0
sY psq

This is the Final Value Theorem. (Which only works if the system is stable!)

In the example above:

ñ lim

tÑ8
!ptq “ lim

sÑ0
s⌦psq “ lim

sÑ0
s

4

sps ` 2q “ 2

Thus, if we know the transfer function and the input, finding the steady-state value (if it exists) is

extremely simple.
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